RingRacers/src/slope_anchors.c
2022-10-16 16:50:13 -07:00

483 lines
9.3 KiB
C

// SONIC ROBO BLAST 2 KART
//-----------------------------------------------------------------------------
// Copyright (C) 2020 by James R.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \brief Charyb's vertex slope anchors.
/// This file is self contained to avoid a Big Large merge conflict.
#include "taglist.h"
/*
FIXME
FIXME
FIXME
FIXME WHEN 2.2 MERGE IS OVER, REFACTOR A LOT OF THE CODE IN P_SLOPES.C AND
FIXME MAKE THIS NOT REDUNDANT.
FIXME
FIXME
FIXME
*/
struct anchor_list
{
mapthing_t ** anchors;
const vertex_t ** points;
fixed_t * closeness;
size_t count;
};
struct anchor_list floor_anchors;
struct anchor_list ceiling_anchors;
static void * new_list (size_t n) {
return Z_Malloc(n, PU_LEVEL, NULL);
}
static void make_new_anchor_list (struct anchor_list * list) {
list->anchors = new_list(list->count * sizeof *list->anchors);
list->points = new_list(list->count * sizeof *list->points);
list->closeness = new_list(list->count * sizeof *list->closeness);
}
static void allocate_anchors (void) {
size_t i;
floor_anchors.count = 0;
ceiling_anchors.count = 0;
for (i = 0; i < nummapthings; ++i)
{
switch (mapthings[i].type)
{
case FLOOR_SLOPE_THING:
floor_anchors.count++;
break;
case CEILING_SLOPE_THING:
ceiling_anchors.count++;
break;
}
}
make_new_anchor_list(&floor_anchors);
make_new_anchor_list(&ceiling_anchors);
}
static void
compare_vertex_distance
(
const vertex_t ** nearest,
fixed_t * nearest_distance,
const fixed_t origin_x,
const fixed_t origin_y,
const vertex_t * v
){
const fixed_t distance = abs(P_AproxDistance
(
origin_x - v->x,
origin_y - v->y
));
if (distance < (*nearest_distance))
{
(*nearest) = v;
(*nearest_distance) = distance;
}
}
static const vertex_t *
nearest_point
(
fixed_t * closeness,
mapthing_t * a,
const sector_t * sector
){
const fixed_t x = a->x << FRACBITS;
const fixed_t y = a->y << FRACBITS;
const vertex_t * v = NULL;/* shut compiler up, should never be NULL */
size_t i;
(*closeness) = INT32_MAX;
for (i = 0; i < sector->linecount; ++i)
{
compare_vertex_distance(&v, closeness, x, y, sector->lines[i]->v1);
compare_vertex_distance(&v, closeness, x, y, sector->lines[i]->v2);
}
return v;
}
static INT16
anchor_height
(
const mapthing_t * a,
const sector_t * s
){
const fixed_t x = a->x << FRACBITS;
const fixed_t y = a->y << FRACBITS;
if (a->options & MTF_OBJECTFLIP)
{
return ( P_GetSectorCeilingZAt(s, x, y) >> FRACBITS ) - a->z;
}
else
{
return ( P_GetSectorFloorZAt(s, x, y) >> FRACBITS ) + a->z;
}
}
static void
set_anchor
(
struct anchor_list * list,
mapthing_t * a
){
const subsector_t * sub = R_PointInSubsector
(
a->x << FRACBITS,
a->y << FRACBITS
);
const vertex_t * v;
fixed_t closeness;
v = nearest_point(&closeness, a, sub->sector);
a->x = ( v->x >> FRACBITS );
a->y = ( v->y >> FRACBITS );
a->z = anchor_height(a, sub->sector);
list->anchors [list->count] = a;
list->points [list->count] = v;
list->closeness[list->count] = closeness;
list->count++;
}
static void build_anchors (void) {
size_t i;
floor_anchors.count = 0;
ceiling_anchors.count = 0;
for (i = 0; i < nummapthings; ++i)
{
switch (mapthings[i].type)
{
case FLOOR_SLOPE_THING:
set_anchor(&floor_anchors, &mapthings[i]);
break;
case CEILING_SLOPE_THING:
set_anchor(&ceiling_anchors, &mapthings[i]);
break;
}
}
}
static void
get_anchor
(
mapthing_t ** anchors,
fixed_t distances[3],
const struct anchor_list * list,
const mtag_t tag,
const vertex_t * v
){
size_t i;
int k;
for (i = 0; i < list->count; ++i)
{
if (list->points[i] == v && Tag_FGet(&list->anchors[i]->tags) == tag)
{
for (k = 0; k < 3; ++k)
{
if (list->closeness[i] < distances[k])
{
if (k == 0)
{
distances[2] = distances[1];
distances[1] = distances[0];
anchors [2] = anchors [1];
anchors [1] = anchors [0];
}
else if (k == 1)
{
distances[2] = distances[1];
anchors [2] = anchors [1];
}
distances[k] = list->closeness[i];
anchors[k] = list->anchors[i];
break;
}
else if (list->anchors[i] == anchors[k])
{
break;
}
}
}
}
}
static void
get_sector_anchors
(
mapthing_t ** anchors,
fixed_t distances[3],
const struct anchor_list * list,
const mtag_t tag,
const sector_t * sector
){
size_t i;
for (i = 0; i < sector->linecount; ++i)
{
get_anchor(anchors, distances, list, tag, sector->lines[i]->v1);
get_anchor(anchors, distances, list, tag, sector->lines[i]->v2);
}
}
static mapthing_t **
find_closest_anchors
(
const sector_t * sector,
const struct anchor_list * list,
const mtag_t tag
){
fixed_t distances[3] = { INT32_MAX, INT32_MAX, INT32_MAX };
mapthing_t ** anchors;
int last = 0;
size_t i;
if (list->count < 3)
{
I_Error("At least three slope anchors are required to make a slope.");
}
anchors = Z_Malloc(3 * sizeof *anchors, PU_LEVEL, NULL);
if (sector->numattached > 0)
{
for (i = 0; i < sector->numattached; ++i)
{
get_sector_anchors
(anchors, distances, list, tag, &sectors[sector->attached[i]]);
}
}
else
{
get_sector_anchors(anchors, distances, list, tag, sector);
}
if (distances[2] < INT32_MAX)
{
return anchors;
}
if (distances[1] < INT32_MAX)
last = 2;
else if (distances[0] < INT32_MAX)
last = 1;
else
last = 0;
if (sector->numattached > 0)
{
CONS_Printf("\nSearched for anchors in sectors...\n\n");
for (i = 0; i < sector->numattached; ++i)
{
CONS_Printf("#%s\n", sizeu1 (sector->attached[i]));
}
I_Error(
"(Control Sector #%s)"
" Slope requires anchors (with Parameter %d)"
" near 3 of its target sectors' vertices (%d found)"
"\n\nCheck the log to see which sectors were searched.",
sizeu1 (sector - sectors),
tag,
last
);
}
else
{
I_Error(
"(Sector #%s)"
" Slope requires anchors (with Parameter %d)"
" near 3 of its vertices (%d found)",
sizeu1 (sector - sectors),
tag,
last
);
}
}
static pslope_t *
new_vertex_slope
(
mapthing_t ** anchors,
const INT16 flags
){
pslope_t * slope = Z_Calloc(sizeof (pslope_t), PU_LEVEL, NULL);
const vector3_t anchorVertices[3] = {
{anchors[0]->x << FRACBITS, anchors[0]->y << FRACBITS, anchors[0]->z << FRACBITS},
{anchors[1]->x << FRACBITS, anchors[1]->y << FRACBITS, anchors[1]->z << FRACBITS},
{anchors[2]->x << FRACBITS, anchors[2]->y << FRACBITS, anchors[2]->z << FRACBITS}
};
if (flags & TMSAF_NOPHYSICS)
{
slope->flags |= SL_NOPHYSICS;
}
if (flags & TMSAF_DYNAMIC)
{
slope->flags |= SL_DYNAMIC;
}
P_ReconfigureViaVertexes(slope, anchorVertices[0], anchorVertices[1], anchorVertices[2]);
//slope->refpos = 5;
// Add to the slope list
slope->next = slopelist;
slopelist = slope;
slopecount++;
slope->id = slopecount;
return slope;
}
static mapthing_t **
flip_slope
(
mapthing_t ** origin,
const sector_t * sector
){
mapthing_t * copy = Z_Malloc(3 * sizeof (mapthing_t), PU_LEVEL, NULL);
mapthing_t ** anchors = Z_Malloc(3 * sizeof (mapthing_t *), PU_LEVEL, NULL);
size_t i;
for (i = 0; i < 3; ++i)
{
memcpy(&copy[i], origin[i], sizeof copy[i]);
copy[i].options ^= MTF_OBJECTFLIP;
copy[i].z = anchor_height(&copy[i], sector);
anchors[i] = &copy[i];
}
return anchors;
}
static void
slope_sector
(
pslope_t ** slope,
pslope_t ** alt,
sector_t * sector,
const INT16 flags,
const struct anchor_list * list,
const mtag_t tag
){
mapthing_t ** anchors = find_closest_anchors(sector, list, tag);
if (anchors != NULL)
{
(*slope) = new_vertex_slope(anchors, flags);
/* invert slope to opposite side */
if (flags & TMSAF_MIRROR)
{
(*alt) = new_vertex_slope(flip_slope(anchors, sector), flags);
}
sector->hasslope = true;
}
}
static void
make_anchored_slope
(
const line_t * line,
const int plane
){
INT16 flags = line->args[1];
const int side = ( flags & TMSAF_BACKSIDE ) != 0;
sector_t * s;
mtag_t tag = Tag_FGet(&line->tags);
if (side == 0 || (line->flags & ML_TWOSIDED))
{
s = sides[line->sidenum[side]].sector;
if (plane == (TMSA_FLOOR|TMSA_CEILING))
{
flags &= ~TMSAF_MIRROR;
}
if (plane & TMSA_FLOOR)
{
slope_sector
(&s->f_slope, &s->c_slope, s, flags, &floor_anchors, tag);
}
if (plane & TMSA_CEILING)
{
slope_sector
(&s->c_slope, &s->f_slope, s, flags, &ceiling_anchors, tag);
}
}
}
static void P_BuildSlopeAnchorList (void) {
allocate_anchors();
build_anchors();
}
static void P_SetupAnchoredSlopes (void) {
size_t i;
for (i = 0; i < numlines; ++i)
{
if (lines[i].special == LT_SLOPE_ANCHORS)
{
int plane = (lines[i].args[0] & (TMSA_FLOOR|TMSA_CEILING));
if (plane == 0)
{
CONS_Alert(CONS_WARNING, "Slope anchor linedef %s has no planes set.\n", sizeu1(i));
continue;
}
make_anchored_slope(&lines[i], plane);
}
}
}