RingRacers/src/r_plane.cpp
Sal c615a4fbad Sky offsets
Both X and Y offsets work on sky textures now. Old incorrect offset has been removed, so old skies lined up with the horizon special should be set to +16 Y offset.
2024-01-07 18:29:41 -05:00

1338 lines
34 KiB
C++

// SONIC ROBO BLAST 2
//-----------------------------------------------------------------------------
// Copyright (C) 1993-1996 by id Software, Inc.
// Copyright (C) 1998-2000 by DooM Legacy Team.
// Copyright (C) 1999-2021 by Sonic Team Junior.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file r_plane.c
/// \brief Here is a core component: drawing the floors and ceilings,
/// while maintaining a per column clipping list only.
/// Moreover, the sky areas have to be determined.
#include <tracy/tracy/Tracy.hpp>
#include "command.h"
#include "doomdef.h"
#include "console.h"
#include "g_game.h"
#include "p_setup.h" // levelflats
#include "p_slopes.h"
#include "r_fps.h"
#include "r_data.h"
#include "r_textures.h"
#include "r_local.h"
#include "r_state.h"
#include "r_splats.h" // faB(21jan):testing
#include "r_sky.h"
#include "r_portal.h"
#include "core/thread_pool.h"
#include "v_video.h"
#include "w_wad.h"
#include "z_zone.h"
#include "p_tick.h"
extern "C" consvar_t cv_debugfinishline;
//
// opening
//
// Quincunx antialiasing of flats!
//#define QUINCUNX
//SoM: 3/23/2000: Use Boom visplane hashing.
visplane_t *visplanes[MAXVISPLANES];
static visplane_t *freetail;
static visplane_t **freehead = &freetail;
visplane_t *floorplane;
visplane_t *ceilingplane;
visffloor_t ffloor[MAXFFLOORS];
INT32 numffloors;
//SoM: 3/23/2000: Boom visplane hashing routine.
#define visplane_hash(picnum,lightlevel,height) \
((unsigned)((picnum)*3+(lightlevel)+(height)*7) & VISPLANEHASHMASK)
//SoM: 3/23/2000: Use boom opening limit removal
size_t maxopenings;
INT16 *openings, *lastopening; /// \todo free leak
//
// Clip values are the solid pixel bounding the range.
// floorclip starts out SCREENHEIGHT
// ceilingclip starts out -1
//
INT16 floorclip[MAXVIDWIDTH], ceilingclip[MAXVIDWIDTH];
fixed_t frontscale[MAXVIDWIDTH];
//
// spanstart holds the start of a plane span
// initialized to 0 at start
//
static INT32 spanstart[MAXVIDHEIGHT];
//
// texture mapping
//
//added : 10-02-98: yslopetab is what yslope used to be,
// yslope points somewhere into yslopetab,
// now (viewheight/2) slopes are calculated above and
// below the original viewheight for mouselook
// (this is to calculate yslopes only when really needed)
// (when mouselookin', yslope is moving into yslopetab)
// Check R_SetupFrame, R_SetViewSize for more...
fixed_t yslopetab[MAXSPLITSCREENPLAYERS][MAXVIDHEIGHT*16];
fixed_t *yslope;
//
// R_InitPlanes
// Only at game startup.
//
void R_InitPlanes(void)
{
// FIXME: unused
}
// ripples da water texture
static fixed_t R_CalculateRippleOffset(drawspandata_t* ds, INT32 y)
{
fixed_t distance = FixedMul(ds->planeheight, yslope[y]);
const INT32 yay = (ds->planeripple.offset + (distance>>9)) & 8191;
return FixedDiv(FINESINE(yay), (1<<12) + (distance>>11));
}
static void R_CalculatePlaneRipple(drawspandata_t* ds, angle_t angle)
{
angle >>= ANGLETOFINESHIFT;
angle = (angle + 2048) & 8191; // 90 degrees
ds->planeripple.xfrac = FixedMul(FINECOSINE(angle), ds->bgofs);
ds->planeripple.yfrac = FixedMul(FINESINE(angle), ds->bgofs);
}
static void R_UpdatePlaneRipple(drawspandata_t* ds)
{
ds->waterofs = (leveltime & 1)*16384;
ds->planeripple.offset = (leveltime * 140);
}
static void R_SetSlopePlaneVectors(drawspandata_t* ds, visplane_t *pl, INT32 y, fixed_t xoff, fixed_t yoff);
static void R_MapPlane(drawspandata_t *ds, spandrawfunc_t *spanfunc, INT32 y, INT32 x1, INT32 x2, boolean allow_parallel)
{
ZoneScoped;
angle_t angle, planecos, planesin;
fixed_t distance = 0, span;
size_t pindex;
#ifdef RANGECHECK
if (x2 < x1 || x1 < 0 || x2 >= viewwidth || y > viewheight)
I_Error("R_MapPlane: %d, %d at %d", x1, x2, y);
#endif
if (x1 >= vid.width)
x1 = vid.width - 1;
angle = (ds->currentplane->viewangle + ds->currentplane->plangle)>>ANGLETOFINESHIFT;
planecos = FINECOSINE(angle);
planesin = FINESINE(angle);
distance = FixedMul(ds->planeheight, yslope[y]);
span = abs(centery - y);
if (span) // Don't divide by zero
{
ds->xstep = FixedMul(planesin, ds->planeheight) / span;
ds->ystep = FixedMul(planecos, ds->planeheight) / span;
}
else
ds->xstep = ds->ystep = FRACUNIT;
// [RH] Instead of using the xtoviewangle array, I calculated the fractional values
// at the middle of the screen, then used the calculated ds_xstep and ds_ystep
// to step from those to the proper texture coordinate to start drawing at.
// That way, the texture coordinate is always calculated by its position
// on the screen and not by its position relative to the edge of the visplane.
ds->xfrac = ds->xoffs + FixedMul(planecos, distance) + (x1 - centerx) * ds->xstep;
ds->yfrac = ds->yoffs - FixedMul(planesin, distance) + (x1 - centerx) * ds->ystep;
// Water ripple effect
if (ds->planeripple.active)
{
ds->bgofs = R_CalculateRippleOffset(ds, y);
R_CalculatePlaneRipple(ds, ds->currentplane->viewangle + ds->currentplane->plangle);
ds->xfrac += ds->planeripple.xfrac;
ds->yfrac += ds->planeripple.yfrac;
ds->bgofs >>= FRACBITS;
if ((y + ds->bgofs) >= viewheight)
ds->bgofs = viewheight-y-1;
if ((y + ds->bgofs) < 0)
ds->bgofs = -y;
}
if (ds->flatlighting)
{
ds->colormap = ds->flatlighting;
}
else
{
pindex = distance >> LIGHTZSHIFT;
if (pindex >= MAXLIGHTZ)
pindex = MAXLIGHTZ - 1;
ds->colormap = ds->planezlight[pindex];
if (!debugrender_highlight)
{
if (ds->currentplane->extra_colormap)
ds->colormap = ds->currentplane->extra_colormap->colormap + (ds->colormap - colormaps);
ds->fullbright = colormaps;
if (encoremap && !ds->currentplane->noencore)
{
ds->colormap += COLORMAP_REMAPOFFSET;
ds->fullbright += COLORMAP_REMAPOFFSET;
}
}
}
ds->y = y;
ds->x1 = x1;
ds->x2 = x2;
spanfunc(ds);
}
static void R_MapTiltedPlane(drawspandata_t *ds, void(*spanfunc)(drawspandata_t*), INT32 y, INT32 x1, INT32 x2, boolean allow_parallel)
{
ZoneScoped;
#ifdef RANGECHECK
if (x2 < x1 || x1 < 0 || x2 >= viewwidth || y >= viewheight || y < 0)
I_Error("R_MapTiltedPlane: %d, %d at %d", x1, x2, y);
#endif
if (x1 >= vid.width)
x1 = vid.width - 1;
// Water ripple effect
if (ds->planeripple.active)
{
ds->bgofs = R_CalculateRippleOffset(ds, y);
R_SetTiltedSpan(ds, std::clamp(y, 0, viewheight));
R_CalculatePlaneRipple(ds, ds->currentplane->viewangle + ds->currentplane->plangle);
R_SetSlopePlaneVectors(ds, ds->currentplane, y, (ds->xoffs + ds->planeripple.xfrac), (ds->yoffs + ds->planeripple.yfrac));
ds->bgofs >>= FRACBITS;
if ((y + ds->bgofs) >= viewheight)
ds->bgofs = viewheight-y-1;
if ((y + ds->bgofs) < 0)
ds->bgofs = -y;
}
if (ds->currentplane->extra_colormap)
ds->colormap = ds->currentplane->extra_colormap->colormap;
else
ds->colormap = colormaps;
ds->fullbright = colormaps;
if (encoremap && !ds->currentplane->noencore)
{
ds->colormap += COLORMAP_REMAPOFFSET;
ds->fullbright += COLORMAP_REMAPOFFSET;
}
ds->y = y;
ds->x1 = x1;
ds->x2 = x2;
spanfunc(ds);
}
void R_ClearFFloorClips (void)
{
INT32 i, p;
// opening / clipping determination
for (i = 0; i < viewwidth; i++)
{
for (p = 0; p < MAXFFLOORS; p++)
{
ffloor[p].f_clip[i] = (INT16)viewheight;
ffloor[p].c_clip[i] = -1;
}
}
numffloors = 0;
}
//
// R_ClearPlanes
// At begining of frame.
//
void R_ClearPlanes(void)
{
INT32 i, p;
// opening / clipping determination
for (i = 0; i < viewwidth; i++)
{
floorclip[i] = (INT16)viewheight;
ceilingclip[i] = -1;
frontscale[i] = INT32_MAX;
for (p = 0; p < MAXFFLOORS; p++)
{
ffloor[p].f_clip[i] = (INT16)viewheight;
ffloor[p].c_clip[i] = -1;
}
}
for (i = 0; i < MAXVISPLANES; i++)
for (*freehead = visplanes[i], visplanes[i] = NULL;
freehead && *freehead ;)
{
freehead = &(*freehead)->next;
}
lastopening = openings;
}
static visplane_t *new_visplane(unsigned hash)
{
visplane_t *check = freetail;
if (!check)
{
check = static_cast<visplane_t*>(calloc(1, sizeof (*check)));
if (check == NULL) I_Error("%s: Out of memory", "new_visplane"); // FIXME: ugly
}
else
{
freetail = freetail->next;
if (!freetail)
freehead = &freetail;
}
check->next = visplanes[hash];
visplanes[hash] = check;
g_renderstats.visplanes++;
return check;
}
//
// R_FindPlane: Seek a visplane having the identical values:
// Same height, same flattexture, same lightlevel.
// If not, allocates another of them.
//
visplane_t *R_FindPlane(fixed_t height, INT32 picnum, INT32 lightlevel,
fixed_t xoff, fixed_t yoff, angle_t plangle, extracolormap_t *planecolormap,
ffloor_t *pfloor, polyobj_t *polyobj, pslope_t *slope, boolean noencore,
boolean ripple, boolean reverseLight, const sector_t *lighting_sector,
sectordamage_t damage)
{
visplane_t *check;
unsigned hash;
if (!cv_debugfinishline.value)
{
damage = SD_NONE;
}
if (!slope) // Don't mess with this right now if a slope is involved
{
if (plangle != 0)
{
// Must use 64-bit math to avoid an overflow!
INT64 vx = xoff + viewx;
INT64 vy = yoff - viewy;
// Add the view offset, rotated by the plane angle.
float ang = ANG2RAD(plangle);
float x = vx / (float)FRACUNIT;
float y = vy / (float)FRACUNIT;
vx = (x * cos(ang) + y * sin(ang)) * FRACUNIT;
vy = (-x * sin(ang) + y * cos(ang)) * FRACUNIT;
xoff = vx;
yoff = vy;
}
else
{
xoff += viewx;
yoff -= viewy;
}
}
if (polyobj)
{
if (polyobj->angle != 0)
{
float ang = ANG2RAD(polyobj->angle);
float x = FixedToFloat(polyobj->centerPt.x);
float y = FixedToFloat(polyobj->centerPt.y);
xoff -= FloatToFixed(x * cos(ang) + y * sin(ang));
yoff -= FloatToFixed(x * sin(ang) - y * cos(ang));
}
else
{
xoff -= polyobj->centerPt.x;
yoff += polyobj->centerPt.y;
}
}
if (slope != NULL && P_ApplyLightOffset(lightlevel >> LIGHTSEGSHIFT, lighting_sector))
{
if (reverseLight && maplighting.directional == true)
{
lightlevel -= slope->lightOffset * 8;
}
else
{
lightlevel += slope->lightOffset * 8;
}
}
// This appears to fix the Nimbus Ruins sky bug.
if (picnum == skyflatnum && pfloor)
{
height = 0; // all skies map together
lightlevel = 0;
}
if (!pfloor)
{
hash = visplane_hash(picnum, lightlevel, height);
for (check = visplanes[hash]; check; check = check->next)
{
if (polyobj != check->polyobj)
continue;
if (height == check->height && picnum == check->picnum
&& lightlevel == check->lightlevel
&& xoff == check->xoffs && yoff == check->yoffs
&& planecolormap == check->extra_colormap
&& check->viewx == viewx && check->viewy == viewy && check->viewz == viewz
&& check->viewangle == viewangle
&& check->plangle == plangle
&& check->slope == slope
&& check->noencore == noencore
&& check->ripple == ripple
&& check->damage == damage)
{
return check;
}
}
}
else
{
hash = MAXVISPLANES - 1;
}
check = new_visplane(hash);
check->height = height;
check->picnum = picnum;
check->lightlevel = lightlevel;
check->minx = vid.width;
check->maxx = -1;
check->xoffs = xoff;
check->yoffs = yoff;
check->extra_colormap = planecolormap;
check->ffloor = pfloor;
check->viewx = viewx;
check->viewy = viewy;
check->viewz = viewz;
check->viewangle = viewangle;
check->plangle = plangle;
check->polyobj = polyobj;
check->slope = slope;
check->noencore = noencore;
check->ripple = ripple;
check->damage = damage;
memset(check->top, 0xff, sizeof (check->top));
memset(check->bottom, 0x00, sizeof (check->bottom));
return check;
}
//
// R_CheckPlane: return same visplane or alloc a new one if needed
//
visplane_t *R_CheckPlane(visplane_t *pl, INT32 start, INT32 stop)
{
INT32 intrl, intrh;
INT32 unionl, unionh;
INT32 x;
if (start < pl->minx)
{
intrl = pl->minx;
unionl = start;
}
else
{
unionl = pl->minx;
intrl = start;
}
if (stop > pl->maxx)
{
intrh = pl->maxx;
unionh = stop;
}
else
{
unionh = pl->maxx;
intrh = stop;
}
// 0xff is not equal to -1 with shorts...
for (x = intrl; x <= intrh; x++)
if (pl->top[x] != 0xffff || pl->bottom[x] != 0x0000)
break;
if (x > intrh) /* Can use existing plane; extend range */
{
pl->minx = unionl;
pl->maxx = unionh;
}
else /* Cannot use existing plane; create a new one */
{
visplane_t *new_pl;
if (pl->ffloor)
{
new_pl = new_visplane(MAXVISPLANES - 1);
}
else
{
unsigned hash =
visplane_hash(pl->picnum, pl->lightlevel, pl->height);
new_pl = new_visplane(hash);
}
new_pl->height = pl->height;
new_pl->picnum = pl->picnum;
new_pl->lightlevel = pl->lightlevel;
new_pl->xoffs = pl->xoffs;
new_pl->yoffs = pl->yoffs;
new_pl->extra_colormap = pl->extra_colormap;
new_pl->ffloor = pl->ffloor;
new_pl->viewx = pl->viewx;
new_pl->viewy = pl->viewy;
new_pl->viewz = pl->viewz;
new_pl->viewangle = pl->viewangle;
new_pl->plangle = pl->plangle;
new_pl->polyobj = pl->polyobj;
new_pl->slope = pl->slope;
new_pl->noencore = pl->noencore;
new_pl->ripple = pl->ripple;
new_pl->damage = pl->damage;
pl = new_pl;
pl->minx = start;
pl->maxx = stop;
memset(pl->top, 0xff, sizeof pl->top);
memset(pl->bottom, 0x00, sizeof pl->bottom);
}
return pl;
}
//
// R_ExpandPlane
//
// This function basically expands the visplane.
// The reason for this is that when creating 3D floor planes, there is no
// need to create new ones with R_CheckPlane, because 3D floor planes
// are created by subsector and there is no way a subsector can graphically
// overlap.
void R_ExpandPlane(visplane_t *pl, INT32 start, INT32 stop)
{
// Don't expand polyobject planes here - we do that on our own.
if (pl->polyobj)
return;
if (pl->minx > start) pl->minx = start;
if (pl->maxx < stop) pl->maxx = stop;
}
static void R_MakeSpans(void (*mapfunc)(drawspandata_t* ds, void(*spanfunc)(drawspandata_t*), INT32, INT32, INT32, boolean), spandrawfunc_t* spanfunc, drawspandata_t* ds, INT32 x, INT32 t1, INT32 b1, INT32 t2, INT32 b2, boolean allow_parallel)
{
ZoneScoped;
// Alam: from r_splats's R_RasterizeFloorSplat
if (t1 >= vid.height) t1 = vid.height-1;
if (b1 >= vid.height) b1 = vid.height-1;
if (t2 >= vid.height) t2 = vid.height-1;
if (b2 >= vid.height) b2 = vid.height-1;
if (x-1 >= vid.width) x = vid.width;
// We want to draw N spans per subtask to ensure the work is
// coarse enough to not be too slow due to task scheduling overhead.
// To safely do this, we need to copy part of spanstart to a local.
// This is essentially loop unrolling across threads.
constexpr const int kSpanTaskGranularity = 8;
drawspandata_t dc_copy = *ds;
while (t1 < t2 && t1 <= b1)
{
INT32 spanstartcopy[kSpanTaskGranularity] = {0};
INT32 taskspans = 0;
for (int i = 0; i < kSpanTaskGranularity; i++)
{
if (!((t1 + i) < t2 && (t1 + i) <= b1))
{
break;
}
spanstartcopy[i] = spanstart[t1 + i];
taskspans += 1;
}
auto task = [=]() mutable -> void {
for (int i = 0; i < taskspans; i++)
{
mapfunc(&dc_copy, spanfunc, t1 + i, spanstartcopy[i], x - 1, false);
}
};
if (allow_parallel)
{
srb2::g_main_threadpool->schedule(std::move(task));
}
else
{
(task)();
}
t1 += taskspans;
}
while (b1 > b2 && b1 >= t1)
{
INT32 spanstartcopy[kSpanTaskGranularity] = {0};
INT32 taskspans = 0;
for (int i = 0; i < kSpanTaskGranularity; i++)
{
if (!((b1 - i) > b2 && (b1 - i) >= t1))
{
break;
}
spanstartcopy[i] = spanstart[b1 - i];
taskspans += 1;
}
auto task = [=]() mutable -> void {
for (int i = 0; i < taskspans; i++)
{
mapfunc(&dc_copy, spanfunc, b1 - i, spanstartcopy[i], x - 1, false);
}
};
if (allow_parallel)
{
srb2::g_main_threadpool->schedule(std::move(task));
}
else
{
(task)();
}
b1 -= taskspans;
}
while (t2 < t1 && t2 <= b2)
spanstart[t2++] = x;
while (b2 > b1 && b2 >= t2)
spanstart[b2--] = x;
}
void R_DrawPlanes(void)
{
visplane_t *pl;
INT32 i;
drawspandata_t ds {0};
ZoneScoped;
R_UpdatePlaneRipple(&ds);
for (i = 0; i < MAXVISPLANES; i++, pl++)
{
for (pl = visplanes[i]; pl; pl = pl->next)
{
if (pl->ffloor != NULL || pl->polyobj != NULL)
continue;
R_DrawSinglePlane(&ds, pl, true);
}
}
}
// R_DrawSkyPlane
//
// Draws the sky within the plane's top/bottom bounds
// Note: this uses column drawers instead of span drawers, since the sky is always a texture
//
static void R_DrawSkyPlane(visplane_t *pl, void(*colfunc)(drawcolumndata_t*), boolean allow_parallel)
{
INT32 x;
drawcolumndata_t dc {0};
ZoneScoped;
R_CheckDebugHighlight(SW_HI_SKY);
// Reset column drawer function (note: couldn't we just call walldrawerfunc directly?)
// (that is, unless we'll need to switch drawers in future for some reason)
R_SetColumnFunc(BASEDRAWFUNC, false);
// use correct aspect ratio scale
dc.iscale = skyscale[viewssnum];
// Sky is always drawn full bright,
// i.e. colormaps[0] is used.
// Because of this hack, sky is not affected
// by sector colormaps (INVUL inverse mapping is not implemented in SRB2 so is irrelevant).
dc.colormap = colormaps;
dc.fullbright = colormaps;
if (encoremap)
{
dc.colormap += COLORMAP_REMAPOFFSET;
dc.fullbright += COLORMAP_REMAPOFFSET;
}
dc.lightmap = colormaps;
dc.texturemid = skytexturemid;
dc.texheight = textureheight[skytexture]
>>FRACBITS;
x = pl->minx;
// Precache the texture so we don't corrupt the zoned heap off-main thread
if (!texturecache[texturetranslation[skytexture]])
{
R_GenerateTexture(texturetranslation[skytexture]);
}
while (x <= pl->maxx)
{
// Tune concurrency granularity here to maximize throughput
// The cheaper colfunc is, the more coarse the task should be
constexpr const int kSkyPlaneMacroColumns = 8;
auto thunk = [=]() mutable -> void {
for (int i = 0; i < kSkyPlaneMacroColumns && i + x <= pl->maxx; i++)
{
dc.yl = pl->top[x + i];
dc.yh = pl->bottom[x + i];
if (dc.yl > dc.yh)
{
continue;
}
INT32 angle = (pl->viewangle + xtoviewangle[viewssnum][x + i])>>ANGLETOSKYSHIFT;
angle -= (skytextureoffset >> FRACBITS);
dc.iscale = FixedMul(skyscale[viewssnum], FINECOSINE(xtoviewangle[viewssnum][x + i]>>ANGLETOFINESHIFT));
dc.x = x + i;
dc.source =
R_GetColumn(texturetranslation[skytexture],
-angle); // get negative of angle for each column to display sky correct way round! --Monster Iestyn 27/01/18
dc.brightmap = NULL;
colfunc(&dc);
}
};
if (allow_parallel)
{
srb2::g_main_threadpool->schedule(std::move(thunk));
}
else
{
(thunk)();
}
x += kSkyPlaneMacroColumns;
}
}
// Returns the height of the sloped plane at (x, y) as a 32.16 fixed_t
static INT64 R_GetSlopeZAt(const pslope_t *slope, fixed_t x, fixed_t y)
{
INT64 x64 = ((INT64)x - (INT64)slope->o.x);
INT64 y64 = ((INT64)y - (INT64)slope->o.y);
x64 = (x64 * (INT64)slope->d.x) / FRACUNIT;
y64 = (y64 * (INT64)slope->d.y) / FRACUNIT;
return (INT64)slope->o.z + ((x64 + y64) * (INT64)slope->zdelta) / FRACUNIT;
}
// Sets the texture origin vector of the sloped plane.
static void R_SetSlopePlaneOrigin(drawspandata_t *ds, pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xoff, fixed_t yoff, fixed_t angle)
{
floatv3_t *p = &ds->slope_origin;
INT64 vx = (INT64)xpos + (INT64)xoff;
INT64 vy = (INT64)ypos - (INT64)yoff;
float vxf = vx / (float)FRACUNIT;
float vyf = vy / (float)FRACUNIT;
float ang = ANG2RAD(ANGLE_270 - angle);
// p is the texture origin in view space
// Don't add in the offsets at this stage, because doing so can result in
// errors if the flat is rotated.
p->x = vxf * cos(ang) - vyf * sin(ang);
p->z = vxf * sin(ang) + vyf * cos(ang);
p->y = (R_GetSlopeZAt(slope, -xoff, yoff) - zpos) / (float)FRACUNIT;
}
// This function calculates all of the vectors necessary for drawing a sloped plane.
void R_SetSlopePlane(drawspandata_t* ds, pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xoff, fixed_t yoff, angle_t angle, angle_t plangle)
{
// Potentially override other stuff for now cus we're mean. :< But draw a slope plane!
// I copied ZDoom's code and adapted it to SRB2... -Red
floatv3_t *m = &ds->slope_v, *n = &ds->slope_u;
fixed_t height, temp;
float ang;
R_SetSlopePlaneOrigin(ds, slope, xpos, ypos, zpos, xoff, yoff, angle);
height = P_GetSlopeZAt(slope, xpos, ypos);
ds->zeroheight = FixedToFloat(height - zpos);
// m is the v direction vector in view space
ang = ANG2RAD(ANGLE_180 - (angle + plangle));
m->x = cos(ang);
m->z = sin(ang);
// n is the u direction vector in view space
n->x = sin(ang);
n->z = -cos(ang);
plangle >>= ANGLETOFINESHIFT;
temp = P_GetSlopeZAt(slope, xpos + FINESINE(plangle), ypos + FINECOSINE(plangle));
m->y = FixedToFloat(temp - height);
temp = P_GetSlopeZAt(slope, xpos + FINECOSINE(plangle), ypos - FINESINE(plangle));
n->y = FixedToFloat(temp - height);
}
// This function calculates all of the vectors necessary for drawing a sloped and scaled plane.
void R_SetScaledSlopePlane(drawspandata_t* ds, pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xs, fixed_t ys, fixed_t xoff, fixed_t yoff, angle_t angle, angle_t plangle)
{
floatv3_t *m = &ds->slope_v, *n = &ds->slope_u;
fixed_t height, temp;
float xscale = FixedToFloat(xs);
float yscale = FixedToFloat(ys);
float ang;
R_SetSlopePlaneOrigin(ds, slope, xpos, ypos, zpos, xoff, yoff, angle);
height = P_GetSlopeZAt(slope, xpos, ypos);
ds->zeroheight = FixedToFloat(height - zpos);
// m is the v direction vector in view space
ang = ANG2RAD(ANGLE_180 - (angle + plangle));
m->x = yscale * cos(ang);
m->z = yscale * sin(ang);
// n is the u direction vector in view space
n->x = xscale * sin(ang);
n->z = -xscale * cos(ang);
ang = ANG2RAD(plangle);
temp = P_GetSlopeZAt(slope, xpos + FloatToFixed(yscale * sin(ang)), ypos + FloatToFixed(yscale * cos(ang)));
m->y = FixedToFloat(temp - height);
temp = P_GetSlopeZAt(slope, xpos + FloatToFixed(xscale * cos(ang)), ypos - FloatToFixed(xscale * sin(ang)));
n->y = FixedToFloat(temp - height);
}
void R_CalculateSlopeVectors(drawspandata_t* ds)
{
float sfmult = 65536.f;
// Eh. I tried making this stuff fixed-point and it exploded on me. Here's a macro for the only floating-point vector function I recall using.
#define CROSS(d, v1, v2) \
d.x = (v1.y * v2.z) - (v1.z * v2.y);\
d.y = (v1.z * v2.x) - (v1.x * v2.z);\
d.z = (v1.x * v2.y) - (v1.y * v2.x)
CROSS(ds->sup, ds->slope_origin, ds->slope_v);
CROSS(ds->svp, ds->slope_origin, ds->slope_u);
CROSS(ds->szp, ds->slope_v, ds->slope_u);
#undef CROSS
ds->sup.z *= focallengthf[viewssnum];
ds->svp.z *= focallengthf[viewssnum];
ds->szp.z *= focallengthf[viewssnum];
// Premultiply the texture vectors with the scale factors
if (ds->powersoftwo)
sfmult *= (1 << ds->nflatshiftup);
ds->sup.x *= sfmult;
ds->sup.y *= sfmult;
ds->sup.z *= sfmult;
ds->svp.x *= sfmult;
ds->svp.y *= sfmult;
ds->svp.z *= sfmult;
}
void R_SetTiltedSpan(drawspandata_t* ds, INT32 span)
{
if (ds_su == NULL)
ds_su = static_cast<floatv3_t*>(Z_Calloc(sizeof(*ds_su) * vid.height, PU_STATIC, NULL));
if (ds_sv == NULL)
ds_sv = static_cast<floatv3_t*>(Z_Calloc(sizeof(*ds_sv) * vid.height, PU_STATIC, NULL));
if (ds_sz == NULL)
ds_sz = static_cast<floatv3_t*>(Z_Calloc(sizeof(*ds_sz) * vid.height, PU_STATIC, NULL));
ds->sup = ds_su[span];
ds->svp = ds_sv[span];
ds->szp = ds_sz[span];
}
static void R_SetSlopePlaneVectors(drawspandata_t* ds, visplane_t *pl, INT32 y, fixed_t xoff, fixed_t yoff)
{
R_SetTiltedSpan(ds, y);
R_SetSlopePlane(ds, pl->slope, pl->viewx, pl->viewy, pl->viewz, xoff, yoff, pl->viewangle, pl->plangle);
R_CalculateSlopeVectors(ds);
}
static inline void R_AdjustSlopeCoordinates(drawspandata_t* ds, vector3_t *origin)
{
const fixed_t modmask = ((1 << (32-ds->nflatshiftup)) - 1);
fixed_t ox = (origin->x & modmask);
fixed_t oy = -(origin->y & modmask);
ds->xoffs &= modmask;
ds->yoffs &= modmask;
ds->xoffs -= (origin->x - ox);
ds->yoffs += (origin->y + oy);
}
static inline void R_AdjustSlopeCoordinatesNPO2(drawspandata_t* ds, vector3_t *origin)
{
const fixed_t modmaskw = (ds->flatwidth << FRACBITS);
const fixed_t modmaskh = (ds->flatheight << FRACBITS);
fixed_t ox = (origin->x % modmaskw);
fixed_t oy = -(origin->y % modmaskh);
ds->xoffs %= modmaskw;
ds->yoffs %= modmaskh;
ds->xoffs -= (origin->x - ox);
ds->yoffs += (origin->y + oy);
}
void R_DrawSinglePlane(drawspandata_t *ds, visplane_t *pl, boolean allow_parallel)
{
levelflat_t *levelflat;
INT32 light = 0;
INT32 x, stop;
ffloor_t *rover;
INT32 type, spanfunctype = BASEDRAWFUNC;
debugrender_highlight_t debug = debugrender_highlight_t::SW_HI_PLANES;
void (*mapfunc)(drawspandata_t*, void(*)(drawspandata_t*), INT32, INT32, INT32, boolean) = R_MapPlane;
bool highlight = R_PlaneIsHighlighted(pl);
if (!(pl->minx <= pl->maxx))
return;
ZoneScoped;
R_UpdatePlaneRipple(ds);
// sky flat
if (pl->picnum == skyflatnum)
{
if (highlight)
{
drawcolumndata_t dc = {};
dc.r8_flatcolor = 35; // red
dc.lightmap = colormaps;
for (dc.x = pl->minx; dc.x <= pl->maxx; ++dc.x)
{
dc.yl = pl->top[dc.x];
dc.yh = pl->bottom[dc.x];
R_DrawColumn_Flat_8(&dc);
}
}
else
{
R_DrawSkyPlane(pl, colfunc, allow_parallel);
}
return;
}
ds->planeripple.active = false;
ds->brightmap = NULL;
R_SetSpanFunc(BASEDRAWFUNC, false, false);
if (pl->polyobj)
{
// Hacked up support for alpha value in software mode Tails 09-24-2002 (sidenote: ported to polys 10-15-2014, there was no time travel involved -Red)
if (pl->polyobj->translucency >= NUMTRANSMAPS)
return; // Don't even draw it
else if (pl->polyobj->translucency > 0)
{
spanfunctype = (pl->polyobj->flags & POF_SPLAT) ? SPANDRAWFUNC_TRANSSPLAT : SPANDRAWFUNC_TRANS;
ds->transmap = R_GetTranslucencyTable(pl->polyobj->translucency);
}
else if (pl->polyobj->flags & POF_SPLAT) // Opaque, but allow transparent flat pixels
spanfunctype = SPANDRAWFUNC_SPLAT;
if (pl->polyobj->translucency == 0 || (pl->extra_colormap && (pl->extra_colormap->flags & CMF_FOG)))
light = (pl->lightlevel >> LIGHTSEGSHIFT);
else
light = LIGHTLEVELS-1;
}
else
{
if (pl->ffloor)
{
// Don't draw planes that shouldn't be drawn.
for (rover = pl->ffloor->target->ffloors; rover; rover = rover->next)
{
if ((pl->ffloor->fofflags & FOF_CUTEXTRA) && (rover->fofflags & FOF_EXTRA))
{
if (pl->ffloor->fofflags & FOF_EXTRA)
{
// The plane is from an extra 3D floor... Check the flags so
// there are no undesired cuts.
if (((pl->ffloor->fofflags & (FOF_FOG|FOF_SWIMMABLE)) == (rover->fofflags & (FOF_FOG|FOF_SWIMMABLE)))
&& pl->height < *rover->topheight
&& pl->height > *rover->bottomheight)
return;
}
}
}
if (pl->ffloor->fofflags & FOF_TRANSLUCENT)
{
spanfunctype = (pl->ffloor->fofflags & FOF_SPLAT) ? SPANDRAWFUNC_TRANSSPLAT : SPANDRAWFUNC_TRANS;
// Hacked up support for alpha value in software mode Tails 09-24-2002
// ...unhacked by toaster 04-01-2021
if (!highlight)
{
INT32 trans = (10*((256+12) - pl->ffloor->alpha))/255;
if (trans >= 10)
return; // Don't even draw it
if (!(ds->transmap = R_GetBlendTable(pl->ffloor->blend, trans)))
spanfunctype = SPANDRAWFUNC_SPLAT; // Opaque, but allow transparent flat pixels
}
if ((spanfunctype == SPANDRAWFUNC_SPLAT) || (pl->extra_colormap && (pl->extra_colormap->flags & CMF_FOG)))
light = (pl->lightlevel >> LIGHTSEGSHIFT);
else
light = LIGHTLEVELS-1;
}
else if (pl->ffloor->fofflags & FOF_FOG)
{
spanfunctype = SPANDRAWFUNC_FOG;
light = (pl->lightlevel >> LIGHTSEGSHIFT);
}
else light = (pl->lightlevel >> LIGHTSEGSHIFT);
debug = SW_HI_FOFPLANES;
}
else
{
light = (pl->lightlevel >> LIGHTSEGSHIFT);
debug = SW_HI_PLANES;
}
#ifndef NOWATER
if (pl->ripple)
{
INT32 top, bottom;
ds->planeripple.active = true;
if (spanfunctype == SPANDRAWFUNC_TRANS)
{
spanfunctype = SPANDRAWFUNC_WATER;
// Copy the current scene, ugh
top = pl->high-8;
bottom = pl->low+8;
if (top < 0)
top = 0;
if (bottom > viewheight)
bottom = viewheight;
// Only copy the part of the screen we need
UINT8 i = R_GetViewNumber();
INT32 scrx = 0;
INT32 scry = top;
INT32 offset;
if (r_splitscreen == 1)
{
if (i & 1)
{
scry += viewheight;
}
}
else
{
if (i & 1)
{
scrx += viewwidth;
}
if (i / 2)
{
scry += viewheight;
}
}
offset = (scry*vid.width) + scrx;
// No idea if this works
VID_BlitLinearScreen(screens[0] + offset,
screens[1] + (top*vid.width), // intentionally not +offset
viewwidth, bottom-top,
vid.width, vid.width);
}
}
#endif
}
ds->currentplane = pl;
levelflat = &levelflats[pl->picnum];
/* :james: */
type = levelflat->type;
switch (type)
{
case LEVELFLAT_NONE:
return;
case LEVELFLAT_FLAT:
ds->source = (UINT8 *)R_GetFlat(levelflat->u.flat.lumpnum);
R_CheckFlatLength(ds, W_LumpLength(levelflat->u.flat.lumpnum));
// Raw flats always have dimensions that are powers-of-two numbers.
ds->powersoftwo = true;
break;
default:
ds->source = (UINT8 *)R_GetLevelFlat(ds, levelflat);
if (!ds->source)
return;
// Check if this texture or patch has power-of-two dimensions.
if (R_CheckPowersOfTwo(ds))
R_CheckFlatLength(ds, ds->flatwidth * ds->flatheight);
}
if (type == LEVELFLAT_TEXTURE)
{
// Get the span's brightmap.
// FLATS not supported, SORRY!!
INT32 bmNum = R_GetTextureBrightmap(levelflat->u.texture.num);
if (bmNum != 0)
{
// FIXME: This has the potential to read out of
// bounds if the brightmap texture is not as
// large as the flat.
ds->brightmap = (UINT8 *)R_GenerateTextureAsFlat(bmNum);
}
}
if (!pl->slope // Don't mess with angle on slopes! We'll handle this ourselves later
&& viewangle != pl->viewangle+pl->plangle)
{
viewangle = pl->viewangle+pl->plangle;
}
ds->xoffs = pl->xoffs;
ds->yoffs = pl->yoffs;
if (light >= LIGHTLEVELS)
light = LIGHTLEVELS-1;
if (light < 0)
light = 0;
light = R_AdjustLightLevel(light);
if (pl->slope)
{
mapfunc = R_MapTiltedPlane;
if (!pl->plangle)
{
if (ds->powersoftwo)
R_AdjustSlopeCoordinates(ds, &pl->slope->o);
else
R_AdjustSlopeCoordinatesNPO2(ds, &pl->slope->o);
}
if (ds->planeripple.active)
{
ds->planeheight = abs(P_GetSlopeZAt(pl->slope, pl->viewx, pl->viewy) - pl->viewz);
R_PlaneBounds(pl);
for (x = pl->high; x < pl->low; x++)
{
ds->bgofs = R_CalculateRippleOffset(ds, x);
R_CalculatePlaneRipple(ds, pl->viewangle + pl->plangle);
R_SetSlopePlaneVectors(ds, pl, x, (ds->xoffs + ds->planeripple.xfrac), (ds->yoffs + ds->planeripple.yfrac));
}
}
else
R_SetSlopePlaneVectors(ds, pl, 0, ds->xoffs, ds->yoffs);
switch (spanfunctype)
{
case SPANDRAWFUNC_WATER:
spanfunctype = SPANDRAWFUNC_TILTEDWATER;
break;
case SPANDRAWFUNC_TRANS:
spanfunctype = SPANDRAWFUNC_TILTEDTRANS;
break;
case SPANDRAWFUNC_SPLAT:
spanfunctype = SPANDRAWFUNC_TILTEDSPLAT;
break;
default:
spanfunctype = SPANDRAWFUNC_TILTED;
break;
}
ds->planezlight = scalelight[light];
}
else
{
ds->planeheight = abs(pl->height - pl->viewz);
ds->planezlight = zlight[light];
}
if (highlight && R_SetSpanFuncFlat(BASEDRAWFUNC))
{
ds->r8_flatcolor = 35; // red
ds->flatlighting = colormaps;
}
else
{
R_CheckDebugHighlight(debug);
// Use the correct span drawer depending on the powers-of-twoness
R_SetSpanFunc(spanfunctype, !ds->powersoftwo, ds->brightmap != NULL);
ds->flatlighting = NULL;
}
// set the maximum value for unsigned
pl->top[pl->maxx+1] = 0xffff;
pl->top[pl->minx-1] = 0xffff;
pl->bottom[pl->maxx+1] = 0x0000;
pl->bottom[pl->minx-1] = 0x0000;
stop = pl->maxx + 1;
for (x = pl->minx; x <= stop; x++)
R_MakeSpans(mapfunc, spanfunc, ds, x, pl->top[x-1], pl->bottom[x-1], pl->top[x], pl->bottom[x], allow_parallel);
/*
QUINCUNX anti-aliasing technique (sort of)
Normally, Quincunx antialiasing staggers pixels
in a 5-die pattern like so:
o o
o
o o
To simulate this, we offset the plane by
FRACUNIT/4 in each direction, and draw
at 50% translucency. The result is
a 'smoothing' of the texture while
using the palette colors.
*/
#ifdef QUINCUNX
if (spanfunc == spanfuncs[BASEDRAWFUNC])
{
INT32 i;
ds_transmap = R_GetTranslucencyTable(tr_trans50);
spanfunc = spanfuncs[SPANDRAWFUNC_TRANS];
for (i=0; i<4; i++)
{
xoffs = pl->xoffs;
yoffs = pl->yoffs;
switch(i)
{
case 0:
xoffs -= FRACUNIT/4;
yoffs -= FRACUNIT/4;
break;
case 1:
xoffs -= FRACUNIT/4;
yoffs += FRACUNIT/4;
break;
case 2:
xoffs += FRACUNIT/4;
yoffs -= FRACUNIT/4;
break;
case 3:
xoffs += FRACUNIT/4;
yoffs += FRACUNIT/4;
break;
}
ds->planeheight = abs(pl->height - pl->viewz);
if (light >= LIGHTLEVELS)
light = LIGHTLEVELS-1;
if (light < 0)
light = 0;
planezlight = zlight[light];
// set the maximum value for unsigned
pl->top[pl->maxx+1] = 0xffff;
pl->top[pl->minx-1] = 0xffff;
pl->bottom[pl->maxx+1] = 0x0000;
pl->bottom[pl->minx-1] = 0x0000;
stop = pl->maxx + 1;
for (x = pl->minx; x <= stop; x++)
R_MakeSpans(mapfunc, x, pl->top[x-1], pl->bottom[x-1],
pl->top[x], pl->bottom[x]);
}
}
#endif
}
void R_PlaneBounds(visplane_t *plane)
{
INT32 i;
INT32 hi, low;
hi = plane->top[plane->minx];
low = plane->bottom[plane->minx];
for (i = plane->minx + 1; i <= plane->maxx; i++)
{
if (plane->top[i] < hi)
hi = plane->top[i];
if (plane->bottom[i] > low)
low = plane->bottom[i];
}
plane->high = hi;
plane->low = low;
}
boolean R_PlaneIsHighlighted(const visplane_t *pl)
{
return pl->damage == SD_DEATHPIT || pl->damage == SD_INSTAKILL;
}