RingRacers/src/io/streams.hpp
2024-04-05 10:07:10 -04:00

967 lines
29 KiB
C++

// DR. ROBOTNIK'S RING RACERS
//-----------------------------------------------------------------------------
// Copyright (C) 2024 by Ronald "Eidolon" Kinard
// Copyright (C) 2024 by Kart Krew
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
#ifndef __SRB2_IO_STREAMS_HPP__
#define __SRB2_IO_STREAMS_HPP__
#include <cstddef>
#include <optional>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include <tcb/span.hpp>
#include <zlib.h>
namespace srb2::io
{
using StreamSize = uint64_t;
using StreamOffset = int64_t;
enum class SeekFrom {
kStart,
kCurrent,
kEnd
};
template <typename T>
struct IsInputStream
: public std::is_same<decltype(std::declval<T&>().read(std::declval<tcb::span<std::byte>>())), StreamSize> {};
template <typename T>
struct IsOutputStream
: public std::is_same<decltype(std::declval<T&>().write(std::declval<tcb::span<const std::byte>>())), StreamSize> {
};
template <typename T>
struct IsSeekableStream
: public std::is_same<decltype(std::declval<T&>().seek(std::declval<SeekFrom>(), std::declval<StreamOffset>())),
StreamSize> {};
template <typename T>
struct IsFlushableStream : public std::is_same<decltype(std::declval<T&>().flush()), void> {};
template <typename T>
struct IsStream : public std::disjunction<IsInputStream<T>, IsOutputStream<T>> {};
template <typename T>
struct IsInputOutputStream : public std::conjunction<IsInputStream<T>, IsOutputStream<T>> {};
template <typename T>
inline constexpr const bool IsInputStreamV = IsInputStream<T>::value;
template <typename T>
inline constexpr const bool IsOutputStreamV = IsOutputStream<T>::value;
template <typename T>
inline constexpr const bool IsSeekableStreamV = IsSeekableStream<T>::value;
template <typename T>
inline constexpr const bool IsFlushableStreamV = IsFlushableStream<T>::value;
template <typename T>
inline constexpr const bool IsStreamV = IsStream<T>::value;
template <typename T>
inline constexpr const bool IsInputOutputStreamV = IsInputOutputStream<T>::value;
class UnexpectedEof : public std::logic_error
{
using std::logic_error::logic_error;
};
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read_exact(I& stream, tcb::span<std::byte> buffer) {
std::size_t total = 0;
const std::size_t buf_size = buffer.size();
while (total < buf_size) {
total += stream.read(buffer.subspan(total, buf_size - total));
}
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write_exact(O& stream, tcb::span<const std::byte> buffer) {
std::size_t total = 0;
const std::size_t buf_size = buffer.size();
while (total < buf_size) {
total += stream.write(buffer.subspan(total, buf_size - total));
}
}
enum class Endian {
kLE,
kBE,
};
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(std::byte& value, I& stream) {
read_exact(stream, tcb::span {&value, 1});
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(std::byte value, O& stream) {
write_exact(stream, tcb::span {&value, 1});
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(uint8_t& value, I& stream) {
std::byte in;
read_exact(stream, tcb::span {&in, 1});
value = std::to_integer<uint8_t>(in);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
uint8_t read_uint8(I& stream) {
uint8_t ret;
read(ret, stream);
return ret;
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(uint8_t value, O& stream) {
std::byte out {value};
write_exact(stream, tcb::span {&out, 1});
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(bool& value, I& stream) {
uint8_t v;
read(v, stream);
value = !(v == 0);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
bool read_bool(I& stream) {
bool ret;
read(ret, stream);
return ret;
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(bool value, O& stream) {
uint8_t out;
if (value)
out = 1;
else
out = 0;
write(out, stream);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(int8_t& value, I& stream) {
uint8_t in;
read(in, stream);
value = *reinterpret_cast<int8_t*>(&in);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
int8_t read_int8(I& stream) {
int8_t ret;
read(ret, stream);
return ret;
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(int8_t value, O& stream) {
write(*reinterpret_cast<uint8_t*>(&value), stream);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(uint16_t& value, I& stream, Endian endian = Endian::kLE) {
std::array<std::byte, 2> out;
read_exact(stream, tcb::make_span(out));
if (endian == Endian::kBE)
value = std::to_integer<uint16_t>(out[1]) + (std::to_integer<uint16_t>(out[0]) << 8);
else
value = std::to_integer<uint16_t>(out[0]) + (std::to_integer<uint16_t>(out[1]) << 8);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
uint16_t read_uint16(I& stream, Endian endian = Endian::kLE) {
uint16_t ret;
read(ret, stream, endian);
return ret;
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(uint16_t value, O& stream, Endian endian = Endian::kLE) {
std::array<std::byte, 2> out;
if (endian == Endian::kBE)
out = {std::byte {static_cast<uint8_t>((value & 0xFF00) >> 8)},
std::byte {static_cast<uint8_t>((value & 0x00FF) >> 0)}};
else
out = {std::byte {static_cast<uint8_t>((value & 0x00FF) >> 0)},
std::byte {static_cast<uint8_t>((value & 0xFF00) >> 8)}};
write_exact(stream, tcb::make_span(out));
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(int16_t& value, I& stream, Endian endian = Endian::kLE) {
uint16_t r;
read(r, stream, endian);
value = *reinterpret_cast<int16_t*>(&r);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
int16_t read_int16(I& stream, Endian endian = Endian::kLE) {
int16_t ret;
read(ret, stream, endian);
return ret;
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(int16_t value, O& stream, Endian endian = Endian::kLE) {
write(*reinterpret_cast<int16_t*>(&value), stream, endian);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(uint32_t& value, I& stream, Endian endian = Endian::kLE) {
std::array<std::byte, 4> out;
read_exact(stream, tcb::make_span(out));
if (endian == Endian::kBE)
value = std::to_integer<uint32_t>(out[3]) + (std::to_integer<uint32_t>(out[2]) << 8) +
(std::to_integer<uint32_t>(out[1]) << 16) + (std::to_integer<uint32_t>(out[0]) << 24);
else
value = std::to_integer<uint32_t>(out[0]) + (std::to_integer<uint32_t>(out[1]) << 8) +
(std::to_integer<uint32_t>(out[2]) << 16) + (std::to_integer<uint32_t>(out[3]) << 24);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
uint32_t read_uint32(I& stream, Endian endian = Endian::kLE) {
uint32_t ret;
read(ret, stream, endian);
return ret;
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(uint32_t value, O& stream, Endian endian = Endian::kLE) {
std::array<std::byte, 4> out;
if (endian == Endian::kBE)
out = {std::byte {static_cast<uint8_t>((value & 0xFF000000) >> 24)},
std::byte {static_cast<uint8_t>((value & 0x00FF0000) >> 16)},
std::byte {static_cast<uint8_t>((value & 0x0000FF00) >> 8)},
std::byte {static_cast<uint8_t>((value & 0x000000FF) >> 0)}};
else
out = {std::byte {static_cast<uint8_t>((value & 0x000000FF) >> 0)},
std::byte {static_cast<uint8_t>((value & 0x0000FF00) >> 8)},
std::byte {static_cast<uint8_t>((value & 0x00FF0000) >> 16)},
std::byte {static_cast<uint8_t>((value & 0xFF000000) >> 24)}};
write_exact(stream, tcb::make_span(out));
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(int32_t& value, I& stream, Endian endian = Endian::kLE) {
uint32_t r;
read(r, stream, endian);
value = *reinterpret_cast<int32_t*>(&r);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
int32_t read_int32(I& stream, Endian endian = Endian::kLE) {
int32_t ret;
read(ret, stream, endian);
return ret;
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(int32_t value, O& stream, Endian endian = Endian::kLE) {
write(*reinterpret_cast<uint32_t*>(&value), stream, endian);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(uint64_t& value, I& stream, Endian endian = Endian::kLE) {
std::array<std::byte, 8> out;
read_exact(stream, tcb::make_span(out));
if (endian == Endian::kBE)
value = std::to_integer<uint64_t>(out[7]) + (std::to_integer<uint64_t>(out[6]) << 8) +
(std::to_integer<uint64_t>(out[5]) << 16) + (std::to_integer<uint64_t>(out[4]) << 24) +
(std::to_integer<uint64_t>(out[3]) << 32) + (std::to_integer<uint64_t>(out[2]) << 40) +
(std::to_integer<uint64_t>(out[1]) << 48) + (std::to_integer<uint64_t>(out[0]) << 56);
else
value = std::to_integer<uint64_t>(out[0]) + (std::to_integer<uint64_t>(out[1]) << 8) +
(std::to_integer<uint64_t>(out[2]) << 16) + (std::to_integer<uint64_t>(out[3]) << 24) +
(std::to_integer<uint64_t>(out[4]) << 32) + (std::to_integer<uint64_t>(out[5]) << 40) +
(std::to_integer<uint64_t>(out[6]) << 48) + (std::to_integer<uint64_t>(out[7]) << 56);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
uint64_t read_uint64(I& stream, Endian endian = Endian::kLE) {
uint64_t ret;
read(ret, stream, endian);
return ret;
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(uint64_t value, O& stream, Endian endian = Endian::kLE) {
std::array<std::byte, 8> out;
if (endian == Endian::kBE)
out = {std::byte {static_cast<uint8_t>((value & 0xFF00000000000000) >> 56)},
std::byte {static_cast<uint8_t>((value & 0x00FF000000000000) >> 48)},
std::byte {static_cast<uint8_t>((value & 0x0000FF0000000000) >> 40)},
std::byte {static_cast<uint8_t>((value & 0x000000FF00000000) >> 32)},
std::byte {static_cast<uint8_t>((value & 0x00000000FF000000) >> 24)},
std::byte {static_cast<uint8_t>((value & 0x0000000000FF0000) >> 16)},
std::byte {static_cast<uint8_t>((value & 0x000000000000FF00) >> 8)},
std::byte {static_cast<uint8_t>((value & 0x00000000000000FF) >> 0)}};
else
out = {std::byte {static_cast<uint8_t>((value & 0x00000000000000FF) >> 0)},
std::byte {static_cast<uint8_t>((value & 0x000000000000FF00) >> 8)},
std::byte {static_cast<uint8_t>((value & 0x0000000000FF0000) >> 16)},
std::byte {static_cast<uint8_t>((value & 0x00000000FF000000) >> 24)},
std::byte {static_cast<uint8_t>((value & 0x000000FF00000000) >> 32)},
std::byte {static_cast<uint8_t>((value & 0x0000FF0000000000) >> 40)},
std::byte {static_cast<uint8_t>((value & 0x00FF000000000000) >> 48)},
std::byte {static_cast<uint8_t>((value & 0xFF00000000000000) >> 56)}};
write_exact(stream, tcb::make_span(out));
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(int64_t& value, I& stream, Endian endian = Endian::kLE) {
uint64_t r;
read(r, stream, endian);
value = *reinterpret_cast<int64_t*>(&r);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
int64_t read_int64(I& stream, Endian endian = Endian::kLE) {
int64_t ret;
read(ret, stream, endian);
return ret;
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(int64_t value, O& stream, Endian endian = Endian::kLE) {
write(*reinterpret_cast<uint64_t*>(&value), stream, endian);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(float& value, I& stream, Endian endian = Endian::kLE) {
uint32_t r;
read(r, stream, endian);
value = *reinterpret_cast<float*>(&r);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
float read_float(I& stream, Endian endian = Endian::kLE) {
float ret;
read(ret, stream, endian);
return ret;
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(float value, O& stream, Endian endian = Endian::kLE) {
write(*reinterpret_cast<int32_t*>(&value), stream, endian);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
void read(double& value, I& stream, Endian endian = Endian::kLE) {
uint64_t r;
read(r, stream, endian);
value = *reinterpret_cast<double*>(&r);
}
template <typename I, typename std::enable_if_t<IsInputStreamV<I>>* = nullptr>
double read_double(I& stream, Endian endian = Endian::kLE) {
double ret;
read(ret, stream, endian);
return ret;
}
template <typename O, typename std::enable_if_t<IsOutputStreamV<O>>* = nullptr>
void write(double value, O& stream, Endian endian = Endian::kLE) {
write(*reinterpret_cast<int64_t*>(&value), stream, endian);
}
template <typename S, typename std::enable_if_t<IsSeekableStreamV<S>>* = nullptr>
StreamSize remaining(S& stream) {
const StreamSize current = stream.seek(SeekFrom::kCurrent, 0);
const StreamSize end = stream.seek(SeekFrom::kEnd, 0);
stream.seek(SeekFrom::kStart, current);
return end - current;
}
// Kinds of streams
class SpanStream {
public:
SpanStream() noexcept = default;
SpanStream(tcb::span<std::byte> span) : span_(span), head_(0) {
if (span_.size() > static_cast<StreamSize>(static_cast<StreamOffset>(-1))) {
throw std::logic_error("Span must not be greater than 2 billion bytes");
}
};
StreamSize read(tcb::span<std::byte> buffer) {
if (head_ >= span_.size())
return 0;
const auto begin = buffer.begin();
const auto end = std::copy(
span_.begin() + head_, span_.begin() + head_ + std::min(buffer.size(), span_.size() - head_), begin);
head_ += std::distance(begin, end);
return std::distance(begin, end);
}
StreamSize write(tcb::span<const std::byte> buffer) {
if (head_ >= span_.size())
return 0;
const auto begin = span_.begin() + head_;
const auto end =
std::copy(buffer.begin(), buffer.begin() + std::min(span_.size() - head_, buffer.size()), begin);
head_ += std::distance(begin, end);
return std::distance(begin, end);
}
StreamSize seek(SeekFrom seek_from, StreamOffset offset) {
std::size_t head = 0;
switch (seek_from) {
case SeekFrom::kStart:
if (offset < 0) {
throw std::logic_error("start offset is out of bounds");
}
head = offset;
break;
case SeekFrom::kEnd:
if (static_cast<StreamOffset>(span_.size()) + offset < 0) {
throw std::logic_error("end offset is out of bounds");
}
head = span_.size() + offset;
break;
case SeekFrom::kCurrent:
if (head_ + offset < 0) {
throw std::logic_error("offset is out of bounds");
}
head = head_ + offset;
break;
}
std::swap(head, head_);
return head_;
}
friend void read_exact(SpanStream& stream, tcb::span<std::byte> buffer);
private:
tcb::span<std::byte> span_;
std::size_t head_ {0};
};
inline void read_exact(SpanStream& stream, tcb::span<std::byte> buffer)
{
const std::size_t remaining = stream.span_.size() - stream.head_;
const std::size_t buffer_size = buffer.size();
if (buffer_size > remaining)
{
// The span's size will never change, so the generic impl of read_exact will enter an inifinite loop. We can
// throw out early.
throw UnexpectedEof("read buffer size > remaining bytes in span");
}
if (buffer_size == 0)
{
return;
}
auto copy_begin = std::next(stream.span_.begin(), stream.head_);
auto copy_end = std::next(stream.span_.begin(), stream.head_ + buffer_size);
stream.head_ += buffer_size;
std::copy(copy_begin, copy_end, buffer.begin());
}
class VecStream {
std::vector<std::byte> vec_;
std::size_t head_ {0};
public:
VecStream() = default;
VecStream(const std::vector<std::byte>& vec) : vec_(vec) {}
VecStream(std::vector<std::byte>&& vec) : vec_(std::move(vec)) {}
VecStream(const VecStream& rhs) = default;
VecStream(VecStream&& rhs) = default;
VecStream& operator=(const VecStream& rhs) = default;
VecStream& operator=(VecStream&& rhs) = default;
StreamSize read(tcb::span<std::byte> buffer) {
if (head_ >= vec_.size())
return 0;
const auto begin = buffer.begin();
const auto end =
std::copy(vec_.begin() + head_, vec_.begin() + head_ + std::min(buffer.size(), vec_.size() - head_), begin);
head_ += std::distance(begin, end);
return std::distance(begin, end);
}
StreamSize write(tcb::span<const std::byte> buffer) {
const std::size_t buffer_size = buffer.size();
if (head_ + buffer_size >= vec_.size()) {
vec_.resize(head_ + buffer_size);
}
const auto begin = vec_.begin() + head_;
const auto end =
std::copy(buffer.begin(), buffer.begin() + std::min(vec_.size() - head_, buffer.size()), begin);
head_ += std::distance(begin, end);
return std::distance(begin, end);
}
StreamSize seek(SeekFrom seek_from, StreamOffset offset) {
std::size_t head = 0;
switch (seek_from) {
case SeekFrom::kStart:
if (offset < 0) {
throw std::logic_error("start offset is out of bounds");
}
head = offset;
break;
case SeekFrom::kEnd:
if (static_cast<StreamOffset>(vec_.size()) + offset < 0) {
throw std::logic_error("end offset is out of bounds");
}
head = vec_.size() + offset;
break;
case SeekFrom::kCurrent:
if (head_ + offset < 0) {
throw std::logic_error("offset is out of bounds");
}
head = head_ + offset;
break;
}
std::swap(head, head_);
return head_;
}
std::vector<std::byte>& vector() { return vec_; }
friend void read_exact(VecStream& stream, tcb::span<std::byte> buffer);
};
inline void read_exact(VecStream& stream, tcb::span<std::byte> buffer)
{
const std::size_t remaining = stream.vec_.size() - stream.head_;
const std::size_t buffer_size = buffer.size();
if (buffer_size > remaining)
{
// VecStream is not thread safe, so the generic impl of read_exact would enter an infinite loop under
// correct usage. We know when we've reached the end and can throw out early.
throw UnexpectedEof("read buffer size > remaining bytes in vector");
}
if (buffer_size == 0)
{
return;
}
auto copy_begin = std::next(stream.vec_.begin(), stream.head_);
auto copy_end = std::next(stream.vec_.begin(), stream.head_ + buffer_size);
stream.head_ += buffer_size;
std::copy(copy_begin, copy_end, buffer.begin());
}
enum class FileStreamMode
{
kRead,
kWrite,
kAppend,
};
class FileStreamException final : public std::exception
{
std::string msg_;
public:
explicit FileStreamException(const char* msg);
explicit FileStreamException(const std::string& msg);
FileStreamException(const FileStreamException&);
FileStreamException(FileStreamException&&) noexcept;
~FileStreamException();
FileStreamException& operator=(const FileStreamException&);
FileStreamException& operator=(FileStreamException&&) noexcept;
virtual const char* what() const noexcept override;
};
class FileStream final
{
void* file_ = nullptr; // Type is omitted to avoid include cstdio
FileStreamMode mode_;
public:
FileStream() noexcept;
FileStream(const FileStream&) = delete;
FileStream(FileStream&&) noexcept;
FileStream(const std::string& path, FileStreamMode mode = FileStreamMode::kRead);
~FileStream();
FileStream& operator=(const FileStream&) = delete;
FileStream& operator=(FileStream&&) noexcept;
StreamSize read(tcb::span<std::byte> buffer);
StreamSize write(tcb::span<const std::byte> buffer);
StreamSize seek(SeekFrom seek_from, StreamOffset offset);
void close();
};
class ZlibException : public std::exception {
int err_ {0};
std::string msg_;
public:
ZlibException(int err, const char* msg = nullptr) : err_(err), msg_("srb2::io::ZlibException: zlib error: ") {
const char* err_msg = "(UNKNOWN) ";
switch (err_) {
case Z_OK:
err_msg = "(Z_OK) ";
break;
case Z_STREAM_END:
err_msg = "(Z_STREAM_END) ";
break;
case Z_NEED_DICT:
err_msg = "(Z_NEED_DICT) ";
break;
case Z_ERRNO:
err_msg = "(Z_ERRNO) ";
break;
case Z_STREAM_ERROR:
err_msg = "(Z_STREAM_ERROR) ";
break;
case Z_DATA_ERROR:
err_msg = "(Z_DATA_ERROR) ";
break;
case Z_MEM_ERROR:
err_msg = "(Z_MEM_ERROR) ";
break;
case Z_BUF_ERROR:
err_msg = "(Z_BUF_ERROR) ";
break;
case Z_VERSION_ERROR:
err_msg = "(Z_VERSION_ERROR) ";
break;
}
msg_.append(err_msg);
if (msg != nullptr)
msg_.append(msg);
else
msg_.append("nullptr");
}
virtual const char* what() const noexcept override final { return msg_.c_str(); }
};
template <typename I,
typename std::enable_if_t<IsInputStreamV<I> && std::is_move_constructible_v<I> &&
std::is_move_assignable_v<I>>* = nullptr>
class ZlibInputStream {
I inner_;
z_stream stream_;
std::vector<std::byte> buf_;
std::size_t buf_head_;
bool zstream_initialized_;
bool zstream_ended_;
public:
ZlibInputStream(I&& inner)
: inner_(std::move(inner))
, stream_ {}
, buf_()
, buf_head_(0)
, zstream_initialized_ {false}
, zstream_ended_ {false} {}
ZlibInputStream(const ZlibInputStream& rhs) = delete;
ZlibInputStream(ZlibInputStream&& rhs) = delete;
ZlibInputStream& operator=(const ZlibInputStream& rhs) = delete;
ZlibInputStream& operator=(ZlibInputStream&& rhs) = delete;
StreamSize read(tcb::span<std::byte> buffer) {
if (zstream_ended_)
return 0;
std::size_t written = 0;
const std::size_t buffer_size = buffer.size();
while (written < buffer_size && !zstream_ended_) {
_fill_read_buffer();
if (buf_.size() == 0) {
break;
}
const std::size_t written_this_time = _inflate(buffer.subspan(written));
written += written_this_time;
}
return written;
}
I& stream() { return inner_; }
void close() {
if (!zstream_initialized_)
return;
int ret = inflateEnd(&stream_);
if (ret != Z_OK)
throw ZlibException {ret, stream_.msg};
zstream_initialized_ = false;
zstream_ended_ = true;
}
~ZlibInputStream() {
if (zstream_initialized_) {
int ret = inflateEnd(&stream_);
if (ret != Z_OK)
// can't throw exceptions in destructors
std::terminate();
zstream_initialized_ = false;
zstream_ended_ = true;
}
};
private:
constexpr static const std::size_t kReadHighWater = 2048;
void _init() {
stream_.avail_in = buf_.size() - buf_head_;
const std::size_t start_avail_in = stream_.avail_in;
stream_.next_in = reinterpret_cast<Bytef*>(buf_.data() + buf_head_);
int ret = inflateInit2(&stream_, 32);
if (ret != Z_OK) {
throw ZlibException {ret, stream_.msg};
}
buf_head_ += start_avail_in - stream_.avail_in;
_move_buf_backwards();
zstream_initialized_ = true;
zstream_ended_ = false;
}
void _fill_read_buffer() {
const std::size_t old_size = buf_.size();
if (old_size < kReadHighWater) {
buf_.resize(kReadHighWater);
const std::size_t read = inner_.read(tcb::span(buf_.data() + old_size, buf_.size() - old_size));
buf_.resize(old_size + read);
}
}
StreamSize _inflate(tcb::span<std::byte> out) {
if (!zstream_initialized_) {
_init();
}
if (zstream_ended_)
return 0;
const std::size_t out_size = out.size();
stream_.avail_in = buf_.size() - buf_head_;
const std::size_t start_avail_in = stream_.avail_in;
stream_.next_in = reinterpret_cast<Bytef*>(buf_.data() + buf_head_);
stream_.avail_out = out_size;
const std::size_t start_avail_out = stream_.avail_out;
stream_.next_out = reinterpret_cast<Bytef*>(out.data());
int ret = inflate(&stream_, Z_NO_FLUSH);
if (ret == Z_STREAM_END) {
zstream_ended_ = true;
} else if (ret != Z_OK && ret != Z_BUF_ERROR) {
throw ZlibException {ret, stream_.msg};
}
buf_head_ += start_avail_in - stream_.avail_in;
const std::size_t written = start_avail_out - stream_.avail_out;
_move_buf_backwards();
return written;
}
void _move_buf_backwards() {
if (buf_head_ == 0) {
return;
}
if (buf_head_ >= buf_.size()) {
buf_.clear();
buf_head_ = 0;
return;
}
auto end = std::move(buf_.begin() + buf_head_, buf_.end(), buf_.begin());
buf_.resize(end - buf_.begin());
buf_head_ = 0;
}
};
extern template class ZlibInputStream<SpanStream>;
extern template class ZlibInputStream<VecStream>;
template <typename O,
typename std::enable_if_t<IsOutputStreamV<O> && std::is_move_constructible_v<O> &&
std::is_move_assignable_v<O>>* = nullptr>
class BufferedOutputStream final
{
O inner_;
std::vector<std::byte> buf_;
tcb::span<const std::byte>::size_type cap_;
public:
explicit BufferedOutputStream(O&& o) : inner_(std::forward<O>(o)), buf_(), cap_(8192) {}
BufferedOutputStream(O&& o, tcb::span<const std::byte>::size_type capacity) : inner_(std::forward<O>(o)), buf_(), cap_(capacity) {}
BufferedOutputStream(const BufferedOutputStream&) = delete;
BufferedOutputStream(BufferedOutputStream&&) = default;
~BufferedOutputStream() = default;
BufferedOutputStream& operator=(const BufferedOutputStream&) = delete;
BufferedOutputStream& operator=(BufferedOutputStream&&) = default;
StreamSize write(tcb::span<const std::byte> buffer)
{
StreamSize totalwritten = 0;
while (buffer.size() > 0)
{
std::size_t tocopy = std::min(std::min(cap_, cap_ - buf_.size()), buffer.size());
tcb::span<const std::byte> copy_slice = buffer.subspan(0, tocopy);
buf_.reserve(cap_);
buf_.insert(buf_.end(), copy_slice.begin(), copy_slice.end());
flush();
totalwritten += copy_slice.size();
buffer = buffer.subspan(tocopy);
}
return totalwritten;
}
void flush()
{
tcb::span<const std::byte> writebuf = tcb::make_span(buf_);
write_exact(inner_, writebuf);
buf_.resize(0);
}
O&& stream() noexcept
{
return std::move(inner_);
}
};
extern template class BufferedOutputStream<FileStream>;
template <typename I,
typename std::enable_if_t<IsInputStreamV<I> && std::is_move_constructible_v<I> &&
std::is_move_assignable_v<I>>* = nullptr>
class BufferedInputStream final
{
I inner_;
std::vector<std::byte> buf_;
tcb::span<std::byte>::size_type cap_;
public:
template <typename std::enable_if_t<std::is_default_constructible_v<I>>* = nullptr>
BufferedInputStream() : inner_(), buf_(), cap_(8192) {}
explicit BufferedInputStream(I&& i) : inner_(std::forward<I>(i)), buf_(), cap_(8192) {}
BufferedInputStream(I&& i, tcb::span<std::byte>::size_type capacity) : inner_(std::forward<I>(i)), buf_(), cap_(capacity) {}
BufferedInputStream(const BufferedInputStream&) = delete;
BufferedInputStream(BufferedInputStream&&) = default;
~BufferedInputStream() = default;
BufferedInputStream& operator=(const BufferedInputStream&) = delete;
BufferedInputStream& operator=(BufferedInputStream&&) = default;
StreamSize read(tcb::span<std::byte> buffer)
{
StreamSize totalread = 0;
buf_.reserve(cap_);
while (buffer.size() > 0)
{
std::size_t toread = cap_ - buf_.size();
std::size_t prereadsize = buf_.size();
buf_.resize(prereadsize + toread);
tcb::span<std::byte> readspan{buf_.data() + prereadsize, buf_.data() + prereadsize + toread};
StreamSize bytesread = inner_.read(readspan);
buf_.resize(prereadsize + bytesread);
StreamSize tocopyfrombuf = std::min(buffer.size(), buf_.size());
std::copy(buf_.begin(), std::next(buf_.begin(), tocopyfrombuf), buffer.begin());
buffer = buffer.subspan(tocopyfrombuf);
totalread += tocopyfrombuf;
// Move the remaining buffer backwards
std::size_t bufremaining = buf_.size() - tocopyfrombuf;
std::move(std::next(buf_.begin(), tocopyfrombuf), buf_.end(), buf_.begin());
buf_.resize(bufremaining);
// If we read 0 bytes from the stream, assume the inner stream won't return more for a while.
// The caller can read in a loop if it must (i.e. read_exact)
if (bytesread == 0)
{
break;
}
}
return totalread;
}
I&& stream() noexcept
{
return std::move(inner_);
}
};
extern template class BufferedInputStream<FileStream>;
// Utility functions
template <typename I, typename O>
StreamSize pipe_all(I& input, O& output) {
std::vector<std::byte> buf;
StreamSize total_written = 0;
StreamSize read_this_time = 0;
do {
buf.clear();
buf.resize(2048);
read_this_time = input.read(tcb::make_span(buf));
buf.resize(read_this_time);
write_exact(output, tcb::make_span(buf));
total_written += read_this_time;
} while (read_this_time != 0);
return total_written;
}
template <typename I>
std::vector<std::byte> read_to_vec(I& input) {
VecStream out;
pipe_all(input, out);
return std::move(out.vector());
}
// Instantiated templates
extern template class ZlibInputStream<SpanStream>;
extern template class ZlibInputStream<VecStream>;
} // namespace srb2::io
#endif // __SRB2_IO_STREAMS_HPP__