mirror of
https://github.com/KartKrewDev/RingRacers.git
synced 2025-10-30 08:01:28 +00:00
272 lines
6 KiB
C++
272 lines
6 KiB
C++
// DR. ROBOTNIK'S RING RACERS
|
|
//-----------------------------------------------------------------------------
|
|
// Copyright (C) 2025 by James Robert Roman
|
|
// Copyright (C) 2025 by Kart Krew
|
|
//
|
|
// This program is free software distributed under the
|
|
// terms of the GNU General Public License, version 2.
|
|
// See the 'LICENSE' file for more details.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include <algorithm>
|
|
#include <optional>
|
|
|
|
#include "p_sweep.hpp"
|
|
|
|
using namespace srb2::math;
|
|
using namespace srb2::sweep;
|
|
|
|
Result SlopeAABBvsLine::vs_slope(const line_segment& l) const
|
|
{
|
|
auto [a, b] = l.by_x(); // left, right
|
|
LineEquation<unit> ql{l};
|
|
unit ls = copysign(kUnit, ql.m());
|
|
|
|
auto hit = [&, &a = a, &b = b](const vec2& k, unit xr, unit x, const vec2& n) -> Contact
|
|
{
|
|
std::optional<vec2> k2;
|
|
|
|
if (l.horizontal())
|
|
{
|
|
// Horizontal line: create second contact point on opposite corner.
|
|
// TODO: avoid duplicate point
|
|
k2 = vec2(std::clamp(x + xr, a.x, b.x), k.y);
|
|
}
|
|
|
|
return {time(x), n, k, k2};
|
|
};
|
|
|
|
auto slide = [&](const vec2& k, const vec2& s) -> std::optional<Contact>
|
|
{
|
|
vec2 kf = k * s;
|
|
vec2 r = r_ * s;
|
|
vec2 p = k - r;
|
|
|
|
// Slide vertically along AABB left/right edge.
|
|
unit f = q_.y(p.x) * s.y;
|
|
|
|
if (f - r_ > kf.y)
|
|
{
|
|
// Out of bounds detection.
|
|
// This should never slide in front.
|
|
// If it does, there was never a hit.
|
|
return {};
|
|
}
|
|
|
|
if (f + r_ < kf.y)
|
|
{
|
|
// Slid behind contact point.
|
|
// Try sliding horizontally along AABB top/bottom
|
|
// edge.
|
|
|
|
if (q_.m() == kZero)
|
|
{
|
|
// Sweep is horizontal.
|
|
// It is impossible to slide against a line's
|
|
// end by the X axis because the line segment
|
|
// lies on that axis.
|
|
return {};
|
|
}
|
|
|
|
p.x = q_.x(p.y);
|
|
f = p.x * s.x;
|
|
|
|
if (f - r_ > kf.x)
|
|
{
|
|
// Slid beyond contact point.
|
|
return {};
|
|
}
|
|
|
|
if (f + r_ < kf.x)
|
|
{
|
|
// Out of bounds detection.
|
|
// This should never slide behind.
|
|
// If it does, there was never a hit.
|
|
return {};
|
|
}
|
|
|
|
return hit(k, r.x, p.x, {kZero, -s.y});
|
|
}
|
|
|
|
return hit(k, r.x, p.x, {-s.x, kZero});
|
|
};
|
|
|
|
// xrs.x = x radius
|
|
// xrs.y = x sign
|
|
auto bind = [&, &a = a, &b = b](const vec2& k, const vec2& xrs, unit ns) -> std::optional<Contact>
|
|
{
|
|
if (k.x < a.x)
|
|
{
|
|
return slide(a, {xrs.y, ls});
|
|
}
|
|
|
|
if (k.x > b.x)
|
|
{
|
|
return slide(b, {xrs.y, -ls});
|
|
}
|
|
|
|
return hit(k, xrs.x, k.x + xrs.x, normal(l) * ns);
|
|
};
|
|
|
|
if (ql.m() == q_.m())
|
|
{
|
|
// Parallel lines can only cross at the ends.
|
|
vec2 s{kUnit, ls};
|
|
return order(slide(a, s), slide(b, -s), ds_.x);
|
|
}
|
|
|
|
vec2 i = ql.intersect(q_);
|
|
|
|
// Compare slopes to determine if ray is moving upward or
|
|
// downward into line.
|
|
// For a positive line, AABB top left corner hits the
|
|
// line first if the ray is moving upward.
|
|
// Swap diagonal corners to bottom right if moving
|
|
// downward.
|
|
unit ys = q_.m() * ds_.x < ql.m() * ds_.x ? -kUnit : kUnit;
|
|
unit yr = r_ * ys;
|
|
|
|
// Swap left/right corners if line is negative.
|
|
unit xr = yr * ls;
|
|
|
|
// Intersection as if ray were offset -r, +r.
|
|
vec2 v = [&]
|
|
{
|
|
unit y = (q_.m() * xr) + yr;
|
|
unit x = y / (ql.m() - q_.m());
|
|
return vec2 {x, (x * q_.m()) + y};
|
|
}();
|
|
|
|
// Find the intersection along diagonally oppposing AABB
|
|
// corners.
|
|
vec2 xrs{xr, ds_.x};
|
|
return {bind(i + v, xrs, -ys), bind(i - v, -xrs, -ys)};
|
|
}
|
|
|
|
// TODO: Comments. Bitch.
|
|
Result SlopeAABBvsLine::vs_vertical(const line_segment& l) const
|
|
{
|
|
auto [a, b] = l.by_y(); // bottom, top
|
|
|
|
auto hit = [&](const vec2& p, std::optional<vec2> q, unit x, const vec2& n) -> Contact { return {time(x), n, p, q}; };
|
|
|
|
auto bind = [&](const vec2& k, const vec2& a, const vec2& b, const vec2& s, auto limit) -> std::optional<Contact>
|
|
{
|
|
vec2 r = r_ * s;
|
|
vec2 af = a * s;
|
|
unit kyf = k.y * s.y;
|
|
|
|
if (kyf + r_ < af.y)
|
|
{
|
|
if (q_.m() == kZero)
|
|
{
|
|
return {};
|
|
}
|
|
|
|
unit x = q_.x(a.y - r.y);
|
|
|
|
if ((x * s.x) - r_ > af.x)
|
|
{
|
|
return {};
|
|
}
|
|
|
|
return hit(a, {}, x, {kZero, -s.y});
|
|
}
|
|
|
|
// TODO: avoid duplicate point
|
|
vec2 k2{k.x, limit(k.y - r.y, a.y)};
|
|
unit byf = b.y * s.y;
|
|
vec2 n{-s.x, kZero};
|
|
|
|
if (kyf + r_ > byf)
|
|
{
|
|
if (kyf - r_ > byf)
|
|
{
|
|
return {};
|
|
}
|
|
|
|
return hit(b, k2, k.x - r.x, n);
|
|
}
|
|
|
|
return hit(vec2(k.x, k.y + r.y), k2, k.x - r.x, n);
|
|
};
|
|
|
|
vec2 i{a.x, q_.y(a.x)};
|
|
vec2 v{kZero, q_.m() * r_ * ds_.x * ds_.y};
|
|
vec2 s = ds_ * ds_.y;
|
|
|
|
// Damn you, template overloads!
|
|
auto min = [](unit x, unit y) { return std::min(x, y); };
|
|
auto max = [](unit x, unit y) { return std::max(x, y); };
|
|
|
|
return order(bind(i - v, a, b, s, max), bind(i + v, b, a, -s, min), ds_.y);
|
|
}
|
|
|
|
Result VerticalAABBvsLine::vs_slope(const line_segment& l) const
|
|
{
|
|
auto [a, b] = l.by_x(); // left, right
|
|
LineEquation<unit> ql{l};
|
|
|
|
auto hit = [&, &a = a, &b = b](const vec2& k, unit xr, unit y, const vec2& n) -> Contact
|
|
{
|
|
std::optional<vec2> k2;
|
|
|
|
if (l.horizontal())
|
|
{
|
|
// Horizontal line: create second contact point on opposite corner.
|
|
// TODO: avoid duplicate point
|
|
k2 = vec2(std::clamp(x_ + xr, a.x, b.x), k.y);
|
|
}
|
|
|
|
return {time(y), n, k, k2};
|
|
};
|
|
|
|
auto bind = [&](const vec2& a, const vec2& b, const vec2& s) -> std::optional<Contact>
|
|
{
|
|
vec2 r = r_ * s;
|
|
unit xf = x_ * s.x;
|
|
|
|
if (xf - r_ > b.x * s.x)
|
|
{
|
|
return {};
|
|
}
|
|
|
|
unit axf = a.x * s.x;
|
|
|
|
if (xf - r_ < axf)
|
|
{
|
|
if (xf + r_ < axf)
|
|
{
|
|
return {};
|
|
}
|
|
|
|
return hit(a, r.x, a.y - r.y, {kZero, -s.y});
|
|
}
|
|
|
|
vec2 i{x_, ql.y(x_)};
|
|
vec2 v{r.x, ql.m() * r.x};
|
|
vec2 k = i - v;
|
|
return hit(k, r.x, k.y - r.y, normal(l) * -s.y);
|
|
};
|
|
|
|
unit mys = copysign(kUnit, ql.m() * ds_.y);
|
|
vec2 s{kUnit, ds_.y * mys};
|
|
return order(bind(a, b, s), bind(b, a, -s), mys);
|
|
}
|
|
|
|
Result VerticalAABBvsLine::vs_vertical(const line_segment& l) const
|
|
{
|
|
// Box does not overlap Y plane.
|
|
if (x_ + r_ < l.a.x || x_ - r_ > l.a.x)
|
|
{
|
|
return {};
|
|
}
|
|
|
|
auto [a, b] = l.by_y(); // bottom, top
|
|
|
|
auto hit = [&](const vec2& k, unit yr) -> Contact { return {time(k.y + yr), {kZero, -ds_.y}, k}; };
|
|
|
|
// Offset away from line ends.
|
|
// Contacts are opposite when swept downward.
|
|
return order(hit(a, -r_), hit(b, r_), ds_.y);
|
|
}
|