RingRacers/src/objects/checkpoint.cpp
2024-04-05 10:26:52 -04:00

595 lines
14 KiB
C++

// DR. ROBOTNIK'S RING RACERS
//-----------------------------------------------------------------------------
// Copyright (C) 2024 by James Robert Roman
// Copyright (C) 2024 by Kart Krew
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
#include <algorithm>
#include <fmt/format.h>
#include "../mobj_list.hpp"
#include "../doomdef.h"
#include "../doomtype.h"
#include "../info.h"
#include "../k_color.h"
#include "../k_kart.h"
#include "../k_objects.h"
#include "../m_bbox.h"
#include "../m_fixed.h"
#include "../m_random.h"
#include "../p_local.h"
#include "../p_maputl.h"
#include "../p_mobj.h"
#include "../p_setup.h"
#include "../p_tick.h"
#include "../r_defs.h"
#include "../r_main.h"
#include "../s_sound.h"
#include "../sounds.h"
#include "../tables.h"
extern mobj_t* svg_checkpoints;
#define checkpoint_id(o) ((o)->thing_args[0])
#define checkpoint_other(o) ((o)->target)
#define checkpoint_orb(o) ((o)->tracer)
#define checkpoint_arm(o) ((o)->hnext)
#define checkpoint_next(o) ((o)->hprev)
#define checkpoint_var(o) ((o)->movedir)
#define checkpoint_speed(o) ((o)->movecount)
#define checkpoint_speed_multiplier(o) ((o)->movefactor)
#define checkpoint_reverse(o) ((o)->reactiontime)
namespace
{
struct LineOnDemand : line_t
{
LineOnDemand(fixed_t x1, fixed_t y1, fixed_t x2, fixed_t y2) :
line_t {
.v1 = &v1_data_,
.dx = x2 - x1,
.dy = y2 - y1,
.bbox = {std::max(y1, y2), std::min(y1, y2), std::min(x1, x2), std::max(x1, x2)},
},
v1_data_ {.x = x1, .y = y1}
{
}
LineOnDemand(fixed_t x1, fixed_t y1, fixed_t x2, fixed_t y2, fixed_t r) : LineOnDemand(x1, y1, x2, y2)
{
bbox[BOXTOP] += r;
bbox[BOXBOTTOM] -= r;
bbox[BOXLEFT] -= r;
bbox[BOXRIGHT] += r;
}
bool overlaps(const LineOnDemand& other) const
{
return bbox[BOXTOP] >= other.bbox[BOXBOTTOM] && bbox[BOXBOTTOM] <= other.bbox[BOXTOP] &&
bbox[BOXLEFT] <= other.bbox[BOXRIGHT] && bbox[BOXRIGHT] >= other.bbox[BOXLEFT];
}
private:
vertex_t v1_data_;
};
struct Checkpoint : mobj_t
{
static constexpr int kArmLength = 59;
static constexpr int kOrbRadius = 21;
static constexpr int kCookieRadius = 19;
static constexpr int kOrbitDistance = kCookieRadius + kArmLength + kOrbRadius;
static constexpr fixed_t kBaseSpeed = FRACUNIT/35;
static constexpr fixed_t kMinSpeedMultiplier = FRACUNIT/2;
static constexpr fixed_t kMaxSpeedMultiplier = 3*FRACUNIT/2;
static constexpr fixed_t kSpeedMultiplierRange = kMaxSpeedMultiplier - kMinSpeedMultiplier;
static constexpr fixed_t kMinPivotDelay = FRACUNIT/2;
static constexpr int kSparkleOffset = 10;
static constexpr int kSparkleZ = 34;
static constexpr int kSparkleRadius = 12;
static constexpr int kSparkleAroundRadius = 128;
static constexpr int kSparkleAroundCircumfrence = kSparkleAroundRadius * M_TAU_FIXED;
static constexpr int kSparkleAroundCount = kSparkleAroundCircumfrence / kSparkleRadius / FRACUNIT;
struct Orb : mobj_t
{
void afterimages()
{
mobj_t* ghost = P_SpawnGhostMobj(this);
// Flickers every frame
ghost->extravalue1 = 1;
ghost->extravalue2 = 2;
ghost->tics = 8;
}
};
struct Arm : mobj_t {};
INT32 id() const { return checkpoint_id(this); }
Checkpoint* other() const { return static_cast<Checkpoint*>(checkpoint_other(this)); }
void other(Checkpoint* n) { P_SetTarget(&checkpoint_other(this), n); }
Orb* orb() const { return static_cast<Orb*>(checkpoint_orb(this)); }
void orb(Orb* n) { P_SetTarget(&checkpoint_orb(this), n); }
Arm* arm() const { return static_cast<Arm*>(checkpoint_arm(this)); }
void arm(Arm* n) { P_SetTarget(&checkpoint_arm(this), n); }
Checkpoint* next() const { return static_cast<Checkpoint*>(checkpoint_next(this)); }
void next(Checkpoint* n) { P_SetTarget(&checkpoint_next(this), n); }
fixed_t var() const { return checkpoint_var(this); }
void var(fixed_t n) { checkpoint_var(this) = n; }
fixed_t speed() const { return checkpoint_speed(this); }
void speed(fixed_t n) { checkpoint_speed(this) = n; }
fixed_t speed_multiplier() const { return checkpoint_speed_multiplier(this); }
void speed_multiplier(fixed_t n) { checkpoint_speed_multiplier(this) = n; }
bool reverse() const { return checkpoint_reverse(this); }
void reverse(bool n) { checkpoint_reverse(this) = n; }
// Valid to use as an alpha.
bool valid() const
{
auto f = [](const mobj_t* th) { return !P_MobjWasRemoved(th); };
return f(this) && f(other()) && f(orb()) && f(arm());
}
bool activated() const { return var(); }
// Line between A and B things.
LineOnDemand crossing_line() const { return LineOnDemand(x, y, other()->x, other()->y, radius); }
// Middle between A and B.
vector3_t center_position() const
{
return {x + ((other()->x - x) / 2), y + ((other()->y - y) / 2), z + ((other()->z - z) / 2)};
}
void gingerbread()
{
P_InstaScale(this, 3 * scale / 2);
orb(new_piece<Orb>(S_CHECKPOINT_ORB_DEAD));
orb()->whiteshadow = true;
arm(new_piece<Arm>(S_CHECKPOINT_ARM));
deactivate();
}
void animate()
{
orient();
pull();
if (speed())
{
var(var() + speed());
if (!clip_var())
{
speed(speed() - FixedDiv(speed() / 50, std::max(speed_multiplier(), 1)));
}
}
else if (!activated())
{
sparkle_between(0);
}
}
void twirl(angle_t dir, fixed_t multiplier)
{
var(0);
speed_multiplier(std::clamp(multiplier, kMinSpeedMultiplier, kMaxSpeedMultiplier));
speed(FixedDiv(kBaseSpeed, speed_multiplier()));
reverse(AngleDeltaSigned(angle_to_other(), dir) > 0);
sparkle_between(FixedMul(80 * mapobjectscale, multiplier));
}
void untwirl()
{
speed_multiplier(kMinSpeedMultiplier);
speed(FixedDiv(-(kBaseSpeed), speed_multiplier()));
}
void activate()
{
var(FRACUNIT - 1);
speed(0);
P_SetMobjState(orb(), S_CHECKPOINT_ORB_LIVE);
orb()->shadowscale = 0;
}
void deactivate()
{
var(0);
speed(0);
P_SetMobjState(orb(), S_CHECKPOINT_ORB_DEAD);
orb()->shadowscale = FRACUNIT/2;
}
void sparkle_around_center()
{
const vector3_t pos = center_position();
fixed_t mom = 5 * scale;
for (angle_t a = 0;;)
{
spawn_sparkle({pos.x + FixedMul(mom, FCOS(a)), pos.y + FixedMul(mom, FSIN(a)), pos.z}, mom, 20 * scale, a);
angle_t turn = a + (ANGLE_MAX / kSparkleAroundCount);
if (turn < a) // overflowed a full 360 degrees
{
break;
}
a = turn;
}
}
private:
static angle_t to_angle(fixed_t f) { return FixedAngle((f & FRACMASK) * 360); }
template <typename T>
T* new_piece(statenum_t state)
{
mobj_t* x = P_SpawnMobjFromMobj(this, 0, 0, 0, MT_THOK);
P_SetMobjState(x, state);
return static_cast<T*>(x);
}
angle_t angle_to_other() const { return R_PointToAngle2(x, y, other()->x, other()->y); }
angle_t facing_angle() const { return angle_to_other() + ANGLE_90; }
angle_t pivot() const
{
fixed_t pos = FixedMul(
FixedDiv(speed_multiplier() - kMinSpeedMultiplier, kSpeedMultiplierRange),
kMinPivotDelay
);
return to_angle(FixedDiv(std::max(var(), pos) - pos, FRACUNIT - pos)) / 4;
}
void orient()
{
angle_t facing = facing_angle();
if (speed() >= 0)
{
fixed_t range = FRACUNIT + FixedRound((speed_multiplier() - kMinSpeedMultiplier) * 6);
angle = facing + (to_angle(FixedMul(var(), range)) * (reverse() ? -1 : 1));
}
arm()->angle = angle - ANGLE_90;
arm()->rollangle = -(ANGLE_90) + pivot();
}
void pull()
{
fixed_t r = kOrbitDistance * scale;
fixed_t xy = FixedMul(r, FCOS(pivot()));
P_MoveOrigin(
orb(),
x + FixedMul(xy, FCOS(arm()->angle)),
y + FixedMul(xy, FSIN(arm()->angle)),
P_GetMobjHead(this) + (FixedMul(r, FSIN(pivot())) * P_MobjFlip(this))
);
P_MoveOrigin(arm(), orb()->x, orb()->y, orb()->z);
if (speed())
{
orb()->afterimages();
}
}
void spawn_sparkle(const vector3_t& pos, fixed_t xy_momentum, fixed_t z_momentum, angle_t dir)
{
auto rng = [=](int units) { return P_RandomRange(PR_DECORATION, -(units) * scale, +(units) * scale); };
// From K_DrawDraftCombiring
mobj_t* p = P_SpawnMobjFromMobjUnscaled(
this,
(pos.x - x) + rng(12),
(pos.y - y) + rng(12),
(pos.z - z) + rng(24),
MT_SIGNSPARKLE
);
P_SetMobjState(p, static_cast<statenum_t>(S_CHECKPOINT_SPARK1 + (leveltime % 11)));
p->colorized = true;
if (xy_momentum)
{
P_Thrust(p, dir, xy_momentum);
p->momz = P_RandomKey(PR_DECORATION, std::max(z_momentum, 1));
p->destscale = 0;
p->scalespeed = p->scale / 35;
p->color = SKINCOLOR_ULTRAMARINE;
p->fuse = 0;
// Something lags at the start of the level. The
// timing is inconsistent, so this value is
// vibes-based.
constexpr int kIntroDelay = 8;
if (leveltime < kIntroDelay)
{
p->hitlag = kIntroDelay;
}
}
else
{
p->color = K_RainbowColor(leveltime);
p->fuse = 2;
}
}
void sparkle_between(fixed_t momentum)
{
angle_t a = angle_to_other();
if (a < ANGLE_180)
{
// Let's only do it for one of the two.
return;
}
angle_t dir = a - (reverse() ? ANGLE_90 : -(ANGLE_90));
fixed_t r = kSparkleRadius * scale;
fixed_t ofs = (kSparkleOffset * scale) + r;
fixed_t between = R_PointToDist2(x, y, other()->x, other()->y);
for (; ofs < between; ofs += 2 * r)
{
spawn_sparkle(
{x + FixedMul(ofs, FCOS(a)), y + FixedMul(ofs, FSIN(a)), z + (kSparkleZ * scale)},
momentum,
momentum / 2,
dir
);
}
}
bool clip_var()
{
if (speed() > 0)
{
if (var() >= FRACUNIT)
{
activate();
return true;
}
}
else
{
if (var() < 0)
{
deactivate();
return true;
}
}
return false;
}
};
struct CheckpointManager
{
auto begin() { return list_.begin(); }
auto end() { return list_.end(); }
auto find(INT32 id) { return std::find_if(begin(), end(), [id](Checkpoint* chk) { return chk->id() == id; }); }
void push_front(Checkpoint* chk) { list_.push_front(chk); }
void erase(Checkpoint* chk) { list_.erase(chk); }
private:
srb2::MobjList<Checkpoint, svg_checkpoints> list_;
};
CheckpointManager g_checkpoints;
}; // namespace
void Obj_LinkCheckpoint(mobj_t* end)
{
auto chk = static_cast<Checkpoint*>(end);
if (chk->spawnpoint && chk->id() == 0)
{
auto msg = fmt::format(
"Checkpoint thing (index #{}, thing type {}) has an invalid ID! ID must not be 0.\n",
chk->spawnpoint - mapthings,
chk->spawnpoint->type
);
CONS_Alert(CONS_WARNING, "%s", msg.c_str());
return;
}
if (auto it = g_checkpoints.find(chk->id()); it != g_checkpoints.end())
{
Checkpoint* other = *it;
if (chk->spawnpoint && other->spawnpoint && chk->spawnpoint->angle != other->spawnpoint->angle)
{
auto msg = fmt::format(
"Checkpoints things with ID {} (index #{} and #{}, thing type {}) do not have matching angles.\n",
chk->id(),
chk->spawnpoint - mapthings,
other->spawnpoint - mapthings,
chk->spawnpoint->type
);
CONS_Alert(CONS_WARNING, "%s", msg.c_str());
return;
}
other->other(chk);
chk->other(other);
}
else
{
g_checkpoints.push_front(chk);
}
chk->gingerbread();
}
void Obj_UnlinkCheckpoint(mobj_t* end)
{
auto chk = static_cast<Checkpoint*>(end);
g_checkpoints.erase(chk);
P_RemoveMobj(chk->orb());
}
void Obj_CheckpointThink(mobj_t* end)
{
auto chk = static_cast<Checkpoint*>(end);
if (!chk->valid())
{
return;
}
chk->animate();
}
void Obj_CrossCheckpoints(player_t* player, fixed_t old_x, fixed_t old_y)
{
LineOnDemand ray(old_x, old_y, player->mo->x, player->mo->y, player->mo->radius);
auto it = std::find_if(
g_checkpoints.begin(),
g_checkpoints.end(),
[&](const Checkpoint* chk)
{
if (!chk->valid())
{
return false;
}
LineOnDemand gate = chk->crossing_line();
// Check if the bounding boxes of the two lines
// overlap. This relies on the player movement not
// being so large that it creates an oversized box,
// but thankfully that doesn't seem to happen, under
// normal circumstances.
if (!ray.overlaps(gate))
{
return false;
}
INT32 side = P_PointOnLineSide(player->mo->x, player->mo->y, &gate);
INT32 oldside = P_PointOnLineSide(old_x, old_y, &gate);
if (side == oldside)
{
// Did not cross.
return false;
}
return true;
}
);
if (it == g_checkpoints.end())
{
return;
}
Checkpoint* chk = *it;
if (chk->activated())
{
return;
}
for (Checkpoint* chk : g_checkpoints)
{
if (chk->valid())
{
// Swing down any previously passed checkpoints.
// TODO: this could look weird in multiplayer if
// other players cross different checkpoints.
chk->untwirl();
chk->other()->untwirl();
}
}
angle_t direction = R_PointToAngle2(old_x, old_y, player->mo->x, player->mo->y);
fixed_t speed_multiplier = FixedDiv(player->speed, K_GetKartSpeed(player, false, false));
chk->twirl(direction, speed_multiplier);
chk->other()->twirl(direction, speed_multiplier);
S_StartSound(player->mo, sfx_s3k63);
player->checkpointId = chk->id();
}
mobj_t *Obj_FindCheckpoint(INT32 id)
{
auto it = g_checkpoints.find(id);
return it != g_checkpoints.end() ? *it : nullptr;
}
boolean Obj_GetCheckpointRespawnPosition(const mobj_t* mobj, vector3_t* return_pos)
{
auto chk = static_cast<const Checkpoint*>(mobj);
if (!chk->valid())
{
return false;
}
*return_pos = chk->center_position();
return true;
}
angle_t Obj_GetCheckpointRespawnAngle(const mobj_t* mobj)
{
auto chk = static_cast<const Checkpoint*>(mobj);
return chk->spawnpoint ? FixedAngle(chk->spawnpoint->angle * FRACUNIT): 0u;
}
void Obj_ActivateCheckpointInstantly(mobj_t* mobj)
{
auto chk = static_cast<Checkpoint*>(mobj);
if (chk->valid())
{
chk->sparkle_around_center(); // only do it for one
chk->activate();
chk->other()->activate();
}
}