package collision; import src.TimeState; import src.GameObject; import dif.math.Point3F; import dif.math.PlaneF; import h3d.col.Plane; import octree.Octree; import h3d.col.Ray; import h3d.Vector; import octree.IOctreeObject; import h3d.Matrix; import h3d.col.Bounds; import src.PathedInterior; class CollisionEntity implements IOctreeObject { public var boundingBox:Bounds; public var octree:Octree; public var grid:Grid; public var surfaces:Array; public var priority:Int; public var position:Int; public var velocity:Vector = new Vector(); public var transform:Matrix; var invTransform:Matrix; public var go:GameObject; public var userData:Int; public var difEdgeMap:Map; public function new(go:GameObject) { this.go = go; this.octree = new Octree(); this.surfaces = []; this.transform = Matrix.I(); this.invTransform = Matrix.I(); } public function addSurface(surface:CollisionSurface) { if (surface.points.length > 0) { this.octree.insert(surface); this.surfaces.push(surface); } } // Generates the grid public function finalize() { this.generateBoundingBox(); this.grid = new Grid(this.boundingBox); for (surface in this.surfaces) { this.grid.insert(surface); } } public function setTransform(transform:Matrix) { if (this.transform == transform) return; this.transform.load(transform); this.invTransform = transform.getInverse(); generateBoundingBox(); } public function generateBoundingBox() { var boundingBox = new Bounds(); for (surface in this.surfaces) { var tform = surface.boundingBox.clone(); tform.transform(transform); boundingBox.add(tform); } this.boundingBox = boundingBox; } public function rayCast(rayOrigin:Vector, rayDirection:Vector):Array { var invMatrix = invTransform; var rStart = rayOrigin.clone(); rStart.transform(invMatrix); var rDir = rayDirection.transformed3x3(invMatrix); if (grid == null) { var intersections = octree.raycast(rStart, rDir); var iData:Array = []; for (i in intersections) { i.point.transform(transform); i.normal.transform3x3(transform); i.normal.normalize(); iData.push({point: i.point, normal: i.normal, object: i.object}); } return iData; } else { var intersections = this.grid.rayCast(rStart, rDir); for (i in intersections) { i.point.transform(transform); i.normal.transform3x3(transform); i.normal.normalize(); } return intersections; } } public function getElementType() { return 2; } public function setPriority(priority:Int) { this.priority = priority; } public function sphereIntersection(collisionEntity:SphereCollisionEntity, timeState:TimeState) { var position = collisionEntity.transform.getPosition(); var velocity = collisionEntity.velocity; var radius = collisionEntity.radius; var invMatrix = invTransform; if (this.go is PathedInterior) invMatrix = transform.getInverse(); var sphereBounds = new Bounds(); var localPos = position.clone(); localPos.transform(invMatrix); sphereBounds.addSpherePos(position.x, position.y, position.z, radius * 1.1); sphereBounds.transform(invMatrix); sphereBounds.addSpherePos(localPos.x, localPos.y, localPos.z, radius * 1.1); var surfaces = grid == null ? octree.boundingSearch(sphereBounds).map(x -> cast x) : grid.boundingSearch(sphereBounds); var tform = transform.clone(); // tform.setPosition(tform.getPosition().add(this.velocity.multiply(timeState.dt))); function toDifPoint(pt:Vector) { return new Point3F(pt.x, pt.y, pt.z); } function fromDifPoint(pt:Point3F) { return new Vector(pt.x, pt.y, pt.z); } function hashEdge(i1:Int, i2:Int) { return i1 >= i2 ? i1 * i1 + i1 + i2 : i1 + i2 * i2; } var contacts = []; for (obj in surfaces) { var surface:CollisionSurface = cast obj; var surfaceBestContact:CollisionInfo = null; var bestDot:Float = Math.NEGATIVE_INFINITY; var i = 0; while (i < surface.indices.length) { var v0 = surface.points[surface.indices[i]].transformed(tform); var v = surface.points[surface.indices[i + 1]].transformed(tform); var v2 = surface.points[surface.indices[i + 2]].transformed(tform); // var e1e2 = hashEdge(surface.originalIndices[i], surface.originalIndices[i + 1]); // var e2e3 = hashEdge(surface.originalIndices[i + 1], surface.originalIndices[i + 2]); // var e1e3 = hashEdge(surface.originalIndices[i], surface.originalIndices[i + 3]); // var edgeData = 0; // if (this.difEdgeMap.exists(e1e2)) { // edgeData |= 1; // } // if (this.difEdgeMap.exists(e2e3)) { // edgeData |= 2; // } // if (this.difEdgeMap.exists(e1e3)) { // edgeData |= 4; // } var edgeData = surface.edgeData[Math.floor(i / 3)]; var edgeDots = surface.edgeDots.slice(Math.floor(i / 3), Math.floor(i / 3) + 3); var surfacenormal = surface.normals[surface.indices[i]].transformed3x3(transform).normalized(); var res = Collision.IntersectTriangleSphere(v0, v, v2, surfacenormal, position, radius, edgeData, edgeDots); var closest = res.point; // var closest = Collision.ClosestPtPointTriangle(position, radius, v0, v, v2, surfacenormal); if (closest != null) { var contactDist = closest.distanceSq(position); if (contactDist <= radius * radius) { var normal = res.normal; if (position.sub(closest).dot(surfacenormal) > 0) { normal.normalize(); // We find the normal that is closest to the surface normal, sort of fixes weird edge cases of when colliding with // var testDot = normal.dot(surfacenormal); // if (testDot > bestDot) { // bestDot = testDot; var cinfo = new CollisionInfo(); cinfo.normal = normal; cinfo.point = closest; // cinfo.collider = this; cinfo.velocity = this.velocity.clone(); cinfo.contactDistance = Math.sqrt(contactDist); cinfo.otherObject = this.go; // cinfo.penetration = radius - (position.sub(closest).dot(normal)); cinfo.restitution = surface.restitution; cinfo.force = surface.force; cinfo.friction = surface.friction; contacts.push(cinfo); // surfaceBestContact = cinfo; // } } } } i += 3; } // if (surfaceBestContact != null) // contacts.push(surfaceBestContact); } return contacts; } }