RingRacers/src/v_video.cpp

3844 lines
85 KiB
C++

// DR. ROBOTNIK'S RING RACERS
//-----------------------------------------------------------------------------
// Copyright (C) 2025 by Kart Krew.
// Copyright (C) 2020 by Sonic Team Junior.
// Copyright (C) 2000 by DooM Legacy Team.
// Copyright (C) 1996 by id Software, Inc.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file v_video.c
/// \brief Gamma correction LUT stuff
/// Functions to draw patches (by post) directly to screen.
/// Functions to blit a block to the screen.
#include <cmath>
#include <optional>
#include <tracy/tracy/Tracy.hpp>
#include "doomdef.h"
#include "r_local.h"
#include "p_local.h" // stplyr
#include "g_game.h" // players
#include "v_video.h"
#include "st_stuff.h"
#include "hu_stuff.h"
#include "f_finale.h"
#include "r_draw.h"
#include "console.h"
#include "r_fps.h"
#include "k_dialogue.h" // K_GetDialogueSlide
#include "i_video.h" // rendermode
#include "z_zone.h"
#include "m_misc.h"
#include "m_random.h"
#include "doomstat.h"
#include "hwr2/blendmode.hpp"
#ifdef HWRENDER
#include "hardware/hw_glob.h"
#endif
// SRB2Kart
#include "k_hud.h"
#include "k_boss.h"
#include "i_time.h"
#include "v_draw.hpp"
using namespace srb2;
// Each screen is [vid.width*vid.height];
UINT8 *screens[5];
// screens[0] = main display window
// screens[1] = back screen, alternative blitting
// screens[2] = screenshot buffer, gif movie buffer
// screens[3] = fade screen start
// screens[4] = fade screen end, postimage tempoarary buffer
#define huecoloursteps 4
extern "C" CV_PossibleValue_t hue_cons_t[];
CV_PossibleValue_t hue_cons_t[] = {{0, "MIN"}, {(huecoloursteps*6)-1, "MAX"}, {0, NULL}};
extern "C" CV_PossibleValue_t constextsize_cons_t[];
CV_PossibleValue_t constextsize_cons_t[] = {
{V_NOSCALEPATCH, "Small"}, {V_SMALLSCALEPATCH, "Medium"}, {V_MEDSCALEPATCH, "Large"}, {0, "Huge"},
{0, NULL}};
// local copy of the palette for V_GetColor()
RGBA_t *pLocalPalette = NULL;
RGBA_t *pMasterPalette = NULL;
RGBA_t *pGammaCorrectedPalette = NULL;
hwr2::Twodee srb2::g_2d;
static size_t currentPaletteSize;
static UINT8 softwaretranstohwr[11] = { 0, 25, 51, 76,102,127,153,178,204,229,255};
/*
The following was an extremely helpful resource when developing my Colour Cube LUT.
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter24.html
Please check it out if you're trying to maintain this.
toast 18/04/17
*/
float Cubepal[2][2][2][3];
boolean Cubeapply = false;
// returns whether to apply cube, selectively avoiding expensive operations
static boolean InitCube(void)
{
boolean apply = false;
UINT8 q;
float working[2][2][2][3] = // the initial positions of the corners of the colour cube!
{
{
{
{0.0, 0.0, 0.0}, // black corner
{0.0, 0.0, 1.0} // blue corner
},
{
{0.0, 1.0, 0.0}, // green corner
{0.0, 1.0, 1.0} // cyan corner
}
},
{
{
{1.0, 0.0, 0.0}, // red corner
{1.0, 0.0, 1.0} // magenta corner
},
{
{1.0, 1.0, 0.0}, // yellow corner
{1.0, 1.0, 1.0} // white corner
}
}
};
float desatur[3]; // grey
float globalgammamul, globalgammaoffs;
boolean doinggamma;
if (con_startup_loadprogress < LOADED_CONFIG)
return false;
#define diffcons(cv) (cv.value != atoi(cv.defaultvalue))
doinggamma = diffcons(cv_globalgamma);
#define gammascale 8
globalgammamul = (cv_globalgamma.value ? ((255 - (gammascale*abs(cv_globalgamma.value)))/255.0) : 1.0);
globalgammaoffs = ((cv_globalgamma.value > 0) ? ((gammascale*cv_globalgamma.value)/255.0) : 0.0);
desatur[0] = desatur[1] = desatur[2] = globalgammaoffs + (0.33*globalgammamul);
if (doinggamma
|| diffcons(cv_rhue)
|| diffcons(cv_yhue)
|| diffcons(cv_ghue)
|| diffcons(cv_chue)
|| diffcons(cv_bhue)
|| diffcons(cv_mhue)
|| diffcons(cv_rgamma)
|| diffcons(cv_ygamma)
|| diffcons(cv_ggamma)
|| diffcons(cv_cgamma)
|| diffcons(cv_bgamma)
|| diffcons(cv_mgamma)) // set the gamma'd/hued positions (saturation is done later)
{
float mod, tempgammamul, tempgammaoffs;
apply = true;
working[0][0][0][0] = working[0][0][0][1] = working[0][0][0][2] = globalgammaoffs;
working[1][1][1][0] = working[1][1][1][1] = working[1][1][1][2] = globalgammaoffs+globalgammamul;
#define dohue(hue, gamma, loc) \
tempgammamul = (gamma ? ((255 - (gammascale*abs(gamma)))/255.0)*globalgammamul : globalgammamul);\
tempgammaoffs = ((gamma > 0) ? ((gammascale*gamma)/255.0) + globalgammaoffs : globalgammaoffs);\
mod = ((hue % huecoloursteps)*(tempgammamul)/huecoloursteps);\
switch (hue/huecoloursteps)\
{\
case 0:\
default:\
loc[0] = tempgammaoffs+tempgammamul;\
loc[1] = tempgammaoffs+mod;\
loc[2] = tempgammaoffs;\
break;\
case 1:\
loc[0] = tempgammaoffs+tempgammamul-mod;\
loc[1] = tempgammaoffs+tempgammamul;\
loc[2] = tempgammaoffs;\
break;\
case 2:\
loc[0] = tempgammaoffs;\
loc[1] = tempgammaoffs+tempgammamul;\
loc[2] = tempgammaoffs+mod;\
break;\
case 3:\
loc[0] = tempgammaoffs;\
loc[1] = tempgammaoffs+tempgammamul-mod;\
loc[2] = tempgammaoffs+tempgammamul;\
break;\
case 4:\
loc[0] = tempgammaoffs+mod;\
loc[1] = tempgammaoffs;\
loc[2] = tempgammaoffs+tempgammamul;\
break;\
case 5:\
loc[0] = tempgammaoffs+tempgammamul;\
loc[1] = tempgammaoffs;\
loc[2] = tempgammaoffs+tempgammamul-mod;\
break;\
}
dohue(cv_rhue.value, cv_rgamma.value, working[1][0][0]);
dohue(cv_yhue.value, cv_ygamma.value, working[1][1][0]);
dohue(cv_ghue.value, cv_ggamma.value, working[0][1][0]);
dohue(cv_chue.value, cv_cgamma.value, working[0][1][1]);
dohue(cv_bhue.value, cv_bgamma.value, working[0][0][1]);
dohue(cv_mhue.value, cv_mgamma.value, working[1][0][1]);
#undef dohue
}
#define dosaturation(a, e) a = ((1 - work)*e + work*a)
#define docvsat(cv_sat, hue, gamma, r, g, b) \
if diffcons(cv_sat)\
{\
float work, mod, tempgammamul, tempgammaoffs;\
apply = true;\
work = (cv_sat.value/10.0);\
mod = ((hue % huecoloursteps)*(1.0)/huecoloursteps);\
if (hue & huecoloursteps)\
mod = 2-mod;\
else\
mod += 1;\
tempgammamul = (gamma ? ((255 - (gammascale*abs(gamma)))/255.0)*globalgammamul : globalgammamul);\
tempgammaoffs = ((gamma > 0) ? ((gammascale*gamma)/255.0) + globalgammaoffs : globalgammaoffs);\
for (q = 0; q < 3; q++)\
dosaturation(working[r][g][b][q], (tempgammaoffs+(desatur[q]*mod*tempgammamul)));\
}
docvsat(cv_rsaturation, cv_rhue.value, cv_rgamma.value, 1, 0, 0);
docvsat(cv_ysaturation, cv_yhue.value, cv_ygamma.value, 1, 1, 0);
docvsat(cv_gsaturation, cv_ghue.value, cv_ggamma.value, 0, 1, 0);
docvsat(cv_csaturation, cv_chue.value, cv_cgamma.value, 0, 1, 1);
docvsat(cv_bsaturation, cv_bhue.value, cv_bgamma.value, 0, 0, 1);
docvsat(cv_msaturation, cv_mhue.value, cv_mgamma.value, 1, 0, 1);
#undef gammascale
if diffcons(cv_globalsaturation)
{
float work = (cv_globalsaturation.value/10.0);
apply = true;
for (q = 0; q < 3; q++)
{
dosaturation(working[1][0][0][q], desatur[q]);
dosaturation(working[0][1][0][q], desatur[q]);
dosaturation(working[0][0][1][q], desatur[q]);
dosaturation(working[1][1][0][q], 2*desatur[q]);
dosaturation(working[0][1][1][q], 2*desatur[q]);
dosaturation(working[1][0][1][q], 2*desatur[q]);
}
}
#undef dosaturation
#undef diffcons
if (!apply)
return false;
#define dowork(i, j, k, l) \
if (working[i][j][k][l] > 1.0)\
working[i][j][k][l] = 1.0;\
else if (working[i][j][k][l] < 0.0)\
working[i][j][k][l] = 0.0;\
Cubepal[i][j][k][l] = working[i][j][k][l]
for (q = 0; q < 3; q++)
{
dowork(0, 0, 0, q);
dowork(1, 0, 0, q);
dowork(0, 1, 0, q);
dowork(1, 1, 0, q);
dowork(0, 0, 1, q);
dowork(1, 0, 1, q);
dowork(0, 1, 1, q);
dowork(1, 1, 1, q);
}
#undef dowork
return true;
}
UINT32 V_GammaCorrect(UINT32 input, double power)
{
RGBA_t result;
double linear;
result.rgba = input;
linear = ((double)result.s.red)/255.0f;
linear = pow(linear, power)*255.0f;
result.s.red = (UINT8)(linear);
linear = ((double)result.s.green)/255.0f;
linear = pow(linear, power)*255.0f;
result.s.green = (UINT8)(linear);
linear = ((double)result.s.blue)/255.0f;
linear = pow(linear, power)*255.0f;
result.s.blue = (UINT8)(linear);
return result.rgba;
}
// keep a copy of the palette so that we can get the RGB value for a color index at any time.
static void LoadPalette(const char *lumpname)
{
lumpnum_t lumpnum = W_GetNumForName(lumpname);
size_t i, palsize;
UINT8 *pal;
currentPaletteSize = W_LumpLength(lumpnum);
palsize = currentPaletteSize / 3;
Cubeapply = InitCube();
if (pLocalPalette != pMasterPalette)
Z_Free(pLocalPalette);
Z_Free(pMasterPalette);
Z_Free(pGammaCorrectedPalette);
pMasterPalette = static_cast<RGBA_t*>(Z_Malloc(sizeof (*pMasterPalette)*palsize, PU_STATIC, NULL));
if (Cubeapply)
pLocalPalette = static_cast<RGBA_t*>(Z_Malloc(sizeof (*pLocalPalette)*palsize, PU_STATIC, NULL));
else
pLocalPalette = pMasterPalette;
pGammaCorrectedPalette = static_cast<RGBA_t*>(Z_Malloc(sizeof (*pGammaCorrectedPalette)*palsize, PU_STATIC, NULL));
pal = static_cast<UINT8*>(W_CacheLumpNum(lumpnum, PU_CACHE));
for (i = 0; i < palsize; i++)
{
pMasterPalette[i].s.red = *pal++;
pMasterPalette[i].s.green = *pal++;
pMasterPalette[i].s.blue = *pal++;
pMasterPalette[i].s.alpha = 0xFF;
pGammaCorrectedPalette[i].rgba = V_GammaDecode(pMasterPalette[i].rgba);
if (!Cubeapply)
continue;
V_CubeApply(&pGammaCorrectedPalette[i]);
pLocalPalette[i].rgba = V_GammaEncode(pGammaCorrectedPalette[i].rgba);
}
}
void V_CubeApply(RGBA_t *input)
{
float working[4][3];
float linear;
UINT8 q;
if (!Cubeapply)
return;
linear = ((*input).s.red/255.0);
#define dolerp(e1, e2) ((1 - linear)*e1 + linear*e2)
for (q = 0; q < 3; q++)
{
working[0][q] = dolerp(Cubepal[0][0][0][q], Cubepal[1][0][0][q]);
working[1][q] = dolerp(Cubepal[0][1][0][q], Cubepal[1][1][0][q]);
working[2][q] = dolerp(Cubepal[0][0][1][q], Cubepal[1][0][1][q]);
working[3][q] = dolerp(Cubepal[0][1][1][q], Cubepal[1][1][1][q]);
}
linear = ((*input).s.green/255.0);
for (q = 0; q < 3; q++)
{
working[0][q] = dolerp(working[0][q], working[1][q]);
working[1][q] = dolerp(working[2][q], working[3][q]);
}
linear = ((*input).s.blue/255.0);
for (q = 0; q < 3; q++)
{
working[0][q] = 255*dolerp(working[0][q], working[1][q]);
if (working[0][q] > 255.0)
working[0][q] = 255.0;
else if (working[0][q] < 0.0)
working[0][q] = 0.0;
}
#undef dolerp
(*input).s.red = (UINT8)(working[0][0]);
(*input).s.green = (UINT8)(working[0][1]);
(*input).s.blue = (UINT8)(working[0][2]);
}
const char *R_GetPalname(UINT16 num)
{
static char palname[9];
char newpal[9] = "PLAYPAL";
if (num > 0 && num <= 10000)
snprintf(newpal, 8, "PAL%04u", num-1);
strlcpy(palname, newpal, 9);
return palname;
}
const char *GetPalette(void)
{
const char *user = cv_palette.string;
if (user && user[0])
{
if (W_CheckNumForName(user) == LUMPERROR)
{
CONS_Alert(CONS_WARNING,
"cv_palette %s lump does not exist\n", user);
}
else
{
return cv_palette.string;
}
}
if (gamestate == GS_LEVEL)
return R_GetPalname((encoremode ? mapheaderinfo[gamemap-1]->encorepal : mapheaderinfo[gamemap-1]->palette));
return "PLAYPAL";
}
void V_ReloadPalette(void)
{
LoadPalette(GetPalette());
}
// -------------+
// V_SetPalette : Set the current palette to use for palettized graphics
// :
// -------------+
void V_SetPalette(INT32 palettenum)
{
if (!pLocalPalette)
V_ReloadPalette();
if (palettenum == 0)
{
palettenum = cv_palettenum.value;
if (palettenum * 256U > currentPaletteSize - 256)
{
CONS_Alert(CONS_WARNING,
"cv_palettenum %d out of range\n",
palettenum);
palettenum = 0;
}
}
#ifdef HWRENDER
if (rendermode == render_opengl)
HWR_SetPalette(&pLocalPalette[palettenum*256]);
#if (defined (__unix__) && !defined (MSDOS)) || defined (UNIXCOMMON) || defined (HAVE_SDL)
else
#endif
#endif
if (rendermode != render_none)
I_SetPalette(&pLocalPalette[palettenum*256]);
}
void V_SetPaletteLump(const char *pal)
{
LoadPalette(pal);
V_SetPalette(0);
}
extern "C" {
void CV_palette_OnChange(void);
void CV_palette_OnChange(void)
{
if (con_startup_loadprogress < LOADED_CONFIG)
return;
// recalculate Color Cube
V_ReloadPalette();
V_SetPalette(0);
}
}; // extern "C"
#if defined (__GNUC__) && defined (__i386__) && !defined (NOASM) && !defined (__APPLE__) && !defined (NORUSEASM)
void VID_BlitLinearScreen_ASM(const UINT8 *srcptr, UINT8 *destptr, INT32 width, INT32 height, size_t srcrowbytes,
size_t destrowbytes);
#define HAVE_VIDCOPY
#endif
extern "C" {
void CV_constextsize_OnChange(void);
void CV_constextsize_OnChange(void)
{
if (!con_startup)
con_recalc = true;
}
}; // extern "C"
// --------------------------------------------------------------------------
// Copy a rectangular area from one bitmap to another (8bpp)
// --------------------------------------------------------------------------
void VID_BlitLinearScreen(const UINT8 *srcptr, UINT8 *destptr, INT32 width, INT32 height, size_t srcrowbytes,
size_t destrowbytes)
{
#ifdef HAVE_VIDCOPY
VID_BlitLinearScreen_ASM(srcptr,destptr,width,height,srcrowbytes,destrowbytes);
#else
if ((srcrowbytes == destrowbytes) && (srcrowbytes == (size_t)width))
M_Memcpy(destptr, srcptr, srcrowbytes * height);
else
{
while (height--)
{
M_Memcpy(destptr, srcptr, width);
destptr += destrowbytes;
srcptr += srcrowbytes;
}
}
#endif
}
void V_AdjustXYWithSnap(INT32 *x, INT32 *y, UINT32 options, INT32 dupx, INT32 dupy)
{
// dupx adjustments pretend that screen width is BASEVIDWIDTH * dupx
INT32 screenwidth = vid.width;
INT32 screenheight = vid.height;
INT32 basewidth = BASEVIDWIDTH * dupx;
INT32 baseheight = BASEVIDHEIGHT * dupy;
SINT8 player = R_GetViewNumber();
if (r_splitscreen > 0)
{
if (options & V_SPLITSCREEN)
{
screenheight /= 2;
baseheight /= 2;
if (r_splitscreen > 1)
{
screenwidth /= 2;
basewidth /= 2;
}
}
}
else if ((options & (V_SLIDEIN|V_SNAPTOBOTTOM)) == (V_SLIDEIN|V_SNAPTOBOTTOM))
{
INT32 slide = K_GetDialogueSlide(51 * FRACUNIT);
if (slide)
{
*y -= FixedMul(slide, dupy);
}
}
if (vid.width != (BASEVIDWIDTH * dupx))
{
if (options & V_SNAPTORIGHT)
*x += (screenwidth - basewidth);
else if (!(options & V_SNAPTOLEFT))
*x += (screenwidth - basewidth) / 2;
}
if (vid.height != (BASEVIDHEIGHT * dupy))
{
if (options & V_SNAPTOBOTTOM)
*y += (screenheight - baseheight);
else if (!(options & V_SNAPTOTOP))
*y += (screenheight - baseheight) / 2;
}
if (options & V_SPLITSCREEN)
{
if (r_splitscreen == 1)
{
if (player == 1)
*y += screenheight;
}
else if (r_splitscreen > 1)
{
if (player == 1 || player == 3)
*x += screenwidth;
if (player == 2 || player == 3)
*y += screenheight;
}
}
if ((options & V_SLIDEIN))
{
if (st_fadein < FRACUNIT)
{
if ((options & (V_SNAPTORIGHT|V_SNAPTOLEFT|V_SPLITSCREEN)) != 0)
{
boolean slidefromright = false;
const fixed_t offsetAmount = (screenwidth * FRACUNIT/2);
INT32 offset = (offsetAmount - FixedMul(offsetAmount, st_fadein)) / FRACUNIT;
if (r_splitscreen > 1)
{
if (player & 1)
slidefromright = true;
}
if (options & V_SNAPTORIGHT)
slidefromright = true;
else if (options & V_SNAPTOLEFT)
slidefromright = false;
if (slidefromright == true)
{
offset = -offset;
}
*x -= offset;
}
else
{
const fixed_t offsetAmount = (screenheight * FRACUNIT/2);
INT32 offset = (offsetAmount - FixedMul(offsetAmount, st_fadein)) / FRACUNIT;
if (options & V_SNAPTOBOTTOM)
{
offset = -offset;
}
*y -= offset;
}
}
}
}
static cliprect_t cliprect = {0};
const cliprect_t *V_GetClipRect(void)
{
if (cliprect.enabled == false)
{
return NULL;
}
return &cliprect;
}
void V_SetClipRect(fixed_t x, fixed_t y, fixed_t w, fixed_t h, INT32 flags)
{
// Adjust position.
if (!(flags & V_NOSCALESTART))
{
fixed_t dupx = vid.dupx;
fixed_t dupy = vid.dupy;
if (flags & V_SCALEPATCHMASK)
{
switch ((flags & V_SCALEPATCHMASK) >> V_SCALEPATCHSHIFT)
{
case 1: // V_NOSCALEPATCH
dupx = dupy = 1;
break;
case 2: // V_SMALLSCALEPATCH
dupx = vid.smalldupx;
dupy = vid.smalldupy;
break;
case 3: // V_MEDSCALEPATCH
dupx = vid.meddupx;
dupy = vid.meddupy;
break;
default:
break;
}
}
dupx = dupy = (dupx < dupy ? dupx : dupy);
x = FixedMul(x, dupx);
y = FixedMul(y, dupy);
w = FixedMul(w, dupx);
h = FixedMul(h, dupy);
if (!(flags & V_SCALEPATCHMASK))
{
V_AdjustXYWithSnap(&x, &y, flags, dupx, dupy);
}
}
if (x < 0)
{
w += x;
x = 0;
}
if (y < 0)
{
h += y;
y = 0;
}
if (x > vid.width)
{
x = vid.width;
w = 0;
}
if (y > vid.height)
{
y = vid.height;
h = 0;
}
cliprect.left = x;
cliprect.top = y;
cliprect.right = x + w;
cliprect.bottom = y + h;
cliprect.flags = flags;
cliprect.enabled = true;
/*
V_DrawFill(cliprect.l, cliprect.t, cliprect.r - cliprect.l, cliprect.b - cliprect.t, V_NOSCALESTART);
CONS_Printf("[(%d, %d), (%d, %d)]\n", cliprect.l, cliprect.t, cliprect.r, cliprect.b);
*/
}
void V_ClearClipRect(void)
{
cliprect.enabled = false;
}
void V_SaveClipRect(cliprect_t *copy)
{
*copy = cliprect;
}
void V_RestoreClipRect(const cliprect_t *copy)
{
cliprect = *copy;
}
static UINT8 hudplusalpha[11] = { 10, 8, 6, 4, 2, 0, 0, 0, 0, 0, 0};
static UINT8 hudminusalpha[11] = { 10, 9, 9, 8, 8, 7, 7, 6, 6, 5, 5};
static const UINT8 *v_colormap = NULL;
static const UINT8 *v_translevel = NULL;
static inline UINT8 standardpdraw(const UINT8 *dest, const UINT8 *source, fixed_t ofs)
{
(void)dest; return source[ofs>>FRACBITS];
}
static inline UINT8 mappedpdraw(const UINT8 *dest, const UINT8 *source, fixed_t ofs)
{
(void)dest; return *(v_colormap + source[ofs>>FRACBITS]);
}
static inline UINT8 translucentpdraw(const UINT8 *dest, const UINT8 *source, fixed_t ofs)
{
return *(v_translevel + ((source[ofs>>FRACBITS]<<8)&0xff00) + (*dest&0xff));
}
static inline UINT8 transmappedpdraw(const UINT8 *dest, const UINT8 *source, fixed_t ofs)
{
return *(v_translevel + (((*(v_colormap + source[ofs>>FRACBITS]))<<8)&0xff00) + (*dest&0xff));
}
UINT32 V_GetHUDTranslucency(INT32 scrn)
{
if (scrn & V_SLIDEIN)
{
return 10;
}
if (scrn & V_SPLITSCREEN)
{
return FixedMul(10, st_fadein);
}
return st_translucency;
}
static UINT32 V_GetAlphaLevel(INT32 scrn)
{
switch (scrn & V_ALPHAMASK)
{
case V_HUDTRANSHALF:
return hudminusalpha[V_GetHUDTranslucency(scrn)];
case V_HUDTRANS:
return 10 - V_GetHUDTranslucency(scrn);
case V_HUDTRANSDOUBLE:
return hudplusalpha[V_GetHUDTranslucency(scrn)];
default:
return (scrn & V_ALPHAMASK) >> V_ALPHASHIFT;
}
}
// Draws a patch scaled to arbitrary size.
void V_DrawStretchyFixedPatch(fixed_t x, fixed_t y, fixed_t pscale, fixed_t vscale, INT32 scrn, patch_t *patch, const UINT8 *colormap)
{
UINT32 alphalevel, blendmode;
fixed_t vdup;
INT32 dupx, dupy;
fixed_t pwidth; // patch width
const cliprect_t *clip = V_GetClipRect();
if (rendermode == render_none)
return;
#ifdef HWRENDER
if (rendermode == render_opengl)
{
HWR_DrawStretchyFixedPatch(patch, x, y, pscale, vscale, scrn, colormap);
return;
}
#endif
if ((blendmode = ((scrn & V_BLENDMASK) >> V_BLENDSHIFT)))
blendmode++; // realign to constants
if ((alphalevel = V_GetAlphaLevel(scrn)) >= 10)
return;
dupx = vid.dupx;
dupy = vid.dupy;
if (scrn & V_SCALEPATCHMASK) switch ((scrn & V_SCALEPATCHMASK) >> V_SCALEPATCHSHIFT)
{
case 1: // V_NOSCALEPATCH
dupx = dupy = 1;
break;
case 2: // V_SMALLSCALEPATCH
dupx = vid.smalldupx;
dupy = vid.smalldupy;
break;
case 3: // V_MEDSCALEPATCH
dupx = vid.meddupx;
dupy = vid.meddupy;
break;
default:
break;
}
// only use one dup, to avoid stretching (har har)
dupx = dupy = (dupx < dupy ? dupx : dupy);
vdup = FixedMul(dupx<<FRACBITS, pscale);
if (vscale != pscale)
vdup = FixedMul(dupx<<FRACBITS, vscale);
{
fixed_t offsetx = 0, offsety = 0;
// left offset
if (scrn & V_FLIP)
offsetx = FixedMul((patch->width - patch->leftoffset)<<FRACBITS, pscale);
else
offsetx = FixedMul(patch->leftoffset<<FRACBITS, pscale);
// top offset
if (scrn & V_VFLIP)
offsety = FixedMul((patch->height - patch->topoffset)<<FRACBITS, vscale);
else
offsety = FixedMul(patch->topoffset<<FRACBITS, vscale);
// Subtract the offsets from x/y positions
x -= offsetx;
y -= offsety;
}
if (scrn & V_NOSCALESTART)
{
x >>= FRACBITS;
y >>= FRACBITS;
}
else
{
x = FixedMul(x,dupx<<FRACBITS);
y = FixedMul(y,dupy<<FRACBITS);
x >>= FRACBITS;
y >>= FRACBITS;
// Center it if necessary
if (!(scrn & V_SCALEPATCHMASK))
{
V_AdjustXYWithSnap(&x, &y, scrn, dupx, dupy);
}
}
if (pscale != FRACUNIT) // scale width properly
{
pwidth = patch->width<<FRACBITS;
pwidth = FixedMul(pwidth, pscale);
pwidth = FixedMul(pwidth, dupx<<FRACBITS);
pwidth >>= FRACBITS;
}
else
pwidth = patch->width * dupx;
float fdupy = FIXED_TO_FLOAT(vdup);
float fx = x;
float fy = y;
float fx2 = fx + pwidth;
float fy2 = fy + std::round(static_cast<float>(patch->height) * fdupy);
float falpha = 1.f;
float umin = 0.f;
float umax = 1.f;
float vmin = 0.f;
float vmax = 1.f;
// flip UVs
if (scrn & V_FLIP)
{
umin = 1.f - umin;
umax = 1.f - umax;
}
if (scrn & V_VFLIP)
{
vmin = 1.f - vmin;
vmax = 1.f - vmax;
}
if (alphalevel > 0 && alphalevel <= 10)
{
falpha = (10 - alphalevel) / 10.f;
}
hwr2::BlendMode blend = hwr2::BlendMode::kAlphaTransparent;
switch (blendmode)
{
case AST_MODULATE:
blend = hwr2::BlendMode::kModulate;
break;
case AST_ADD:
blend = hwr2::BlendMode::kAdditive;
break;
// Note: SRB2 has these blend modes flipped compared to GL and Vulkan.
// SRB2's Subtract is Dst - Src. OpenGL is Src - Dst. And vice versa for reverse.
// Twodee will use the GL definitions.
case AST_SUBTRACT:
blend = hwr2::BlendMode::kReverseSubtractive;
break;
case AST_REVERSESUBTRACT:
blend = hwr2::BlendMode::kSubtractive;
break;
default:
blend = hwr2::BlendMode::kAlphaTransparent;
break;
}
auto builder = g_2d.begin_quad();
builder
.patch(patch)
.rect(fx, fy, fx2 - fx, fy2 - fy)
.flip((scrn & V_FLIP) > 0)
.vflip((scrn & V_VFLIP) > 0)
.color(1, 1, 1, falpha)
.blend(blend)
.colormap(colormap);
if (clip && clip->enabled)
{
builder.clip(clip->left, clip->top, clip->right, clip->bottom);
}
builder.done();
}
// Draws a patch cropped and scaled to arbitrary size.
void V_DrawCroppedPatch(fixed_t x, fixed_t y, fixed_t pscale, INT32 scrn, patch_t *patch, fixed_t sx, fixed_t sy, fixed_t w, fixed_t h)
{
cliprect_t oldClip = cliprect;
V_SetClipRect(x, y, w, h, scrn);
x -= sx;
y -= sy;
V_DrawStretchyFixedPatch(x, y, pscale, pscale, scrn, patch, NULL);
cliprect = oldClip;
}
//
// V_DrawContinueIcon
// Draw a mini player! If we can, that is. Otherwise we draw a star.
//
void V_DrawContinueIcon(INT32 x, INT32 y, INT32 flags, INT32 skinnum, UINT16 skincolor)
{
(void)skinnum;
(void)skincolor;
V_DrawScaledPatch(x - 10, y - 14, flags, static_cast<patch_t*>(W_CachePatchName("CONTINS", PU_PATCH)));
}
//
// V_DrawBlock
// Draw a linear block of pixels into the view buffer.
//
void V_DrawBlock(INT32 x, INT32 y, INT32 scrn, INT32 width, INT32 height, const UINT8 *src)
{
UINT8 *dest;
const UINT8 *deststop;
if (x < 0 || x + width > vid.width || y < 0 || y + height > vid.height || (unsigned)scrn > 4)
I_Error("Bad V_DrawBlock");
dest = screens[scrn] + y*vid.width + x;
deststop = screens[scrn] + vid.rowbytes * vid.height;
while (height--)
{
M_Memcpy(dest, src, width);
src += width;
dest += vid.width;
if (dest > deststop)
return;
}
}
//
// Fills a box of pixels with a single color, NOTE: scaled to screen size
//
void V_DrawFill(INT32 x, INT32 y, INT32 w, INT32 h, INT32 c)
{
const cliprect_t *clip = V_GetClipRect();
if (rendermode == render_none)
return;
#ifdef HWRENDER
if (rendermode == render_opengl)
{
HWR_DrawFill(x, y, w, h, c);
return;
}
#endif
UINT32 alphalevel;
if ((alphalevel = V_GetAlphaLevel(c)) >= 10)
return;
if (!(c & V_NOSCALESTART))
{
INT32 dupx = vid.dupx, dupy = vid.dupy;
if (x == 0 && y == 0 && w == BASEVIDWIDTH && h == BASEVIDHEIGHT)
{
w = vid.width;
h = vid.height;
}
else
{
x *= dupx;
y *= dupy;
w *= dupx;
h *= dupy;
// Center it if necessary
V_AdjustXYWithSnap(&x, &y, c, dupx, dupy);
}
}
if (x >= vid.width || y >= vid.height)
return; // off the screen
if (x < 0)
{
w += x;
x = 0;
}
if (y < 0)
{
h += y;
y = 0;
}
if (w <= 0 || h <= 0)
return; // zero width/height wouldn't draw anything
if (x + w > vid.width)
w = vid.width - x;
if (y + h > vid.height)
h = vid.height - y;
c &= 255;
RGBA_t color = pLocalPalette[c];
UINT8 r = (color.rgba & 0xFF);
UINT8 g = (color.rgba & 0xFF00) >> 8;
UINT8 b = (color.rgba & 0xFF0000) >> 16;
if (clip && clip->enabled)
{
int x2 = std::min(x + w, clip->right);
int y2 = std::min(y + h, clip->bottom);
if (x < clip->left)
x = clip->left;
if (y < clip->top)
y = clip->top;
w = std::max<INT32>(0, x2 - x);
h = std::max<INT32>(0, y2 - y);
}
g_2d.begin_quad()
.patch(nullptr)
.color(r / 255.f, g / 255.f, b / 255.f, (10 - alphalevel) / 10.f)
.rect(x, y, w, h)
.done();
}
static UINT32 V_GetHWConsBackColor(void)
{
UINT32 hwcolor;
switch (cons_backcolor.value)
{
case 0: hwcolor = 0xffffff00; break; // White
case 1: hwcolor = 0x80808000; break; // Black
case 2: hwcolor = 0xdeb88700; break; // Sepia
case 3: hwcolor = 0x40201000; break; // Brown
case 4: hwcolor = 0xfa807200; break; // Pink
case 5: hwcolor = 0xff000000; break; // Red
case 6: hwcolor = 0xff800000; break; // Orange
case 7: hwcolor = 0xdaa52000; break; // Gold
case 8: hwcolor = 0xffdd0000; break; // Yellow
case 9: hwcolor = 0xc5e80000; break; // Peridot
case 10: hwcolor = 0x00800000; break; // Green
case 11: hwcolor = 0x15f2b000; break; // Aquamarine
case 12: hwcolor = 0x00ffff00; break; // Cyan
case 13: hwcolor = 0x4682b400; break; // Steel
case 14: hwcolor = 0x0000ff00; break; // Blue
case 15: hwcolor = 0x9844ff00; break; // Purple
case 16: hwcolor = 0xff00ff00; break; // Magenta
case 17: hwcolor = 0xee82ee00; break; // Lavender
case 18: hwcolor = 0xf570a500; break; // Rose
// Default green
default: hwcolor = 0x00800000; break;
}
return hwcolor;
}
// THANK YOU MPC!!!
// and thanks toaster for cleaning it up.
void V_DrawFillConsoleMap(INT32 x, INT32 y, INT32 w, INT32 h, INT32 c)
{
UINT32 alphalevel = 0;
if (rendermode == render_none)
return;
#ifdef HWRENDER
if (rendermode == render_opengl)
{
UINT32 hwcolor = V_GetHWConsBackColor();
HWR_DrawConsoleFill(x, y, w, h, c, hwcolor); // we still use the regular color stuff but only for flags. actual draw color is "hwcolor" for this.
return;
}
#endif
if ((alphalevel = V_GetAlphaLevel(c)) >= 10)
return;
if (!(c & V_NOSCALESTART))
{
INT32 dupx = vid.dupx, dupy = vid.dupy;
x *= dupx;
y *= dupy;
w *= dupx;
h *= dupy;
// Center it if necessary
V_AdjustXYWithSnap(&x, &y, c, dupx, dupy);
}
if (x >= vid.width || y >= vid.height)
return; // off the screen
if (x < 0) {
w += x;
x = 0;
}
if (y < 0) {
h += y;
y = 0;
}
if (w <= 0 || h <= 0)
return; // zero width/height wouldn't draw anything
if (x + w > vid.width)
w = vid.width-x;
if (y + h > vid.height)
h = vid.height-y;
c &= 255;
UINT32 hwcolor = V_GetHWConsBackColor();
float r = ((hwcolor & 0xFF000000) >> 24) / 255.f;
float g = ((hwcolor & 0xFF0000) >> 16) / 255.f;
float b = ((hwcolor & 0xFF00) >> 8) / 255.f;
float a = 0.5f; // alphalevel is unused in GL??
g_2d.begin_quad()
.rect(x, y, w, h)
.blend(hwr2::BlendMode::kAlphaTransparent)
.color(r, g, b, a)
.done();
}
//
// Fills a triangle of pixels with a single color, NOTE: scaled to screen size
//
// ...
// .. <-- this shape only for now, i'm afraid
// .
//
void V_DrawDiag(INT32 x, INT32 y, INT32 wh, INT32 c)
{
INT32 w, h;
if (rendermode == render_none)
return;
#ifdef HWRENDER
if (rendermode == render_opengl)
{
HWR_DrawDiag(x, y, wh, c);
return;
}
#endif
if (!(c & V_NOSCALESTART))
{
INT32 dupx = vid.dupx, dupy = vid.dupy;
x *= dupx;
y *= dupy;
wh *= dupx;
// Center it if necessary
V_AdjustXYWithSnap(&x, &y, c, dupx, dupy);
}
if (x >= vid.width || y >= vid.height)
return; // off the screen
if (y < 0)
{
wh += y;
y = 0;
}
w = h = wh;
if (x < 0)
{
w += x;
x = 0;
}
if (w <= 0 || h <= 0)
return; // zero width/height wouldn't draw anything
if (x + w > vid.width)
{
w = vid.width - x;
}
if (y + w > vid.height)
h = vid.height - y;
if (h > w)
h = w;
c &= 255;
{
auto builder = g_2d.begin_verts();
const RGBA_t color = pLocalPalette[c];
const float r = ((color.rgba & 0xFF000000) >> 24) / 255.f;
const float g = ((color.rgba & 0xFF0000) >> 16) / 255.f;
const float b = ((color.rgba & 0xFF00) >> 8) / 255.f;
const float a = 1.f;
builder.color(r, g, b, a);
builder
.vert(x, y)
.vert(x + wh, y + wh)
.vert(x, y + wh)
.done();
}
}
//
// If color is 0x00 to 0xFF, draw transtable (strength range 0-9).
// Else, use COLORMAP lump (strength range 0-31).
// c is not color, it is for flags only. transparency flags will be ignored.
// IF YOU ARE NOT CAREFUL, THIS CAN AND WILL CRASH!
// I have kept the safety checks for strength out of this function;
// I don't trust Lua users with it, so it doesn't matter.
//
void V_DrawFadeFill(INT32 x, INT32 y, INT32 w, INT32 h, INT32 c, UINT16 color, UINT8 strength)
{
if (rendermode == render_none)
return;
#ifdef HWRENDER
if (rendermode == render_opengl)
{
// ughhhhh please can someone else do this? thanks ~toast 25/7/19 in 38 degrees centigrade w/o AC
HWR_DrawFadeFill(x, y, w, h, c, color, strength); // toast two days later - left above comment in 'cause it's funny
return;
}
#endif
if (!(c & V_NOSCALESTART))
{
INT32 dupx = vid.dupx, dupy = vid.dupy;
x *= dupx;
y *= dupy;
w *= dupx;
h *= dupy;
// Center it if necessary
V_AdjustXYWithSnap(&x, &y, c, dupx, dupy);
}
if (x >= vid.width || y >= vid.height)
return; // off the screen
if (x < 0) {
w += x;
x = 0;
}
if (y < 0) {
h += y;
y = 0;
}
if (w <= 0 || h <= 0)
return; // zero width/height wouldn't draw anything
if (x + w > vid.width)
w = vid.width-x;
if (y + h > vid.height)
h = vid.height-y;
float r;
float g;
float b;
float a;
hwr2::BlendMode blendmode;
if (color & 0xFF00)
{
// Historical COLORMAP fade
// In Ring Racers this is a Mega Drive style per-channel fade (though it'd probably be cool in SRB2 too)
// HWR2 will implement as a rev-subtractive rect because colormaps aren't possible in hardware
float fstrength = std::clamp(strength / 31.f, 0.f, 1.f);
r = std::clamp((fstrength - (0.f / 3.f)) * 3.f, 0.f, 1.f);
g = std::clamp((fstrength - (1.f / 3.f)) * 3.f, 0.f, 1.f);
b = std::clamp((fstrength - (2.f / 3.f)) * 3.f, 0.f, 1.f);
a = 1;
blendmode = hwr2::BlendMode::kReverseSubtractive;
}
else
{
// Historically TRANSMAP fade
// This is done by modulative (transparent) blend to the given palette color.
byteColor_t bc = V_GetColor(color).s;
r = bc.red / 255.f;
g = bc.green / 255.f;
b = bc.blue / 255.f;
a = softwaretranstohwr[std::clamp(static_cast<int>(strength), 0, 10)] / 255.f;
blendmode = hwr2::BlendMode::kAlphaTransparent;
}
g_2d.begin_quad()
.blend(blendmode)
.color(r, g, b, a)
.rect(x, y, w, h)
.done();
}
//
// Fills a box of pixels using a flat texture as a pattern, scaled to screen size.
//
void V_DrawFlatFill(INT32 x, INT32 y, INT32 w, INT32 h, lumpnum_t flatnum)
{
INT32 dupx;
INT32 dupy;
size_t size;
size_t lflatsize;
#ifdef HWRENDER
if (rendermode == render_opengl)
{
HWR_DrawFlatFill(x, y, w, h, flatnum);
return;
}
#endif
size = W_LumpLength(flatnum);
switch (size)
{
case 4194304: // 2048x2048 lump
lflatsize = 2048;
break;
case 1048576: // 1024x1024 lump
lflatsize = 1024;
break;
case 262144:// 512x512 lump
lflatsize = 512;
break;
case 65536: // 256x256 lump
lflatsize = 256;
break;
case 16384: // 128x128 lump
lflatsize = 128;
break;
case 1024: // 32x32 lump
lflatsize = 32;
break;
case 256: // 16x16 lump
lflatsize = 16;
break;
case 64: // 8x8 lump
lflatsize = 8;
break;
default: // 64x64 lump
lflatsize = 64;
break;
}
float fsize = lflatsize;
dupx = dupy = (vid.dupx < vid.dupy ? vid.dupx : vid.dupy);
g_2d.begin_verts()
.flat(flatnum)
.vert(x * dupx, y * dupy, 0, 0)
.vert(x * dupx + w * dupx, y * dupy, w / fsize, 0)
.vert(x * dupx + w * dupx, y * dupy + h * dupy, w / fsize, h / fsize)
.vert(x * dupx, y * dupy, 0, 0)
.vert(x * dupx + w * dupx, y * dupy + h * dupy, w / fsize, h / fsize)
.vert(x * dupx, y * dupy + h * dupy, 0, h / fsize)
.done();
}
//
// V_DrawPatchFill
//
void V_DrawPatchFill(patch_t *pat)
{
INT32 dupz = (vid.dupx < vid.dupy ? vid.dupx : vid.dupy);
INT32 x, y, pw = pat->width * dupz, ph = pat->height * dupz;
for (x = 0; x < vid.width; x += pw)
{
for (y = 0; y < vid.height; y += ph)
V_DrawScaledPatch(x, y, V_NOSCALESTART, pat);
}
}
void V_DrawVhsEffect(boolean rewind)
{
static fixed_t upbary = 100, downbary = 150;
UINT8 *buf = screens[0], *tmp = screens[4];
UINT16 y;
UINT32 x, pos = 0;
UINT8 *normalmapstart = ((UINT8 *)transtables + (8<<FF_TRANSSHIFT|(19<<8)));
#ifdef HQ_VHS
UINT8 *tmapstart = ((UINT8 *)transtables + (6<<FF_TRANSSHIFT));
#endif
UINT8 *thismapstart;
SINT8 offs;
UINT8 barsize = vid.dupy<<5;
UINT8 updistort = vid.dupx<<(rewind ? 5 : 3);
UINT8 downdistort = updistort>>1;
if (rewind)
V_DrawVhsEffect(false); // experimentation
upbary -= FixedMul(vid.dupy * (rewind ? 3 : 1.8f), renderdeltatics);
downbary += FixedMul(vid.dupy * (rewind ? 2 : 1), renderdeltatics);
if (upbary < -barsize) upbary = vid.height;
if (downbary > vid.height) downbary = -barsize;
for (y = 0; y < vid.height; y+=2)
{
thismapstart = normalmapstart;
offs = 0;
if (y >= upbary && y < upbary+barsize)
{
thismapstart -= (2<<FF_TRANSSHIFT) - (5<<8);
offs += updistort * 2.0f * std::min(y-upbary, upbary+barsize-y) / barsize;
}
if (y >= downbary && y < downbary+barsize)
{
thismapstart -= (2<<FF_TRANSSHIFT) - (5<<8);
offs -= downdistort * 2.0f * std::min(y-downbary, downbary+barsize-y) / barsize;
}
offs += M_RandomKey(vid.dupx<<1);
// lazy way to avoid crashes
if (y == 0 && offs < 0) offs = 0;
else if (y >= vid.height-2 && offs > 0) offs = 0;
for (x = pos+vid.rowbytes*2; pos < x; pos++)
{
tmp[pos] = thismapstart[buf[pos+offs]];
#ifdef HQ_VHS
tmp[pos] = tmapstart[buf[pos]<<8 | tmp[pos]];
#endif
}
}
memcpy(buf, tmp, vid.rowbytes*vid.height);
}
//
// Fade all the screen buffer, so that the menu is more readable,
// especially now that we use the small hufont in the menus...
// If color is 0x00 to 0xFF, draw transtable (strength range 0-9).
// Else, use COLORMAP lump (strength range 0-31).
// IF YOU ARE NOT CAREFUL, THIS CAN AND WILL CRASH!
// I have kept the safety checks out of this function;
// the v.fadeScreen Lua interface handles those.
//
void V_DrawFadeScreen(UINT16 color, UINT8 strength)
{
#ifdef HWRENDER
if (rendermode == render_opengl)
{
HWR_FadeScreenMenuBack(color, strength);
return;
}
#endif
float r;
float g;
float b;
float a;
hwr2::BlendMode blendmode;
if (color & 0xFF00)
{
// Historical COLORMAP fade
// In Ring Racers this is a Mega Drive style per-channel fade (though it'd probably be cool in SRB2 too)
// HWR2 will implement as a rev-subtractive rect because colormaps aren't possible in hardware
float fstrength = std::clamp(strength / 31.f, 0.f, 1.f);
r = std::clamp((fstrength - (0.f / 3.f)) * 3.f, 0.f, 1.f);
g = std::clamp((fstrength - (1.f / 3.f)) * 3.f, 0.f, 1.f);
b = std::clamp((fstrength - (2.f / 3.f)) * 3.f, 0.f, 1.f);
a = 1;
blendmode = hwr2::BlendMode::kReverseSubtractive;
}
else
{
// Historically TRANSMAP fade
// This is done by modulative (transparent) blend to the given palette color.
byteColor_t bc = V_GetColor(color).s;
r = bc.red / 255.f;
g = bc.green / 255.f;
b = bc.blue / 255.f;
a = softwaretranstohwr[std::clamp(static_cast<int>(strength), 0, 10)] / 255.f;
blendmode = hwr2::BlendMode::kAlphaTransparent;
}
g_2d.begin_quad()
.blend(blendmode)
.color(r, g, b, a)
.rect(0, 0, vid.width, vid.height)
.done();
}
lighttable_t *V_LoadCustomFadeMap(const char *lump)
{
lumpnum_t lumpnum = LUMPERROR;
lighttable_t *clm = NULL;
if (lump != NULL)
lumpnum = W_GetNumForName(lump);
else
return NULL;
if (lumpnum != LUMPERROR)
{
clm = static_cast<lighttable_t*>(Z_MallocAlign(COLORMAP_SIZE, PU_STATIC, NULL, 8));
W_ReadLump(lumpnum, clm);
return clm;
}
return NULL;
}
const UINT8 *V_OffsetIntoFadeMap(const lighttable_t *clm, UINT8 strength)
{
return ((const UINT8 *)clm + strength*256);
}
//
// Fade the screen buffer, using a custom COLORMAP lump.
// Split from V_DrawFadeScreen, because that function has
// WAY too many options piled on top of it as is. :V
//
void V_DrawCustomFadeScreen(const char *lump, UINT8 strength)
{
#ifdef HWRENDER
if (rendermode == render_opengl)
{
HWR_DrawCustomFadeScreen(
(strcmp(lump, "FADEMAP1") != 0
? 31
: 0
),
strength
);
return;
}
#endif
// TODO: fix this for Twodee
{
lighttable_t *clm = V_LoadCustomFadeMap(lump);
if (clm != NULL)
{
const UINT8 *fadetable = V_OffsetIntoFadeMap(clm, strength);
const UINT8 *deststop = screens[0] + vid.rowbytes * vid.height;
UINT8 *buf = screens[0];
// heavily simplified -- we don't need to know x or y
// position when we're doing a full screen fade
for (; buf < deststop; ++buf)
*buf = fadetable[*buf];
Z_Free(clm);
clm = NULL;
}
}
}
// Simple translucency with one color, over a set number of lines starting from the top.
void V_DrawFadeConsBack(INT32 plines)
{
UINT32 hwcolor = V_GetHWConsBackColor();
#ifdef HWRENDER // not win32 only 19990829 by Kin
if (rendermode == render_opengl)
{
HWR_DrawConsoleBack(hwcolor, plines);
return;
}
#endif
float r = ((hwcolor & 0xFF000000) >> 24) / 255.f;
float g = ((hwcolor & 0xFF0000) >> 16) / 255.f;
float b = ((hwcolor & 0xFF00) >> 8) / 255.f;
float a = 0.5f;
g_2d.begin_quad()
.rect(0, 0, vid.width, plines)
.blend(hwr2::BlendMode::kAlphaTransparent)
.color(r, g, b, a)
.done();
}
//
// Invert the entire screen, for Encore fades
//
void V_EncoreInvertScreen(void)
{
#ifdef HWRENDER
if (rendermode == render_opengl)
{
HWR_EncoreInvertScreen();
return;
}
#endif
g_2d.begin_quad()
.blend(hwr2::BlendMode::kInvertDest)
.color(1, 1, 1, 1)
.rect(0, 0, vid.width, vid.height)
.done();
}
// Very similar to F_DrawFadeConsBack, except we draw from the middle(-ish) of the screen to the bottom.
void V_DrawPromptBack(INT32 boxheight, INT32 color)
{
if (color >= 256 && color < 512)
{
if (boxheight < 0)
boxheight = -boxheight;
else // 4 lines of space plus gaps between and some leeway
boxheight = ((boxheight * 4) + (boxheight/2)*5);
V_DrawFill((BASEVIDWIDTH-(vid.width/vid.dupx))/2, BASEVIDHEIGHT-boxheight, (vid.width/vid.dupx),boxheight, (color-256)|V_SNAPTOBOTTOM);
return;
}
boxheight *= vid.dupy;
if (color == INT32_MAX)
color = cons_backcolor.value;
UINT32 hwcolor = V_GetHWConsBackColor();
#ifdef HWRENDER
if (rendermode == render_opengl)
{
HWR_DrawTutorialBack(hwcolor, boxheight);
return;
}
#endif
float r = ((color & 0xFF000000) >> 24) / 255.f;
float g = ((color & 0xFF0000) >> 16) / 255.f;
float b = ((color & 0xFF00) >> 8) / 255.f;
float a = (color == 0 ? 0xC0 : 0x80) / 255.f; // make black darker, like software
INT32 real_boxheight = (boxheight * 4) + (boxheight / 2) * 5;
g_2d.begin_quad()
.rect(0, vid.height - real_boxheight, vid.width, real_boxheight)
.color(r, g, b, a)
.done();
}
// Gets string colormap, used for 0x80 color codes
//
UINT8 *V_GetStringColormap(INT32 colorflags)
{
#if 0 // perfect
switch ((colorflags & V_CHARCOLORMASK) >> V_CHARCOLORSHIFT)
{
case 1: // 0x81, purple
return purplemap;
case 2: // 0x82, yellow
return yellowmap;
case 3: // 0x83, green
return greenmap;
case 4: // 0x84, blue
return bluemap;
case 5: // 0x85, red
return redmap;
case 6: // 0x86, gray
return graymap;
case 7: // 0x87, orange
return orangemap;
case 8: // 0x88, sky
return skymap;
case 9: // 0x89, lavender
return lavendermap;
case 10: // 0x8A, gold
return goldmap;
case 11: // 0x8B, aqua-green
return aquamap;
case 12: // 0x8C, magenta
return magentamap;
case 13: // 0x8D, pink
return pinkmap;
case 14: // 0x8E, brown
return brownmap;
case 15: // 0x8F, tan
return tanmap;
default: // reset
return NULL;
}
#else // optimised
colorflags = ((colorflags & V_CHARCOLORMASK) >> V_CHARCOLORSHIFT);
if (!colorflags || colorflags > 15) // INT32 is signed, but V_CHARCOLORMASK is a very restrictive mask.
return NULL;
return (purplemap+((colorflags-1)<<8));
#endif
}
INT32 V_DanceYOffset(INT32 counter)
{
const INT32 duration = 16;
const INT32 step = (I_GetTime() + counter) % duration;
return abs(step - (duration / 2)) - (duration / 4);
}
static boolean V_CharacterValid(font_t *font, int c)
{
return (c >= 0 && c < font->size && font->font[c] != NULL);
}
// Writes a single character (draw WHITE if bit 7 set)
//
void V_DrawCharacterScaled(
fixed_t x,
fixed_t y,
fixed_t scale,
INT32 flags,
int fontno,
int c,
UINT8 *colormap)
{
font_t *font = &fontv[fontno];
boolean notColored = false;
const boolean uppercase = ((flags & V_FORCEUPPERCASE) == V_FORCEUPPERCASE);
flags &= ~(V_FLIP); /* These two (V_FORCEUPPERCASE) share a bit. */
if (colormap == NULL)
{
colormap = V_GetStringColormap(( flags & V_CHARCOLORMASK ));
}
notColored = (colormap == NULL);
flags &= ~(V_CHARCOLORMASK | V_PARAMMASK);
if (uppercase)
{
c = toupper(c);
}
else if (V_CharacterValid(font, c - font->start) == false)
{
// Try the other case if it doesn't exist
if (c >= 'A' && c <= 'Z')
{
c = tolower(c);
}
else if (c >= 'a' && c <= 'z')
{
c = toupper(c);
}
}
c -= font->start;
if (V_CharacterValid(font, c) == false)
{
return;
}
if (notColored == true)
{
if (( c & 0xF0 ) == 0x80)
{
colormap = V_GetStringColormap(
( ( c & 0x7f ) << V_CHARCOLORSHIFT ) & V_CHARCOLORMASK
);
}
}
V_DrawFixedPatch(
x, y,
scale,
flags,
font->font[c],
colormap
);
}
void V_DrawCharacter(INT32 x, INT32 y, INT32 c, boolean lowercase)
{
// Backwards compatibility
if (lowercase == false)
{
c |= V_FORCEUPPERCASE;
}
V_DrawCharacterScaled(
x << FRACBITS,
y << FRACBITS,
FRACUNIT,
(c & ~V_PARAMMASK),
HU_FONT,
(c & V_PARAMMASK),
NULL
);
}
void V_DrawChatCharacter(INT32 x, INT32 y, INT32 c, boolean lowercase, UINT8 *colormap)
{
// Backwards compatibility
if (lowercase == false)
{
c |= V_FORCEUPPERCASE;
}
V_DrawCharacterScaled(
x << FRACBITS,
y << FRACBITS,
FRACUNIT >> 1,
(c & ~V_PARAMMASK),
HU_FONT,
(c & V_PARAMMASK),
colormap
);
}
template <bool Centered>
static INT32 Internal_TitleCardStringOffset(const char *str, boolean p4)
{
int bg_font = GTOL_FONT;
int fg_font = GTFN_FONT;
if (p4)
{
bg_font = GTOL4_FONT;
fg_font = GTFN4_FONT;
}
INT32 xoffs = 0;
const char *ch = str;
char c;
patch_t *pp;
// Returns true if it reached the end, false if interrupted.
auto scan = [&](auto keep_going)
{
for (;;ch++)
{
if (*ch == '\n')
{
xoffs = 0;
return false;
}
if (!keep_going(*ch))
{
break;
}
c = *ch;
c = toupper(c);
c -= LT_FONTSTART;
// check if character exists, if not, it's a space.
if (c < 0 || c >= LT_FONTSIZE || !fontv[bg_font].font[(INT32)c])
{
xoffs += p4 ? 5 : 10;
continue;
}
pp = fontv[fg_font].font[(INT32)c];
xoffs += pp->width - (p4 ? 3 : 5);
}
return true;
};
do
{
// For the sake of centering, don't count spaces or
// punctuation at each end of a line.
// TODO: This should ideally be more sophisticated:
// - Check patch width directly for monospace or
// punctuation that isn't necessarily thin.
// - Apply to all centered string drawing.
if constexpr (Centered)
{
// Count leading fluff
if (!scan([](int c) { return c && !isalnum(c); }))
{
continue;
}
if (!*ch)
{
// ALL fluff, so center it normally.
break;
}
// xoffs gets halved later, which centers the
// string. If we don't want leading fluff to push
// everything to the right, its full width needs
// to be subtracted, so it's doubled here to
// cancel out the division.
xoffs *= 2;
INT32 trim = -1;
bool reached_end = scan(
[&trim, &xoffs](int c)
{
if (isalnum(c))
{
trim = -1;
}
else if (trim < 0)
{
trim = xoffs;
}
return c;
}
);
// Discount trailing fluff
if (reached_end && trim >= 0)
{
xoffs = trim;
}
}
else
{
scan([](int c) { return c; });
}
}
while (*(ch++));
if constexpr (Centered)
{
return xoffs / 2;
}
else
{
return xoffs;
}
}
// V_TitleCardStringWidth
// Get the string's width using the titlecard font.
INT32 V_TitleCardStringWidth(const char *str, boolean p4)
{
return Internal_TitleCardStringOffset<false>(str, p4);
}
// V_CenteredTitleCardStringOffset
// Subtract this offset from an X coordinate to center the string around that point.
INT32 V_CenteredTitleCardStringOffset(const char *str, boolean p4)
{
return Internal_TitleCardStringOffset<true>(str, p4);
}
// V_DrawTitleCardStringFixed.
// see v_video.h's prototype for more information.
//
void V_DrawTitleCardStringFixed(fixed_t x, fixed_t y, fixed_t scale, const char *str, INT32 flags, boolean bossmode, INT32 timer, INT32 threshold, boolean p4)
{
int bg_font = GTOL_FONT;
int fg_font = GTFN_FONT;
if (p4)
{
bg_font = GTOL4_FONT;
fg_font = GTFN4_FONT;
}
INT32 xoffs = 0;
INT32 yoffs = 0;
INT32 i = 0;
// per-letter variables
fixed_t scalex;
fixed_t offs;
INT32 let_time;
INT32 flipflag;
angle_t fakeang;
const char *ch = str;
char c;
patch_t *pp;
patch_t *ol;
x -= 2 * scale; // Account for patch width...
if (flags & V_SNAPTORIGHT)
{
x -= V_TitleCardStringWidth(str, p4) * scale;
}
for (;;ch++, i++)
{
scalex = FRACUNIT;
offs = 0;
let_time = timer - i;
flipflag = 0;
if (!*ch)
break;
if (*ch == '\n')
{
xoffs = x;
yoffs += (p4 ? 18 : 32) * scale;
continue;
}
c = *ch;
c = toupper(c);
c -= LT_FONTSTART;
// check if character exists, if not, it's a space.
if (c < 0 || c >= LT_FONTSIZE || !fontv[fg_font].font[(INT32)c])
{
xoffs += (p4 ? 5 : 10) * scale;
continue;
}
ol = fontv[bg_font].font[(INT32)c];
pp = fontv[fg_font].font[(INT32)c];
if (bossmode)
{
if (let_time <= 0)
return;
if (threshold > 0)
{
if (threshold > 3)
return;
fakeang = (threshold*ANGLE_45)/2;
scalex = FINECOSINE(fakeang>>ANGLETOFINESHIFT);
}
offs = ((FRACUNIT-scalex)*pp->width)/2;
}
else if (timer)
{
// make letters appear
if (!threshold)
;
else if (let_time < threshold)
{
if (let_time <= 0)
return; // No reason to continue drawing, none of the next letters will be drawn either.
// otherwise; scalex must start at 0
// let's have each letter do 4 spins (360*4 + 90 = 1530 "degrees")
fakeang = std::min<INT32>(360 + 90, let_time*41) * ANG1;
scalex = FINESINE(fakeang>>ANGLETOFINESHIFT);
}
else if (!bossmode && let_time > threshold)
{
// Make letters disappear...
let_time -= threshold;
fakeang = std::max<INT32>(0, (360+90) - let_time*41)*ANG1;
scalex = FINESINE(fakeang>>ANGLETOFINESHIFT);
}
// Because of how our patches are offset, we need to counter the displacement caused by changing the scale with an offset of our own.
offs = ((FRACUNIT-scalex)*pp->width)/2;
}
// And now, we just need to draw the stuff.
flipflag = (scalex < 0) ? V_FLIP : 0;
if (scalex && ol && pp)
{
//CONS_Printf("%d\n", (INT32)c);
V_DrawStretchyFixedPatch((x + xoffs) + offs, (y+yoffs), FixedMul(abs(scalex), scale), scale, flags|flipflag, ol, NULL);
V_DrawStretchyFixedPatch((x + xoffs) + offs, (y+yoffs), FixedMul(abs(scalex), scale), scale, flags|flipflag, pp, NULL);
}
xoffs += (pp->width - (p4 ? 3 : 5)) * scale;
}
}
static inline fixed_t FixedCharacterDim(
fixed_t scale,
fixed_t chw,
INT32 hchw,
INT32 dupx,
fixed_t * cwp)
{
(void)scale;
(void)hchw;
(void)dupx;
(*cwp) = chw;
return 0;
}
static inline fixed_t VariableCharacterDim(
fixed_t scale,
fixed_t chw,
INT32 hchw,
INT32 dupx,
fixed_t * cwp)
{
(void)chw;
(void)hchw;
(void)dupx;
(*cwp) = FixedMul ((*cwp) << FRACBITS, scale);
return 0;
}
static inline fixed_t CenteredCharacterDim(
fixed_t scale,
fixed_t chw,
INT32 hchw,
INT32 dupx,
fixed_t * cwp)
{
INT32 cxoff;
/*
For example, center a 4 wide patch to 8 width:
4/2 = 2
8/2 = 4
4 - 2 = 2 (our offset)
2 + 4 = 6 = 8 - 2 (equal space on either side)
*/
cxoff = hchw -((*cwp) >> 1 );
(*cwp) = chw;
return FixedMul (( cxoff * dupx )<< FRACBITS, scale);
}
static inline fixed_t BunchedCharacterDim(
fixed_t scale,
fixed_t chw,
INT32 hchw,
INT32 dupx,
fixed_t * cwp)
{
(void)chw;
(void)hchw;
(void)dupx;
(*cwp) = FixedMul(std::max<INT32>(1, (*cwp) - 1) << FRACBITS, scale);
return 0;
}
static inline fixed_t MenuCharacterDim(
fixed_t scale,
fixed_t chw,
INT32 hchw,
INT32 dupx,
fixed_t * cwp)
{
(void)chw;
(void)hchw;
(void)dupx;
(*cwp) = FixedMul(std::max<INT32>(1, (*cwp) - 2) << FRACBITS, scale);
return 0;
}
static inline fixed_t GamemodeCharacterDim(
fixed_t scale,
fixed_t chw,
INT32 hchw,
INT32 dupx,
fixed_t * cwp)
{
(void)chw;
(void)hchw;
(void)dupx;
(*cwp) = FixedMul(std::max<INT32>(1, (*cwp) - 2) << FRACBITS, scale);
return 0;
}
static inline fixed_t FileCharacterDim(
fixed_t scale,
fixed_t chw,
INT32 hchw,
INT32 dupx,
fixed_t * cwp)
{
(void)chw;
(void)hchw;
(void)dupx;
(*cwp) = FixedMul(std::max<INT32>(1, (*cwp) - 3) << FRACBITS, scale);
return 0;
}
static inline fixed_t LSTitleCharacterDim(
fixed_t scale,
fixed_t chw,
INT32 hchw,
INT32 dupx,
fixed_t * cwp)
{
(void)chw;
(void)hchw;
(void)dupx;
(*cwp) = FixedMul(std::max<INT32>(1, (*cwp) - 4) << FRACBITS, scale);
return 0;
}
typedef struct
{
fixed_t chw;
fixed_t spacew;
fixed_t lfh;
fixed_t (*dim_fn)(fixed_t,fixed_t,INT32,INT32,fixed_t *);
UINT8 button_yofs;
UINT8 right_outline;
} fontspec_t;
static void V_GetFontSpecification(int fontno, INT32 flags, fontspec_t *result)
{
/*
Hardcoded until a better system can be implemented
for determining how fonts space.
*/
// All other properties are guaranteed to be set
result->chw = 0;
result->button_yofs = 0;
result->right_outline = 1;
const INT32 spacing = ( flags & V_SPACINGMASK );
switch (fontno)
{
default:
case HU_FONT:
case MENU_FONT:
result->spacew = 4;
switch (spacing)
{
case V_MONOSPACE:
result->spacew = 8;
/* FALLTHRU */
case V_OLDSPACING:
result->chw = 8;
break;
case V_6WIDTHSPACE:
result->spacew = 6;
break;
}
break;
case TINY_FONT:
case TINYTIMER_FONT:
result->spacew = 2;
switch (spacing)
{
case V_MONOSPACE:
result->spacew = 5;
/* FALLTHRU */
case V_OLDSPACING:
result->chw = 5;
break;
case V_6WIDTHSPACE:
result->spacew = 3;
break;
}
break;
case MED_FONT:
result->chw = 6;
result->spacew = 6;
break;
case LT_FONT:
result->spacew = 12;
break;
case CRED_FONT:
result->spacew = 16;
break;
case KART_FONT:
result->spacew = 3;
switch (spacing)
{
case V_MONOSPACE:
result->spacew = 12;
/* FALLTHRU */
case V_OLDSPACING:
result->chw = 12;
break;
case V_6WIDTHSPACE:
result->spacew = 6;
}
break;
case GM_FONT:
result->spacew = 6;
break;
case GENESIS_FONT:
result->spacew = 8;
result->right_outline = 0;
break;
case FILE_FONT:
result->spacew = 0;
break;
case LSHI_FONT:
case LSLOW_FONT:
result->spacew = 10;
break;
case OPPRF_FONT:
result->spacew = 5;
break;
case PINGF_FONT:
result->spacew = 3;
break;
case ROLNUM_FONT:
result->spacew = 17;
break;
case RO4NUM_FONT:
result->spacew = 9;
break;
}
switch (fontno)
{
default:
case HU_FONT:
case MENU_FONT:
case TINY_FONT:
case TINYTIMER_FONT:
case KART_FONT:
case MED_FONT:
result->lfh = 12;
break;
case LT_FONT:
case CRED_FONT:
case FILE_FONT:
result->lfh = 12;
break;
case GM_FONT:
result->lfh = 32;
break;
case GENESIS_FONT:
result->lfh = 36;
break;
case LSHI_FONT:
result->lfh = 56;
break;
case LSLOW_FONT:
result->lfh = 38;
break;
case OPPRF_FONT:
case PINGF_FONT:
result->lfh = 10;
break;
case ROLNUM_FONT:
result->lfh = 33;
break;
case RO4NUM_FONT:
result->lfh = 15;
break;
}
switch (fontno)
{
default:
if (result->chw)
result->dim_fn = CenteredCharacterDim;
else
result->dim_fn = VariableCharacterDim;
break;
case HU_FONT:
if (result->chw)
result->dim_fn = CenteredCharacterDim;
else
result->dim_fn = BunchedCharacterDim;
break;
case MENU_FONT:
if (result->chw)
result->dim_fn = CenteredCharacterDim;
else
result->dim_fn = MenuCharacterDim;
break;
case KART_FONT:
if (result->chw)
result->dim_fn = FixedCharacterDim;
else
result->dim_fn = BunchedCharacterDim;
break;
case TINY_FONT:
case TINYTIMER_FONT:
if (result->chw)
result->dim_fn = FixedCharacterDim;
else
result->dim_fn = BunchedCharacterDim;
break;
case MED_FONT:
result->dim_fn = FixedCharacterDim;
break;
case GM_FONT:
if (result->chw)
result->dim_fn = FixedCharacterDim;
else
result->dim_fn = GamemodeCharacterDim;
break;
case FILE_FONT:
if (result->chw)
result->dim_fn = FixedCharacterDim;
else
result->dim_fn = FileCharacterDim;
break;
case LSHI_FONT:
case LSLOW_FONT:
if (result->chw)
result->dim_fn = FixedCharacterDim;
else
result->dim_fn = LSTitleCharacterDim;
break;
case OPPRF_FONT:
case PINGF_FONT:
case ROLNUM_FONT:
case RO4NUM_FONT:
if (result->chw)
result->dim_fn = FixedCharacterDim;
else
result->dim_fn = BunchedCharacterDim;
break;
}
switch (fontno)
{
case HU_FONT:
result->button_yofs = 2;
break;
case MENU_FONT:
result->button_yofs = 1;
break;
}
switch (fontno)
{
case MENU_FONT:
result->right_outline = 2;
break;
}
}
static UINT8 V_GetButtonCodeWidth(UINT8 c, boolean largebutton)
{
UINT8 x = 14;
switch (c & 0x0F)
{
case sb_up:
case sb_down:
case sb_left:
case sb_right:
x -= largebutton ? 2 : 4;
break;
case sb_l:
case sb_r:
x -= largebutton ? 1 : 4;
break;
case sb_start:
x -= largebutton ? 0 : 4;
break;
case sb_lua1:
case sb_lua2:
case sb_lua3:
x -= largebutton ? 0 : 4;
break;
case sb_a:
case sb_b:
case sb_c:
case sb_x:
case sb_y:
case sb_z:
x -= largebutton ? 0 : 4;
break;
}
return x;
}
static UINT8 V_GetGenericButtonCodeWidth(UINT8 c, boolean largebutton)
{
UINT8 x = 16;
switch ((c & 0x0F) | gb_mask)
{
case gb_a:
case gb_b:
case gb_x:
case gb_y:
x -= largebutton ? 0 : 2;
break;
case gb_lb:
case gb_rb:
x -= largebutton ? 2 : 6;
break;
case gb_lt:
case gb_rt:
x -= largebutton ? 2 : 6;
break;
case gb_start:
x -= largebutton ? 2 : 6;
break;
case gb_back:
x -= largebutton ? 2 : 6;
break;
case gb_ls:
case gb_rs:
x -= largebutton ? 1 : 4;
break;
case gb_dpad:
x -= largebutton ? 2 : 5;
break;
}
return x;
}
void V_DrawStringScaled(
fixed_t x,
fixed_t y,
fixed_t scale,
fixed_t spacescale,
fixed_t lfscale,
INT32 flags,
const UINT8 *colormap,
int fontno,
const char *s)
{
INT32 hchw;/* half-width for centering */
INT32 dupx;
INT32 dupy;
fixed_t right;
fixed_t bot;
font_t *font;
boolean uppercase;
boolean notcolored;
UINT8 boxed = 0;
boolean descriptive = false;
boolean debugalternation = false;
UINT8 debugcolor1 = 181;
UINT8 debugcolor2 = 96;
boolean dance;
boolean nodanceoverride;
INT32 dancecounter;
INT32 boxedflags = ((flags) & (~V_HUDTRANS)) | (V_40TRANS);
boolean largebutton = false;
fixed_t cx, cy;
fixed_t cxsave;
const char *ssave;
fixed_t cxoff, cyoff;
fixed_t cw;
fixed_t left;
int c;
uppercase = ((flags & V_FORCEUPPERCASE) == V_FORCEUPPERCASE);
flags &= ~(V_FLIP);/* These two (V_FORCEUPPERCASE) share a bit. */
dance = (flags & V_STRINGDANCE) != 0;
nodanceoverride = !dance;
dancecounter = 0;
/* Some of these flags get overloaded in this function so
don't pass them on. */
flags &= ~(V_PARAMMASK);
if (colormap == NULL)
{
colormap = V_GetStringColormap(( flags & V_CHARCOLORMASK ));
}
notcolored = !colormap;
font = &fontv[fontno];
fontspec_t fontspec;
V_GetFontSpecification(fontno, flags, &fontspec);
hchw = fontspec.chw >> 1;
fontspec.chw <<= FRACBITS;
fontspec.spacew <<= FRACBITS;
fontspec.lfh <<= FRACBITS;
#define Mul( id, scale ) ( id = FixedMul (scale, id) )
Mul (fontspec.chw, scale);
Mul (fontspec.spacew, scale);
Mul (fontspec.lfh, scale);
Mul (fontspec.spacew, spacescale);
Mul (fontspec.lfh, lfscale);
#undef Mul
if (( flags & V_NOSCALESTART ))
{
dupx = vid.dupx;
dupy = vid.dupy;
hchw *= dupx;
fontspec.chw *= dupx;
fontspec.spacew *= dupx;
fontspec.lfh *= dupy;
right = vid.width;
}
else
{
dupx = 1;
dupy = 1;
right = ( vid.width / vid.dupx );
if (!( flags & V_SNAPTOLEFT ))
{
left = ( right - BASEVIDWIDTH )/ 2;/* left edge of drawable area */
right -= left;
}
}
right <<= FRACBITS;
bot = vid.height << FRACBITS;
ssave = s;
cx = cxsave = x;
cy = y;
cyoff = 0;
for (; ( c = *s ); ++s, ++dancecounter)
{
switch (c)
{
case '\n':
if (boxed)
continue;
cy += fontspec.lfh;
if (cy >= bot)
return;
cx = x;
break;
case '\xEB':
if (fontno != TINY_FONT && fontno != HU_FONT)
largebutton = true;
break;
case '\xEF':
descriptive = true;
break;
case '\xEE':
case '\xED':
case '\xEC':
{
UINT8 anim_duration = 16;
UINT8 anim = 0;
if (c == '\xEC') // Pressed
anim = 1;
else if (c != '\xEE') // Not lifted..?
anim = ((I_GetTime() % (anim_duration * 2)) < anim_duration) ? 1 : 0;
// For bullshit text outlining reasons, we cannot draw this background character-by-character.
// Thinking about doing string manipulation and calling out to V_StringWidth made me drink water.
// So instead, we just draw this section of the string twice—invisibly the first time, to measure the width.
if (boxed == 0) // Save our position and start no-op drawing
{
cy -= 2*FRACUNIT;
Draw(FixedToFloat(cx), FixedToFloat(cy)-3).flags(flags).patch(gen_button_keyleft[anim]);
cx += 3*FRACUNIT;
ssave = s;
cxsave = cx;
boxed = 1;
}
else if (boxed == 1) // Draw box from saved pos to current pos and roll back
{
cx += (fontspec.right_outline)*FRACUNIT;
fixed_t working = cxsave - 1*FRACUNIT;
Draw(FixedToFloat(working)+1, FixedToFloat(cy)-3)
.width(FixedToFloat(cx - working)-1)
.flags(flags)
.stretch(Draw::Stretch::kWidth).patch(gen_button_keycenter[anim]);
Draw(FixedToFloat(cx), FixedToFloat(cy)-3).flags(flags).patch(gen_button_keyright[anim]);
s = ssave;
cx = cxsave;
// This is a little gross, but this is our way of smuggling text offset to
// the standard character drawing case. boxed=3 means we're drawing a pressed button.
boxed = 2 + anim;
}
else // Meeting the ending tag the second time, space away and resume standard parsing
{
boxed = 0;
cx += (3)*FRACUNIT;
cy += 2*FRACUNIT;
}
break;
}
default:
if (( c & 0xF0 ) == 0x80)
{
if (notcolored)
{
colormap = V_GetStringColormap(
( ( c & 0x7f )<< V_CHARCOLORSHIFT )&
V_CHARCOLORMASK);
}
if (nodanceoverride)
{
dance = false;
}
}
else if (c == V_STRINGDANCE)
{
dance = true;
}
else if (cx < right)
{
if (uppercase)
{
c = toupper(c);
}
else if (V_CharacterValid(font, c - font->start) == false)
{
// Try the other case if it doesn't exist
if (c >= 'A' && c <= 'Z')
{
c = tolower(c);
}
else if (c >= 'a' && c <= 'z')
{
c = toupper(c);
}
}
if (dance)
{
cyoff = V_DanceYOffset(dancecounter) * FRACUNIT;
}
if (( c & 0xB0 ) & 0x80) // button prompts
{
if (!descriptive)
{
using srb2::Draw;
struct BtConf
{
UINT8 x, y;
Draw::Button type;
};
auto bt_inst = [c]() -> std::optional<BtConf>
{
switch (c & 0x0F)
{
case sb_up: return {{2, 2, Draw::Button::up}};
case sb_down: return {{2, 2, Draw::Button::down}};
case sb_right: return {{2, 2, Draw::Button::right}};
case sb_left: return {{2, 2, Draw::Button::left}};
case sb_lua1: return {{2, 2, Draw::Button::lua1}};
case sb_lua2: return {{2, 2, Draw::Button::lua2}};
case sb_lua3: return {{2, 2, Draw::Button::lua3}};
case sb_r: return {{2, 2, Draw::Button::r}};
case sb_l: return {{2, 2, Draw::Button::l}};
case sb_start: return {{2, 2, Draw::Button::start}};
case sb_a: return {{2, 2, Draw::Button::a}};
case sb_b: return {{2, 2, Draw::Button::b}};
case sb_c: return {{2, 2, Draw::Button::c}};
case sb_x: return {{2, 2, Draw::Button::x}};
case sb_y: return {{2, 2, Draw::Button::y}};
case sb_z: return {{2, 2, Draw::Button::z}};
default: return {};
}
}();
if (largebutton)
{
bt_inst = [c]() -> std::optional<BtConf>
{
switch (c & 0x0F)
{
case sb_up: return {{2, 4, Draw::Button::up}};
case sb_down: return {{2, 4, Draw::Button::down}};
case sb_right: return {{2, 4, Draw::Button::right}};
case sb_left: return {{2, 4, Draw::Button::left}};
case sb_lua1: return {{1, 4, Draw::Button::lua1}};
case sb_lua2: return {{1, 4, Draw::Button::lua2}};
case sb_lua3: return {{1, 4, Draw::Button::lua3}};
case sb_r: return {{1, 4, Draw::Button::r}};
case sb_l: return {{1, 4, Draw::Button::l}};
case sb_start: return {{1, 4, Draw::Button::start}};
case sb_a: return {{1, 4, Draw::Button::a}};
case sb_b: return {{1, 4, Draw::Button::b}};
case sb_c: return {{1, 4, Draw::Button::c}};
case sb_x: return {{1, 4, Draw::Button::x}};
case sb_y: return {{1, 4, Draw::Button::y}};
case sb_z: return {{1, 4, Draw::Button::z}};
default: return {};
}
}();
}
if (bt_inst)
{
auto bt_translate_press = [c]() -> std::optional<bool>
{
switch (c & 0xB0)
{
default:
case 0x90: return true;
case 0xA0: return {};
case 0xB0: return false;
}
};
cw = V_GetButtonCodeWidth(c, largebutton) * dupx;
cxoff = (*fontspec.dim_fn)(scale, fontspec.chw, hchw, dupx, &cw);
if (cv_debugfonts.value)
{
V_DrawFill(cx/FRACUNIT, cy/FRACUNIT, cw/FRACUNIT, fontspec.lfh/FRACUNIT, debugalternation ? debugcolor1 : debugcolor2);
debugalternation = !debugalternation;
}
Draw bt = Draw(
FixedToFloat(cx + cxoff) - (bt_inst->x * dupx),
FixedToFloat(cy + cyoff) - ((bt_inst->y + fontspec.button_yofs) * dupy))
.flags(flags);
if (largebutton)
bt.button(bt_inst->type, bt_translate_press());
else
bt.small_button(bt_inst->type, bt_translate_press());
cx += cw;
}
descriptive = false;
largebutton = false;
break;
}
else
{
using srb2::Draw;
struct BtConf
{
UINT8 x, y;
Draw::GenericButton type;
};
auto bt_inst = [c]() -> std::optional<BtConf>
{
switch ((c & 0x0F) | gb_mask)
{
case gb_a: return {{0, 1, Draw::GenericButton::a}};
case gb_b: return {{0, 1, Draw::GenericButton::b}};
case gb_x: return {{0, 1, Draw::GenericButton::x}};
case gb_y: return {{0, 1, Draw::GenericButton::y}};
case gb_lb: return {{2, 2, Draw::GenericButton::lb}};
case gb_rb: return {{2, 2, Draw::GenericButton::rb}};
case gb_lt: return {{2, 2, Draw::GenericButton::lt}};
case gb_rt: return {{2, 2, Draw::GenericButton::rt}};
case gb_start: return {{2, 2, Draw::GenericButton::start}};
case gb_back: return {{2, 2, Draw::GenericButton::back}};
case gb_ls: return {{1, 2, Draw::GenericButton::ls}};
case gb_rs: return {{1, 2, Draw::GenericButton::rs}};
case gb_dpad: return {{2, 2, Draw::GenericButton::dpad}};
default: return {};
}
}();
if (largebutton)
{
bt_inst = [c]() -> std::optional<BtConf>
{
switch ((c & 0x0F) | gb_mask)
{
case gb_a: return {{0, 3, Draw::GenericButton::a}};
case gb_b: return {{0, 3, Draw::GenericButton::b}};
case gb_x: return {{0, 3, Draw::GenericButton::x}};
case gb_y: return {{0, 3, Draw::GenericButton::y}};
case gb_lb: return {{1, 3, Draw::GenericButton::lb}};
case gb_rb: return {{1, 3, Draw::GenericButton::rb}};
case gb_lt: return {{1, 4, Draw::GenericButton::lt}};
case gb_rt: return {{1, 4, Draw::GenericButton::rt}};
case gb_start: return {{1, 6, Draw::GenericButton::start}};
case gb_back: return {{1, 6, Draw::GenericButton::back}};
case gb_ls: return {{1, 5, Draw::GenericButton::ls}};
case gb_rs: return {{1, 5, Draw::GenericButton::rs}};
case gb_dpad: return {{1, 4, Draw::GenericButton::dpad}};
default: return {};
}
}();
}
if (bt_inst)
{
auto bt_translate_press = [c]() -> std::optional<bool>
{
switch (c & 0xB0)
{
default:
case 0x90: return true;
case 0xA0: return {};
case 0xB0: return false;
}
};
cw = V_GetGenericButtonCodeWidth(c, largebutton) * dupx;
cxoff = (*fontspec.dim_fn)(scale, fontspec.chw, hchw, dupx, &cw);
if (cv_debugfonts.value)
{
V_DrawFill(cx/FRACUNIT, cy/FRACUNIT, cw/FRACUNIT, fontspec.lfh/FRACUNIT, debugalternation ? debugcolor1 : debugcolor2);
debugalternation = !debugalternation;
}
Draw bt = Draw(
FixedToFloat(cx + cxoff) - (bt_inst->x * dupx),
FixedToFloat(cy + cyoff) - ((bt_inst->y + fontspec.button_yofs) * dupy))
.flags(flags);
if (largebutton)
bt.generic_button(bt_inst->type, bt_translate_press());
else
bt.generic_small_button(bt_inst->type, bt_translate_press());
cx += cw;
}
descriptive = false;
largebutton = false;
break;
}
break;
}
c -= font->start;
if (V_CharacterValid(font, c) == true)
{
// Remove offsets from patch
fixed_t patchxofs = SHORT (font->font[c]->leftoffset) * dupx * scale;
cw = SHORT (font->font[c]->width) * dupx;
cxoff = (*fontspec.dim_fn)(scale, fontspec.chw, hchw, dupx, &cw);
if (cv_debugfonts.value)
{
V_DrawFill(cx/FRACUNIT, cy/FRACUNIT, cw/FRACUNIT, fontspec.lfh/FRACUNIT, debugalternation ? debugcolor1 : debugcolor2);
debugalternation = !debugalternation;
}
if (boxed != 1)
{
V_DrawFixedPatch(cx + cxoff + patchxofs, cy + cyoff + (boxed == 3 ? 2*FRACUNIT : 0), scale,
boxed ? boxedflags : flags, font->font[c], boxed ? 0 : colormap);
}
cx += cw;
}
else
cx += fontspec.spacew;
}
}
}
}
fixed_t V_StringScaledWidth(
fixed_t scale,
fixed_t spacescale,
fixed_t lfscale,
INT32 flags,
int fontno,
const char *s)
{
INT32 hchw;/* half-width for centering */
INT32 dupx;
font_t *font;
boolean uppercase;
boolean boxed = false;
boolean descriptive = false;
boolean largebutton = false;
fixed_t cx;
fixed_t right;
fixed_t cw;
int c;
fixed_t fullwidth = 0;
uppercase = ((flags & V_FORCEUPPERCASE) == V_FORCEUPPERCASE);
flags &= ~(V_FLIP);/* These two (V_FORCEUPPERCASE) share a bit. */
font = &fontv[fontno];
fontspec_t fontspec;
V_GetFontSpecification(fontno, flags, &fontspec);
hchw = fontspec.chw >> 1;
fontspec.chw <<= FRACBITS;
fontspec.spacew <<= FRACBITS;
#define Mul( id, scale ) ( id = FixedMul (scale, id) )
Mul (fontspec.chw, scale);
Mul (fontspec.spacew, scale);
Mul (fontspec.lfh, scale);
Mul (fontspec.spacew, spacescale);
Mul (fontspec.lfh, lfscale);
#undef Mul
if (( flags & V_NOSCALESTART ))
{
dupx = vid.dupx;
hchw *= dupx;
fontspec.chw *= dupx;
fontspec.spacew *= dupx;
fontspec.lfh *= vid.dupy;
}
else
{
dupx = 1;
}
cx = 0;
right = 0;
for (; ( c = *s ); ++s)
{
switch (c)
{
case '\n':
cx = 0;
break;
case '\xEB':
if (fontno != TINY_FONT && fontno != HU_FONT)
largebutton = true;
break;
case '\xEF':
descriptive = true;
break;
case '\xEE':
case '\xED':
case '\xEC':
if (boxed)
cx += 3*FRACUNIT;
else
cx += 3*FRACUNIT;
boxed = !boxed;
break;
default:
if (( c & 0xF0 ) == 0x80 || c == V_STRINGDANCE)
continue;
if (( c & 0xB0 ) & 0x80)
{
if (descriptive)
{
cw = V_GetGenericButtonCodeWidth(c, largebutton) * dupx;
cx += cw * scale;
right = cx;
}
else
{
cw = V_GetButtonCodeWidth(c, largebutton) * dupx;
cx += cw * scale;
right = cx;
}
largebutton = false;
descriptive = false;
break;
}
if (uppercase)
{
c = toupper(c);
}
else if (V_CharacterValid(font, c - font->start) == false)
{
// Try the other case if it doesn't exist
if (c >= 'A' && c <= 'Z')
{
c = tolower(c);
}
else if (c >= 'a' && c <= 'z')
{
c = toupper(c);
}
}
c -= font->start;
if (V_CharacterValid(font, c) == true)
{
cw = SHORT (font->font[c]->width) * dupx;
// How bunched dims work is by incrementing cx slightly less than a full character width.
// This causes the next character to be drawn overlapping the previous.
// We need to count the full width to get the rightmost edge of the string though.
right = cx + (cw * scale);
(*fontspec.dim_fn)(scale, fontspec.chw, hchw, dupx, &cw);
cx += cw;
}
else
cx += fontspec.spacew;
descriptive = false;
}
fullwidth = std::max(right, std::max(cx, fullwidth));
}
return fullwidth;
}
// Modify a string to wordwrap at any given width.
char * V_ScaledWordWrap(
fixed_t w,
fixed_t scale,
fixed_t spacescale,
fixed_t lfscale,
INT32 flags,
int fontno,
const char *s)
{
INT32 hchw;/* half-width for centering */
INT32 dupx;
font_t *font;
boolean uppercase;
boolean largebutton = false;
boolean descriptive = false;
boolean boxed = false;
fixed_t cx;
fixed_t right;
fixed_t cw;
int c;
uppercase = ((flags & V_FORCEUPPERCASE) == V_FORCEUPPERCASE);
flags &= ~(V_FLIP);/* These two (V_FORCEUPPERCASE) share a bit. */
font = &fontv[fontno];
fontspec_t fontspec;
V_GetFontSpecification(fontno, flags, &fontspec);
hchw = fontspec.chw >> 1;
fontspec.chw <<= FRACBITS;
fontspec.spacew <<= FRACBITS;
#define Mul( id, scale ) ( id = FixedMul (scale, id) )
Mul (fontspec.chw, scale);
Mul (fontspec.spacew, scale);
Mul (fontspec.lfh, scale);
Mul (fontspec.spacew, spacescale);
Mul (fontspec.lfh, lfscale);
#undef Mul
if (( flags & V_NOSCALESTART ))
{
dupx = vid.dupx;
hchw *= dupx;
fontspec.chw *= dupx;
fontspec.spacew *= dupx;
fontspec.lfh *= vid.dupy;
}
else
{
dupx = 1;
}
cx = 0;
right = 0;
size_t reader = 0, writer = 0, startwriter = 0;
fixed_t cxatstart = 0;
size_t len = strlen(s) + 1;
size_t potentialnewlines = 8;
size_t sparenewlines = potentialnewlines;
char *newstring = static_cast<char *>(Z_Malloc(len + sparenewlines, PU_STATIC, NULL));
for (; ( c = s[reader] ); ++reader, ++writer)
{
newstring[writer] = s[reader];
right = 0;
switch (c)
{
case '\n':
cx = 0;
cxatstart = 0;
startwriter = 0;
break;
case '\xEB':
if (fontno != TINY_FONT && fontno != HU_FONT)
largebutton = true;
case '\xEF':
descriptive = true;
break;
case '\xEE':
case '\xED':
case '\xEC':
if (boxed)
cx += 3*FRACUNIT;
else
cx += 3*FRACUNIT;
boxed = !boxed;
break;
default:
if (( c & 0xF0 ) == 0x80 || c == V_STRINGDANCE)
;
else if (( c & 0xB0 ) & 0x80) // button prompts
{
if (descriptive)
cw = V_GetGenericButtonCodeWidth(c, largebutton) * dupx;
else
cw = V_GetButtonCodeWidth(c, largebutton) * dupx;
cx += cw * scale;
right = cx;
descriptive = false;
boxed = false;
}
else
{
if (uppercase)
{
c = toupper(c);
}
else if (V_CharacterValid(font, c - font->start) == false)
{
// Try the other case if it doesn't exist
if (c >= 'A' && c <= 'Z')
{
c = tolower(c);
}
else if (c >= 'a' && c <= 'z')
{
c = toupper(c);
}
}
c -= font->start;
if (V_CharacterValid(font, c) == true)
{
cw = SHORT (font->font[c]->width) * dupx;
// How bunched dims work is by incrementing cx slightly less than a full character width.
// This causes the next character to be drawn overlapping the previous.
// We need to count the full width to get the rightmost edge of the string though.
right = cx + (cw * scale);
(*fontspec.dim_fn)(scale, fontspec.chw, hchw, dupx, &cw);
cx += cw;
}
else
{
cx += fontspec.spacew;
cxatstart = cx;
startwriter = writer;
}
}
}
// Start trying to wrap if presumed length exceeds the space we have on-screen.
if (right && right > w)
{
if (startwriter != 0)
{
newstring[startwriter] = '\n';
cx -= cxatstart;
cxatstart = 0;
startwriter = 0;
}
else
{
if (sparenewlines == 0)
{
sparenewlines = (potentialnewlines *= 2);
newstring = static_cast<char *>(Z_Realloc(newstring, len + sparenewlines, PU_STATIC, NULL));
}
sparenewlines--;
len++;
newstring[writer++] = '\n'; // Over-write previous
cx = cw; // Valid value in the only case right is currently set
newstring[writer] = s[reader]; // Re-add
}
}
}
newstring[writer] = '\0';
return newstring;
}
void V_DrawCenteredString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_StringWidth(string, option)/2;
V_DrawString(x, y, option, string);
}
void V_DrawRightAlignedString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_StringWidth(string, option);
V_DrawString(x, y, option, string);
}
void V_DrawCenteredSmallString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_SmallStringWidth(string, option)/2;
V_DrawSmallString(x, y, option, string);
}
void V_DrawRightAlignedSmallString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_SmallStringWidth(string, option);
V_DrawSmallString(x, y, option, string);
}
void V_DrawCenteredThinString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_ThinStringWidth(string, option)/2;
V_DrawThinString(x, y, option, string);
}
void V_DrawRightAlignedThinString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_ThinStringWidth(string, option);
V_DrawThinString(x, y, option, string);
}
void V_DrawCenteredStringAtFixed(fixed_t x, fixed_t y, INT32 option, const char *string)
{
x -= (V_ThinStringWidth(string, option) / 2) * FRACUNIT;
V_DrawThinStringAtFixed(x, y, option, string);
}
void V_DrawRightAlignedStringAtFixed(fixed_t x, fixed_t y, INT32 option, const char *string)
{
x -= V_StringWidth(string, option) * FRACUNIT;
V_DrawStringAtFixed(x, y, option, string);
}
void V_DrawCenteredThinStringAtFixed(fixed_t x, fixed_t y, INT32 option, const char *string)
{
x -= (V_StringWidth(string, option) / 2) * FRACUNIT;
V_DrawStringAtFixed(x, y, option, string);
}
void V_DrawRightAlignedThinStringAtFixed(fixed_t x, fixed_t y, INT32 option, const char *string)
{
x -= V_ThinStringWidth(string, option) * FRACUNIT;
V_DrawThinStringAtFixed(x, y, option, string);
}
// Draws a number using the PING font thingy.
// TODO: Merge number drawing functions into one with "font name" selection.
fixed_t V_DrawPingNum(fixed_t x, fixed_t y, INT32 flags, INT32 num, const UINT8 *colormap)
{
// this SHOULD always be 5 but I guess custom graphics exist.
const fixed_t w = (fontv[PINGNUM_FONT].font[0]->width) * FRACUNIT;
if (num < 0)
{
num = -num;
}
do // draw the number
{
x -= (w - FRACUNIT); // Oni wanted their outline to intersect.
V_DrawFixedPatch(x, y, FRACUNIT, flags, fontv[PINGNUM_FONT].font[num % 10], colormap);
num /= 10;
} while (num > 0);
return x;
}
void V_DrawCenteredTimerString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_TimerStringWidth(string, option)/2;
V_DrawTimerString(x, y, option, string);
}
void V_DrawRightAlignedTimerString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_TimerStringWidth(string, option);
V_DrawTimerString(x, y, option, string);
}
void V_DrawCenteredMenuString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_MenuStringWidth(string, option)/2;
V_DrawMenuString(x, y, option, string);
}
void V_DrawRightAlignedMenuString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_MenuStringWidth(string, option);
V_DrawMenuString(x, y, option, string);
}
void V_DrawCenteredGamemodeString(INT32 x, INT32 y, INT32 option, const UINT8 *colormap, const char *string)
{
x -= V_GamemodeStringWidth(string, option)/2;
V_DrawGamemodeString(x, y, option, colormap, string);
}
void V_DrawRightAlignedGamemodeString(INT32 x, INT32 y, INT32 option, const UINT8 *colormap, const char *string)
{
x -= V_GamemodeStringWidth(string, option);
V_DrawGamemodeString(x, y, option, colormap, string);
}
void V_DrawCenteredFileString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_FileStringWidth(string, option)/2;
V_DrawFileString(x, y, option, string);
}
void V_DrawRightAlignedFileString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_FileStringWidth(string, option);
V_DrawFileString(x, y, option, string);
}
void V_DrawCenteredLSTitleHighString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_LSTitleHighStringWidth(string, option)/2;
V_DrawLSTitleHighString(x, y, option, string);
}
void V_DrawRightAlignedLSTitleHighString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_LSTitleHighStringWidth(string, option);
V_DrawLSTitleHighString(x, y, option, string);
}
void V_DrawCenteredLSTitleLowString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_LSTitleLowStringWidth(string, option)/2;
V_DrawLSTitleLowString(x, y, option, string);
}
void V_DrawRightAlignedLSTitleLowString(INT32 x, INT32 y, INT32 option, const char *string)
{
x -= V_LSTitleLowStringWidth(string, option);
V_DrawLSTitleLowString(x, y, option, string);
}
// Draws a tallnum. Replaces two functions in y_inter and st_stuff
void V_DrawTallNum(INT32 x, INT32 y, INT32 flags, INT32 num)
{
INT32 w = SHORT(fontv[TALLNUM_FONT].font[0]->width);
boolean neg;
if (flags & V_NOSCALESTART)
w *= vid.dupx;
if ((neg = num < 0))
num = -num;
// draw the number
do
{
x -= w;
V_DrawScaledPatch(x, y, flags, fontv[TALLNUM_FONT].font[num % 10]);
num /= 10;
} while (num);
// draw a minus sign if necessary
//if (neg)
//V_DrawScaledPatch(x - w, y, flags, tallminus); // Tails
}
// Draws a number with a set number of digits.
// Does not handle negative numbers in a special way, don't try to feed it any.
void V_DrawPaddedTallNum(INT32 x, INT32 y, INT32 flags, INT32 num, INT32 digits)
{
INT32 w = fontv[TALLNUM_FONT].font[0]->width;
if (flags & V_NOSCALESTART)
w *= vid.dupx;
if (num < 0)
num = -num;
// draw the number
do
{
x -= w;
V_DrawScaledPatch(x, y, flags, fontv[TALLNUM_FONT].font[num % 10]);
num /= 10;
} while (--digits);
}
void V_DrawProfileNum(INT32 x, INT32 y, INT32 flags, UINT8 num)
{
UINT8 digits = 3;
INT32 w = fontv[PROFNUM_FONT].font[0]->width;
if (flags & V_NOSCALESTART)
w *= vid.dupx;
// draw the number
do
{
x -= (w-1);
V_DrawScaledPatch(x, y, flags, fontv[PROFNUM_FONT].font[num % 10]);
num /= 10;
} while (--digits);
}
// Find max height of the string
//
INT32 V_LevelNameHeight(const char *string)
{
INT32 c, w = 0;
size_t i;
for (i = 0; string[i]; i++)
{
c = string[i] - LT_FONTSTART;
if (c < 0 || c >= LT_FONTSIZE || !fontv[LT_FONT].font[c])
continue;
if (fontv[LT_FONT].font[c]->height > w)
w = fontv[LT_FONT].font[c]->height;
}
return w;
}
// Generates a RGB565 color look-up table
void InitColorLUT(colorlookup_t *lut, RGBA_t *palette, boolean makecolors)
{
size_t palsize = (sizeof(RGBA_t) * 256);
if (!lut->init || memcmp(lut->palette, palette, palsize))
{
INT32 i;
lut->init = true;
memcpy(lut->palette, palette, palsize);
for (i = 0; i < 0xFFFF; i++)
lut->table[i] = 0xFFFF;
if (makecolors)
{
UINT8 r, g, b;
for (r = 0; r < 0xFF; r++)
for (g = 0; g < 0xFF; g++)
for (b = 0; b < 0xFF; b++)
{
i = CLUTINDEX(r, g, b);
if (lut->table[i] == 0xFFFF)
lut->table[i] = NearestPaletteColor(r, g, b, palette);
}
}
}
}
UINT8 GetColorLUT(colorlookup_t *lut, UINT8 r, UINT8 g, UINT8 b)
{
INT32 i = CLUTINDEX(r, g, b);
if (lut->table[i] == 0xFFFF)
lut->table[i] = NearestPaletteColor(r, g, b, lut->palette);
return lut->table[i];
}
UINT8 GetColorLUTDirect(colorlookup_t *lut, UINT8 r, UINT8 g, UINT8 b)
{
INT32 i = CLUTINDEX(r, g, b);
return lut->table[i];
}
// V_Init
// old software stuff, buffers are allocated at video mode setup
// here we set the screens[x] pointers accordingly
// WARNING: called at runtime (don't init cvar here)
void V_Init(void)
{
INT32 i;
UINT8 *base = vid.buffer;
const INT32 screensize = vid.rowbytes * vid.height;
for (i = 0; i < NUMSCREENS; i++)
screens[i] = NULL;
// start address of NUMSCREENS * width*height vidbuffers
if (base)
{
for (i = 0; i < NUMSCREENS; i++)
screens[i] = base + i*screensize;
}
if (vid.direct)
screens[0] = vid.direct;
#ifdef DEBUG
CONS_Debug(DBG_RENDER, "V_Init done:\n");
for (i = 0; i < NUMSCREENS; i++)
CONS_Debug(DBG_RENDER, " screens[%d] = %x\n", i, screens[i]);
#endif
}
void V_Recalc(void)
{
// scale 1,2,3 times in x and y the patches for the menus and overlays...
// calculated once and for all, used by routines in v_video.c and v_draw.c
vid.dupx = vid.width / BASEVIDWIDTH;
vid.dupy = vid.height / BASEVIDHEIGHT;
vid.dupx = vid.dupy = (vid.dupx < vid.dupy ? vid.dupx : vid.dupy);
vid.fdupx = FixedDiv(vid.width*FRACUNIT, BASEVIDWIDTH*FRACUNIT);
vid.fdupy = FixedDiv(vid.height*FRACUNIT, BASEVIDHEIGHT*FRACUNIT);
#ifdef HWRENDER
//if (rendermode != render_opengl && rendermode != render_none) // This was just placing it incorrectly at non aspect correct resolutions in opengl
// 13/11/18:
// The above is no longer necessary, since we want OpenGL to be just like software now
// -- Monster Iestyn
#endif
vid.fdupx = vid.fdupy = (vid.fdupx < vid.fdupy ? vid.fdupx : vid.fdupy);
vid.meddupx = (UINT8)(vid.dupx >> 1) + 1;
vid.meddupy = (UINT8)(vid.dupy >> 1) + 1;
#ifdef HWRENDER
vid.fmeddupx = vid.meddupx*FRACUNIT;
vid.fmeddupy = vid.meddupy*FRACUNIT;
#endif
vid.smalldupx = (UINT8)(vid.dupx / 3) + 1;
vid.smalldupy = (UINT8)(vid.dupy / 3) + 1;
#ifdef HWRENDER
vid.fsmalldupx = vid.smalldupx*FRACUNIT;
vid.fsmalldupy = vid.smalldupy*FRACUNIT;
#endif
}
void VID_DisplaySoftwareScreen()
{
ZoneScoped;
// TODO implement
// upload framebuffer, bind pipeline, draw
rhi::Rhi* rhi = srb2::sys::get_rhi(srb2::sys::g_current_rhi);
hwr2::HardwareState* hw_state = srb2::sys::main_hardware_state();
// Misnomer; this just uploads the screen to the software indexed screen texture
hw_state->software_screen_renderer->draw(*rhi);
const int screens = std::clamp(r_splitscreen + 1, 1, MAXSPLITSCREENPLAYERS);
hw_state->blit_postimg_screens->set_num_screens(screens);
hw_state->blit_postimg_screens->set_target(static_cast<uint32_t>(vid.width), static_cast<uint32_t>(vid.height));
for (int i = 0; i < screens; i++)
{
glm::vec2 uv_offset {0.f, 0.f};
glm::vec2 uv_size {1.f, 1.f};
if (screens > 2)
{
uv_size = glm::vec2(.5f, .5f);
switch (i)
{
case 0:
uv_offset = glm::vec2(0.f, 0.f);
break;
case 1:
uv_offset = glm::vec2(.5f, 0.f);
break;
case 2:
uv_offset = glm::vec2(0.f, .5f);
break;
case 3:
uv_offset = glm::vec2(.5f, .5f);
break;
}
}
else if (screens > 1)
{
uv_size = glm::vec2(1.f, .5f);
if (i == 1)
{
uv_offset = glm::vec2(0.f, .5f);
}
}
hw_state->blit_postimg_screens->set_screen(
i,
{
hw_state->software_screen_renderer->screen(),
true,
uv_offset,
uv_size,
{
postimgtype[i] == postimg_water && !cv_reducevfx.value,
postimgtype[i] == postimg_heat && !cv_reducevfx.value,
postimgtype[i] == postimg_flip,
postimgtype[i] == postimg_mirror
}
}
);
}
// Post-process blit to the 'default' framebuffer
hw_state->blit_postimg_screens->draw(*rhi);
}
char *V_ParseText(const char *rawText)
{
using srb2::Draw;
return Z_StrDup(srb2::Draw::TextElement().parse(rawText).string().c_str());
}