mirror of
				https://github.com/KartKrewDev/RingRacers.git
				synced 2025-10-30 08:01:28 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			19111 lines
		
	
	
	
		
			713 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			19111 lines
		
	
	
	
		
			713 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//
 | 
						|
// Copyright (c) 2017-2025 Advanced Micro Devices, Inc. All rights reserved.
 | 
						|
//
 | 
						|
// Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
// of this software and associated documentation files (the "Software"), to deal
 | 
						|
// in the Software without restriction, including without limitation the rights
 | 
						|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
// copies of the Software, and to permit persons to whom the Software is
 | 
						|
// furnished to do so, subject to the following conditions:
 | 
						|
//
 | 
						|
// The above copyright notice and this permission notice shall be included in
 | 
						|
// all copies or substantial portions of the Software.
 | 
						|
//
 | 
						|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 | 
						|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | 
						|
// THE SOFTWARE.
 | 
						|
//
 | 
						|
 | 
						|
#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
 | 
						|
#define AMD_VULKAN_MEMORY_ALLOCATOR_H
 | 
						|
 | 
						|
/** \mainpage Vulkan Memory Allocator
 | 
						|
 | 
						|
<b>Version 3.2.1</b>
 | 
						|
 | 
						|
Copyright (c) 2017-2025 Advanced Micro Devices, Inc. All rights reserved. \n
 | 
						|
License: MIT \n
 | 
						|
See also: [product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/),
 | 
						|
[repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
 | 
						|
 | 
						|
 | 
						|
<b>API documentation divided into groups:</b> [Topics](topics.html)
 | 
						|
 | 
						|
<b>General documentation chapters:</b>
 | 
						|
 | 
						|
- <b>User guide</b>
 | 
						|
  - \subpage quick_start
 | 
						|
    - [Project setup](@ref quick_start_project_setup)
 | 
						|
    - [Initialization](@ref quick_start_initialization)
 | 
						|
    - [Resource allocation](@ref quick_start_resource_allocation)
 | 
						|
  - \subpage choosing_memory_type
 | 
						|
    - [Usage](@ref choosing_memory_type_usage)
 | 
						|
    - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
 | 
						|
    - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
 | 
						|
    - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
 | 
						|
    - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)
 | 
						|
  - \subpage memory_mapping
 | 
						|
    - [Copy functions](@ref memory_mapping_copy_functions)
 | 
						|
    - [Mapping functions](@ref memory_mapping_mapping_functions)
 | 
						|
    - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
 | 
						|
    - [Cache flush and invalidate](@ref memory_mapping_cache_control)
 | 
						|
  - \subpage staying_within_budget
 | 
						|
    - [Querying for budget](@ref staying_within_budget_querying_for_budget)
 | 
						|
    - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage)
 | 
						|
  - \subpage resource_aliasing
 | 
						|
  - \subpage custom_memory_pools
 | 
						|
    - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
 | 
						|
    - [When not to use custom pools](@ref custom_memory_pools_when_not_use)
 | 
						|
    - [Linear allocation algorithm](@ref linear_algorithm)
 | 
						|
      - [Free-at-once](@ref linear_algorithm_free_at_once)
 | 
						|
      - [Stack](@ref linear_algorithm_stack)
 | 
						|
      - [Double stack](@ref linear_algorithm_double_stack)
 | 
						|
      - [Ring buffer](@ref linear_algorithm_ring_buffer)
 | 
						|
  - \subpage defragmentation
 | 
						|
  - \subpage statistics
 | 
						|
    - [Numeric statistics](@ref statistics_numeric_statistics)
 | 
						|
    - [JSON dump](@ref statistics_json_dump)
 | 
						|
  - \subpage allocation_annotation
 | 
						|
    - [Allocation user data](@ref allocation_user_data)
 | 
						|
    - [Allocation names](@ref allocation_names)
 | 
						|
  - \subpage virtual_allocator
 | 
						|
  - \subpage debugging_memory_usage
 | 
						|
    - [Memory initialization](@ref debugging_memory_usage_initialization)
 | 
						|
    - [Margins](@ref debugging_memory_usage_margins)
 | 
						|
    - [Corruption detection](@ref debugging_memory_usage_corruption_detection)
 | 
						|
    - [Leak detection features](@ref debugging_memory_usage_leak_detection)
 | 
						|
  - \subpage other_api_interop
 | 
						|
- \subpage usage_patterns
 | 
						|
    - [GPU-only resource](@ref usage_patterns_gpu_only)
 | 
						|
    - [Staging copy for upload](@ref usage_patterns_staging_copy_upload)
 | 
						|
    - [Readback](@ref usage_patterns_readback)
 | 
						|
    - [Advanced data uploading](@ref usage_patterns_advanced_data_uploading)
 | 
						|
    - [Other use cases](@ref usage_patterns_other_use_cases)
 | 
						|
- \subpage configuration
 | 
						|
  - [Pointers to Vulkan functions](@ref config_Vulkan_functions)
 | 
						|
  - [Custom host memory allocator](@ref custom_memory_allocator)
 | 
						|
  - [Device memory allocation callbacks](@ref allocation_callbacks)
 | 
						|
  - [Device heap memory limit](@ref heap_memory_limit)
 | 
						|
- <b>Extension support</b>
 | 
						|
    - \subpage vk_khr_dedicated_allocation
 | 
						|
    - \subpage enabling_buffer_device_address
 | 
						|
    - \subpage vk_ext_memory_priority
 | 
						|
    - \subpage vk_amd_device_coherent_memory
 | 
						|
    - \subpage vk_khr_external_memory_win32
 | 
						|
- \subpage general_considerations
 | 
						|
  - [Thread safety](@ref general_considerations_thread_safety)
 | 
						|
  - [Versioning and compatibility](@ref general_considerations_versioning_and_compatibility)
 | 
						|
  - [Validation layer warnings](@ref general_considerations_validation_layer_warnings)
 | 
						|
  - [Allocation algorithm](@ref general_considerations_allocation_algorithm)
 | 
						|
  - [Features not supported](@ref general_considerations_features_not_supported)
 | 
						|
 | 
						|
\defgroup group_init Library initialization
 | 
						|
 | 
						|
\brief API elements related to the initialization and management of the entire library, especially #VmaAllocator object.
 | 
						|
 | 
						|
\defgroup group_alloc Memory allocation
 | 
						|
 | 
						|
\brief API elements related to the allocation, deallocation, and management of Vulkan memory, buffers, images.
 | 
						|
Most basic ones being: vmaCreateBuffer(), vmaCreateImage().
 | 
						|
 | 
						|
\defgroup group_virtual Virtual allocator
 | 
						|
 | 
						|
\brief API elements related to the mechanism of \ref virtual_allocator - using the core allocation algorithm
 | 
						|
for user-defined purpose without allocating any real GPU memory.
 | 
						|
 | 
						|
\defgroup group_stats Statistics
 | 
						|
 | 
						|
\brief API elements that query current status of the allocator, from memory usage, budget, to full dump of the internal state in JSON format.
 | 
						|
See documentation chapter: \ref statistics.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
extern "C" {
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(VULKAN_H_)
 | 
						|
#include <vulkan/vulkan.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(VMA_VULKAN_VERSION)
 | 
						|
    #if defined(VK_VERSION_1_4)
 | 
						|
        #define VMA_VULKAN_VERSION 1004000
 | 
						|
    #elif defined(VK_VERSION_1_3)
 | 
						|
        #define VMA_VULKAN_VERSION 1003000
 | 
						|
    #elif defined(VK_VERSION_1_2)
 | 
						|
        #define VMA_VULKAN_VERSION 1002000
 | 
						|
    #elif defined(VK_VERSION_1_1)
 | 
						|
        #define VMA_VULKAN_VERSION 1001000
 | 
						|
    #else
 | 
						|
        #define VMA_VULKAN_VERSION 1000000
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS
 | 
						|
    extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr;
 | 
						|
    extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr;
 | 
						|
    extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
 | 
						|
    extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
 | 
						|
    extern PFN_vkAllocateMemory vkAllocateMemory;
 | 
						|
    extern PFN_vkFreeMemory vkFreeMemory;
 | 
						|
    extern PFN_vkMapMemory vkMapMemory;
 | 
						|
    extern PFN_vkUnmapMemory vkUnmapMemory;
 | 
						|
    extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;
 | 
						|
    extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;
 | 
						|
    extern PFN_vkBindBufferMemory vkBindBufferMemory;
 | 
						|
    extern PFN_vkBindImageMemory vkBindImageMemory;
 | 
						|
    extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
 | 
						|
    extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
 | 
						|
    extern PFN_vkCreateBuffer vkCreateBuffer;
 | 
						|
    extern PFN_vkDestroyBuffer vkDestroyBuffer;
 | 
						|
    extern PFN_vkCreateImage vkCreateImage;
 | 
						|
    extern PFN_vkDestroyImage vkDestroyImage;
 | 
						|
    extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer;
 | 
						|
    #if VMA_VULKAN_VERSION >= 1001000
 | 
						|
        extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2;
 | 
						|
        extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2;
 | 
						|
        extern PFN_vkBindBufferMemory2 vkBindBufferMemory2;
 | 
						|
        extern PFN_vkBindImageMemory2 vkBindImageMemory2;
 | 
						|
        extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2;
 | 
						|
    #endif // #if VMA_VULKAN_VERSION >= 1001000
 | 
						|
#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES
 | 
						|
 | 
						|
#if !defined(VMA_DEDICATED_ALLOCATION)
 | 
						|
    #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation
 | 
						|
        #define VMA_DEDICATED_ALLOCATION 1
 | 
						|
    #else
 | 
						|
        #define VMA_DEDICATED_ALLOCATION 0
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(VMA_BIND_MEMORY2)
 | 
						|
    #if VK_KHR_bind_memory2
 | 
						|
        #define VMA_BIND_MEMORY2 1
 | 
						|
    #else
 | 
						|
        #define VMA_BIND_MEMORY2 0
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(VMA_MEMORY_BUDGET)
 | 
						|
    #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000)
 | 
						|
        #define VMA_MEMORY_BUDGET 1
 | 
						|
    #else
 | 
						|
        #define VMA_MEMORY_BUDGET 0
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers.
 | 
						|
#if !defined(VMA_BUFFER_DEVICE_ADDRESS)
 | 
						|
    #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000
 | 
						|
        #define VMA_BUFFER_DEVICE_ADDRESS 1
 | 
						|
    #else
 | 
						|
        #define VMA_BUFFER_DEVICE_ADDRESS 0
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
// Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers.
 | 
						|
#if !defined(VMA_MEMORY_PRIORITY)
 | 
						|
    #if VK_EXT_memory_priority
 | 
						|
        #define VMA_MEMORY_PRIORITY 1
 | 
						|
    #else
 | 
						|
        #define VMA_MEMORY_PRIORITY 0
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
// Defined to 1 when VK_KHR_maintenance4 device extension is defined in Vulkan headers.
 | 
						|
#if !defined(VMA_KHR_MAINTENANCE4)
 | 
						|
    #if VK_KHR_maintenance4
 | 
						|
        #define VMA_KHR_MAINTENANCE4 1
 | 
						|
    #else
 | 
						|
        #define VMA_KHR_MAINTENANCE4 0
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
// Defined to 1 when VK_KHR_maintenance5 device extension is defined in Vulkan headers.
 | 
						|
#if !defined(VMA_KHR_MAINTENANCE5)
 | 
						|
    #if VK_KHR_maintenance5
 | 
						|
        #define VMA_KHR_MAINTENANCE5 1
 | 
						|
    #else
 | 
						|
        #define VMA_KHR_MAINTENANCE5 0
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
// Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers.
 | 
						|
#if !defined(VMA_EXTERNAL_MEMORY)
 | 
						|
    #if VK_KHR_external_memory
 | 
						|
        #define VMA_EXTERNAL_MEMORY 1
 | 
						|
    #else
 | 
						|
        #define VMA_EXTERNAL_MEMORY 0
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
// Defined to 1 when VK_KHR_external_memory_win32 device extension is defined in Vulkan headers.
 | 
						|
#if !defined(VMA_EXTERNAL_MEMORY_WIN32)
 | 
						|
    #if VK_KHR_external_memory_win32
 | 
						|
        #define VMA_EXTERNAL_MEMORY_WIN32 1
 | 
						|
    #else
 | 
						|
        #define VMA_EXTERNAL_MEMORY_WIN32 0
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
// Define these macros to decorate all public functions with additional code,
 | 
						|
// before and after returned type, appropriately. This may be useful for
 | 
						|
// exporting the functions when compiling VMA as a separate library. Example:
 | 
						|
// #define VMA_CALL_PRE  __declspec(dllexport)
 | 
						|
// #define VMA_CALL_POST __cdecl
 | 
						|
#ifndef VMA_CALL_PRE
 | 
						|
    #define VMA_CALL_PRE
 | 
						|
#endif
 | 
						|
#ifndef VMA_CALL_POST
 | 
						|
    #define VMA_CALL_POST
 | 
						|
#endif
 | 
						|
 | 
						|
// Define this macro to decorate pNext pointers with an attribute specifying the Vulkan
 | 
						|
// structure that will be extended via the pNext chain.
 | 
						|
#ifndef VMA_EXTENDS_VK_STRUCT
 | 
						|
    #define VMA_EXTENDS_VK_STRUCT(vkStruct)
 | 
						|
#endif
 | 
						|
 | 
						|
// Define this macro to decorate pointers with an attribute specifying the
 | 
						|
// length of the array they point to if they are not null.
 | 
						|
//
 | 
						|
// The length may be one of
 | 
						|
// - The name of another parameter in the argument list where the pointer is declared
 | 
						|
// - The name of another member in the struct where the pointer is declared
 | 
						|
// - The name of a member of a struct type, meaning the value of that member in
 | 
						|
//   the context of the call. For example
 | 
						|
//   VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"),
 | 
						|
//   this means the number of memory heaps available in the device associated
 | 
						|
//   with the VmaAllocator being dealt with.
 | 
						|
#ifndef VMA_LEN_IF_NOT_NULL
 | 
						|
    #define VMA_LEN_IF_NOT_NULL(len)
 | 
						|
#endif
 | 
						|
 | 
						|
// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang.
 | 
						|
// see: https://clang.llvm.org/docs/AttributeReference.html#nullable
 | 
						|
#ifndef VMA_NULLABLE
 | 
						|
    #ifdef __clang__
 | 
						|
        #define VMA_NULLABLE _Nullable
 | 
						|
    #else
 | 
						|
        #define VMA_NULLABLE
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang.
 | 
						|
// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull
 | 
						|
#ifndef VMA_NOT_NULL
 | 
						|
    #ifdef __clang__
 | 
						|
        #define VMA_NOT_NULL _Nonnull
 | 
						|
    #else
 | 
						|
        #define VMA_NOT_NULL
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
// If non-dispatchable handles are represented as pointers then we can give
 | 
						|
// then nullability annotations
 | 
						|
#ifndef VMA_NOT_NULL_NON_DISPATCHABLE
 | 
						|
    #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
 | 
						|
        #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL
 | 
						|
    #else
 | 
						|
        #define VMA_NOT_NULL_NON_DISPATCHABLE
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_NULLABLE_NON_DISPATCHABLE
 | 
						|
    #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
 | 
						|
        #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE
 | 
						|
    #else
 | 
						|
        #define VMA_NULLABLE_NON_DISPATCHABLE
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_STATS_STRING_ENABLED
 | 
						|
    #define VMA_STATS_STRING_ENABLED 1
 | 
						|
#endif
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//    INTERFACE
 | 
						|
//
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
// Sections for managing code placement in file, only for development purposes e.g. for convenient folding inside an IDE.
 | 
						|
#ifndef _VMA_ENUM_DECLARATIONS
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_init
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/// Flags for created #VmaAllocator.
 | 
						|
typedef enum VmaAllocatorCreateFlagBits
 | 
						|
{
 | 
						|
    /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
 | 
						|
 | 
						|
    Using this flag may increase performance because internal mutexes are not used.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
 | 
						|
    /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
 | 
						|
 | 
						|
    The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
 | 
						|
    When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
 | 
						|
 | 
						|
    Using this extension will automatically allocate dedicated blocks of memory for
 | 
						|
    some buffers and images instead of suballocating place for them out of bigger
 | 
						|
    memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
 | 
						|
    flag) when it is recommended by the driver. It may improve performance on some
 | 
						|
    GPUs.
 | 
						|
 | 
						|
    You may set this flag only if you found out that following device extensions are
 | 
						|
    supported, you enabled them while creating Vulkan device passed as
 | 
						|
    VmaAllocatorCreateInfo::device, and you want them to be used internally by this
 | 
						|
    library:
 | 
						|
 | 
						|
    - VK_KHR_get_memory_requirements2 (device extension)
 | 
						|
    - VK_KHR_dedicated_allocation (device extension)
 | 
						|
 | 
						|
    When this flag is set, you can experience following warnings reported by Vulkan
 | 
						|
    validation layer. You can ignore them.
 | 
						|
 | 
						|
    > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
 | 
						|
    /**
 | 
						|
    Enables usage of VK_KHR_bind_memory2 extension.
 | 
						|
 | 
						|
    The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
 | 
						|
    When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
 | 
						|
 | 
						|
    You may set this flag only if you found out that this device extension is supported,
 | 
						|
    you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
 | 
						|
    and you want it to be used internally by this library.
 | 
						|
 | 
						|
    The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`,
 | 
						|
    which allow to pass a chain of `pNext` structures while binding.
 | 
						|
    This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().
 | 
						|
    */
 | 
						|
    VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004,
 | 
						|
    /**
 | 
						|
    Enables usage of VK_EXT_memory_budget extension.
 | 
						|
 | 
						|
    You may set this flag only if you found out that this device extension is supported,
 | 
						|
    you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
 | 
						|
    and you want it to be used internally by this library, along with another instance extension
 | 
						|
    VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted).
 | 
						|
 | 
						|
    The extension provides query for current memory usage and budget, which will probably
 | 
						|
    be more accurate than an estimation used by the library otherwise.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008,
 | 
						|
    /**
 | 
						|
    Enables usage of VK_AMD_device_coherent_memory extension.
 | 
						|
 | 
						|
    You may set this flag only if you:
 | 
						|
 | 
						|
    - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
 | 
						|
    - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device,
 | 
						|
    - want it to be used internally by this library.
 | 
						|
 | 
						|
    The extension and accompanying device feature provide access to memory types with
 | 
						|
    `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags.
 | 
						|
    They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR.
 | 
						|
 | 
						|
    When the extension is not enabled, such memory types are still enumerated, but their usage is illegal.
 | 
						|
    To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type,
 | 
						|
    returning `VK_ERROR_FEATURE_NOT_PRESENT`.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010,
 | 
						|
    /**
 | 
						|
    Enables usage of "buffer device address" feature, which allows you to use function
 | 
						|
    `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader.
 | 
						|
 | 
						|
    You may set this flag only if you:
 | 
						|
 | 
						|
    1. (For Vulkan version < 1.2) Found as available and enabled device extension
 | 
						|
    VK_KHR_buffer_device_address.
 | 
						|
    This extension is promoted to core Vulkan 1.2.
 | 
						|
    2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`.
 | 
						|
 | 
						|
    When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA.
 | 
						|
    The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to
 | 
						|
    allocated memory blocks wherever it might be needed.
 | 
						|
 | 
						|
    For more information, see documentation chapter \ref enabling_buffer_device_address.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020,
 | 
						|
    /**
 | 
						|
    Enables usage of VK_EXT_memory_priority extension in the library.
 | 
						|
 | 
						|
    You may set this flag only if you found available and enabled this device extension,
 | 
						|
    along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`,
 | 
						|
    while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
 | 
						|
 | 
						|
    When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority
 | 
						|
    are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored.
 | 
						|
 | 
						|
    A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
 | 
						|
    Larger values are higher priority. The granularity of the priorities is implementation-dependent.
 | 
						|
    It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`.
 | 
						|
    The value to be used for default priority is 0.5.
 | 
						|
    For more details, see the documentation of the VK_EXT_memory_priority extension.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040,
 | 
						|
    /**
 | 
						|
    Enables usage of VK_KHR_maintenance4 extension in the library.
 | 
						|
 | 
						|
    You may set this flag only if you found available and enabled this device extension,
 | 
						|
    while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT = 0x00000080,
 | 
						|
    /**
 | 
						|
    Enables usage of VK_KHR_maintenance5 extension in the library.
 | 
						|
 | 
						|
    You should set this flag if you found available and enabled this device extension,
 | 
						|
    while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT = 0x00000100,
 | 
						|
 | 
						|
    /**
 | 
						|
    Enables usage of VK_KHR_external_memory_win32 extension in the library.
 | 
						|
 | 
						|
    You should set this flag if you found available and enabled this device extension,
 | 
						|
    while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
 | 
						|
    For more information, see \ref vk_khr_external_memory_win32.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATOR_CREATE_KHR_EXTERNAL_MEMORY_WIN32_BIT = 0x00000200,
 | 
						|
 | 
						|
    VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | 
						|
} VmaAllocatorCreateFlagBits;
 | 
						|
/// See #VmaAllocatorCreateFlagBits.
 | 
						|
typedef VkFlags VmaAllocatorCreateFlags;
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_alloc
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/// \brief Intended usage of the allocated memory.
 | 
						|
typedef enum VmaMemoryUsage
 | 
						|
{
 | 
						|
    /** No intended memory usage specified.
 | 
						|
    Use other members of VmaAllocationCreateInfo to specify your requirements.
 | 
						|
    */
 | 
						|
    VMA_MEMORY_USAGE_UNKNOWN = 0,
 | 
						|
    /**
 | 
						|
    \deprecated Obsolete, preserved for backward compatibility.
 | 
						|
    Prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
 | 
						|
    */
 | 
						|
    VMA_MEMORY_USAGE_GPU_ONLY = 1,
 | 
						|
    /**
 | 
						|
    \deprecated Obsolete, preserved for backward compatibility.
 | 
						|
    Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`.
 | 
						|
    */
 | 
						|
    VMA_MEMORY_USAGE_CPU_ONLY = 2,
 | 
						|
    /**
 | 
						|
    \deprecated Obsolete, preserved for backward compatibility.
 | 
						|
    Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
 | 
						|
    */
 | 
						|
    VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
 | 
						|
    /**
 | 
						|
    \deprecated Obsolete, preserved for backward compatibility.
 | 
						|
    Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`.
 | 
						|
    */
 | 
						|
    VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
 | 
						|
    /**
 | 
						|
    \deprecated Obsolete, preserved for backward compatibility.
 | 
						|
    Prefers not `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
 | 
						|
    */
 | 
						|
    VMA_MEMORY_USAGE_CPU_COPY = 5,
 | 
						|
    /**
 | 
						|
    Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`.
 | 
						|
    Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation.
 | 
						|
 | 
						|
    Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`.
 | 
						|
 | 
						|
    Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | 
						|
    */
 | 
						|
    VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6,
 | 
						|
    /**
 | 
						|
    Selects best memory type automatically.
 | 
						|
    This flag is recommended for most common use cases.
 | 
						|
 | 
						|
    When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
 | 
						|
    you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
 | 
						|
    in VmaAllocationCreateInfo::flags.
 | 
						|
 | 
						|
    It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
 | 
						|
    vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
 | 
						|
    and not with generic memory allocation functions.
 | 
						|
    */
 | 
						|
    VMA_MEMORY_USAGE_AUTO = 7,
 | 
						|
    /**
 | 
						|
    Selects best memory type automatically with preference for GPU (device) memory.
 | 
						|
 | 
						|
    When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
 | 
						|
    you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
 | 
						|
    in VmaAllocationCreateInfo::flags.
 | 
						|
 | 
						|
    It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
 | 
						|
    vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
 | 
						|
    and not with generic memory allocation functions.
 | 
						|
    */
 | 
						|
    VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE = 8,
 | 
						|
    /**
 | 
						|
    Selects best memory type automatically with preference for CPU (host) memory.
 | 
						|
 | 
						|
    When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
 | 
						|
    you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
 | 
						|
    in VmaAllocationCreateInfo::flags.
 | 
						|
 | 
						|
    It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
 | 
						|
    vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
 | 
						|
    and not with generic memory allocation functions.
 | 
						|
    */
 | 
						|
    VMA_MEMORY_USAGE_AUTO_PREFER_HOST = 9,
 | 
						|
 | 
						|
    VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
 | 
						|
} VmaMemoryUsage;
 | 
						|
 | 
						|
/// Flags to be passed as VmaAllocationCreateInfo::flags.
 | 
						|
typedef enum VmaAllocationCreateFlagBits
 | 
						|
{
 | 
						|
    /** \brief Set this flag if the allocation should have its own memory block.
 | 
						|
 | 
						|
    Use it for special, big resources, like fullscreen images used as attachments.
 | 
						|
 | 
						|
    If you use this flag while creating a buffer or an image, `VkMemoryDedicatedAllocateInfo`
 | 
						|
    structure is applied if possible.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
 | 
						|
 | 
						|
    /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
 | 
						|
 | 
						|
    If new allocation cannot be placed in any of the existing blocks, allocation
 | 
						|
    fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
 | 
						|
 | 
						|
    You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
 | 
						|
    #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
 | 
						|
    /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
 | 
						|
 | 
						|
    Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
 | 
						|
 | 
						|
    It is valid to use this flag for allocation made from memory type that is not
 | 
						|
    `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
 | 
						|
    useful if you need an allocation that is efficient to use on GPU
 | 
						|
    (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
 | 
						|
    support it (e.g. Intel GPU).
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
 | 
						|
    /** \deprecated Preserved for backward compatibility. Consider using vmaSetAllocationName() instead.
 | 
						|
 | 
						|
    Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
 | 
						|
    null-terminated string. Instead of copying pointer value, a local copy of the
 | 
						|
    string is made and stored in allocation's `pName`. The string is automatically
 | 
						|
    freed together with the allocation. It is also used in vmaBuildStatsString().
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
 | 
						|
    /** Allocation will be created from upper stack in a double stack pool.
 | 
						|
 | 
						|
    This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,
 | 
						|
    /** Create both buffer/image and allocation, but don't bind them together.
 | 
						|
    It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.
 | 
						|
    The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().
 | 
						|
    Otherwise it is ignored.
 | 
						|
 | 
						|
    If you want to make sure the new buffer/image is not tied to the new memory allocation
 | 
						|
    through `VkMemoryDedicatedAllocateInfoKHR` structure in case the allocation ends up in its own memory block,
 | 
						|
    use also flag #VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,
 | 
						|
    /** Create allocation only if additional device memory required for it, if any, won't exceed
 | 
						|
    memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100,
 | 
						|
    /** \brief Set this flag if the allocated memory will have aliasing resources.
 | 
						|
 | 
						|
    Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified.
 | 
						|
    Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200,
 | 
						|
    /**
 | 
						|
    Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
 | 
						|
 | 
						|
    - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
 | 
						|
      you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
 | 
						|
    - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
 | 
						|
      This includes allocations created in \ref custom_memory_pools.
 | 
						|
 | 
						|
    Declares that mapped memory will only be written sequentially, e.g. using `memcpy()` or a loop writing number-by-number,
 | 
						|
    never read or accessed randomly, so a memory type can be selected that is uncached and write-combined.
 | 
						|
 | 
						|
    \warning Violating this declaration may work correctly, but will likely be very slow.
 | 
						|
    Watch out for implicit reads introduced by doing e.g. `pMappedData[i] += x;`
 | 
						|
    Better prepare your data in a local variable and `memcpy()` it to the mapped pointer all at once.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT = 0x00000400,
 | 
						|
    /**
 | 
						|
    Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
 | 
						|
 | 
						|
    - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
 | 
						|
      you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
 | 
						|
    - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
 | 
						|
      This includes allocations created in \ref custom_memory_pools.
 | 
						|
 | 
						|
    Declares that mapped memory can be read, written, and accessed in random order,
 | 
						|
    so a `HOST_CACHED` memory type is preferred.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT = 0x00000800,
 | 
						|
    /**
 | 
						|
    Together with #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT,
 | 
						|
    it says that despite request for host access, a not-`HOST_VISIBLE` memory type can be selected
 | 
						|
    if it may improve performance.
 | 
						|
 | 
						|
    By using this flag, you declare that you will check if the allocation ended up in a `HOST_VISIBLE` memory type
 | 
						|
    (e.g. using vmaGetAllocationMemoryProperties()) and if not, you will create some "staging" buffer and
 | 
						|
    issue an explicit transfer to write/read your data.
 | 
						|
    To prepare for this possibility, don't forget to add appropriate flags like
 | 
						|
    `VK_BUFFER_USAGE_TRANSFER_DST_BIT`, `VK_BUFFER_USAGE_TRANSFER_SRC_BIT` to the parameters of created buffer or image.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT = 0x00001000,
 | 
						|
    /** Allocation strategy that chooses smallest possible free range for the allocation
 | 
						|
    to minimize memory usage and fragmentation, possibly at the expense of allocation time.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = 0x00010000,
 | 
						|
    /** Allocation strategy that chooses first suitable free range for the allocation -
 | 
						|
    not necessarily in terms of the smallest offset but the one that is easiest and fastest to find
 | 
						|
    to minimize allocation time, possibly at the expense of allocation quality.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = 0x00020000,
 | 
						|
    /** Allocation strategy that chooses always the lowest offset in available space.
 | 
						|
    This is not the most efficient strategy but achieves highly packed data.
 | 
						|
    Used internally by defragmentation, not recommended in typical usage.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT  = 0x00040000,
 | 
						|
    /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
 | 
						|
    /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
 | 
						|
    /** A bit mask to extract only `STRATEGY` bits from entire set of flags.
 | 
						|
    */
 | 
						|
    VMA_ALLOCATION_CREATE_STRATEGY_MASK =
 | 
						|
        VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT |
 | 
						|
        VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT |
 | 
						|
        VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
 | 
						|
 | 
						|
    VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | 
						|
} VmaAllocationCreateFlagBits;
 | 
						|
/// See #VmaAllocationCreateFlagBits.
 | 
						|
typedef VkFlags VmaAllocationCreateFlags;
 | 
						|
 | 
						|
/// Flags to be passed as VmaPoolCreateInfo::flags.
 | 
						|
typedef enum VmaPoolCreateFlagBits
 | 
						|
{
 | 
						|
    /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
 | 
						|
 | 
						|
    This is an optional optimization flag.
 | 
						|
 | 
						|
    If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
 | 
						|
    vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
 | 
						|
    knows exact type of your allocations so it can handle Buffer-Image Granularity
 | 
						|
    in the optimal way.
 | 
						|
 | 
						|
    If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
 | 
						|
    exact type of such allocations is not known, so allocator must be conservative
 | 
						|
    in handling Buffer-Image Granularity, which can lead to suboptimal allocation
 | 
						|
    (wasted memory). In that case, if you can make sure you always allocate only
 | 
						|
    buffers and linear images or only optimal images out of this pool, use this flag
 | 
						|
    to make allocator disregard Buffer-Image Granularity and so make allocations
 | 
						|
    faster and more optimal.
 | 
						|
    */
 | 
						|
    VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
 | 
						|
 | 
						|
    /** \brief Enables alternative, linear allocation algorithm in this pool.
 | 
						|
 | 
						|
    Specify this flag to enable linear allocation algorithm, which always creates
 | 
						|
    new allocations after last one and doesn't reuse space from allocations freed in
 | 
						|
    between. It trades memory consumption for simplified algorithm and data
 | 
						|
    structure, which has better performance and uses less memory for metadata.
 | 
						|
 | 
						|
    By using this flag, you can achieve behavior of free-at-once, stack,
 | 
						|
    ring buffer, and double stack.
 | 
						|
    For details, see documentation chapter \ref linear_algorithm.
 | 
						|
    */
 | 
						|
    VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,
 | 
						|
 | 
						|
    /** Bit mask to extract only `ALGORITHM` bits from entire set of flags.
 | 
						|
    */
 | 
						|
    VMA_POOL_CREATE_ALGORITHM_MASK =
 | 
						|
        VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT,
 | 
						|
 | 
						|
    VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | 
						|
} VmaPoolCreateFlagBits;
 | 
						|
/// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits.
 | 
						|
typedef VkFlags VmaPoolCreateFlags;
 | 
						|
 | 
						|
/// Flags to be passed as VmaDefragmentationInfo::flags.
 | 
						|
typedef enum VmaDefragmentationFlagBits
 | 
						|
{
 | 
						|
    /* \brief Use simple but fast algorithm for defragmentation.
 | 
						|
    May not achieve best results but will require least time to compute and least allocations to copy.
 | 
						|
    */
 | 
						|
    VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT = 0x1,
 | 
						|
    /* \brief Default defragmentation algorithm, applied also when no `ALGORITHM` flag is specified.
 | 
						|
    Offers a balance between defragmentation quality and the amount of allocations and bytes that need to be moved.
 | 
						|
    */
 | 
						|
    VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT = 0x2,
 | 
						|
    /* \brief Perform full defragmentation of memory.
 | 
						|
    Can result in notably more time to compute and allocations to copy, but will achieve best memory packing.
 | 
						|
    */
 | 
						|
    VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT = 0x4,
 | 
						|
    /** \brief Use the most roboust algorithm at the cost of time to compute and number of copies to make.
 | 
						|
    Only available when bufferImageGranularity is greater than 1, since it aims to reduce
 | 
						|
    alignment issues between different types of resources.
 | 
						|
    Otherwise falls back to same behavior as #VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT.
 | 
						|
    */
 | 
						|
    VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT = 0x8,
 | 
						|
 | 
						|
    /// A bit mask to extract only `ALGORITHM` bits from entire set of flags.
 | 
						|
    VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK =
 | 
						|
        VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT |
 | 
						|
        VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT |
 | 
						|
        VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT |
 | 
						|
        VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT,
 | 
						|
 | 
						|
    VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | 
						|
} VmaDefragmentationFlagBits;
 | 
						|
/// See #VmaDefragmentationFlagBits.
 | 
						|
typedef VkFlags VmaDefragmentationFlags;
 | 
						|
 | 
						|
/// Operation performed on single defragmentation move. See structure #VmaDefragmentationMove.
 | 
						|
typedef enum VmaDefragmentationMoveOperation
 | 
						|
{
 | 
						|
    /// Buffer/image has been recreated at `dstTmpAllocation`, data has been copied, old buffer/image has been destroyed. `srcAllocation` should be changed to point to the new place. This is the default value set by vmaBeginDefragmentationPass().
 | 
						|
    VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY = 0,
 | 
						|
    /// Set this value if you cannot move the allocation. New place reserved at `dstTmpAllocation` will be freed. `srcAllocation` will remain unchanged.
 | 
						|
    VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE = 1,
 | 
						|
    /// Set this value if you decide to abandon the allocation and you destroyed the buffer/image. New place reserved at `dstTmpAllocation` will be freed, along with `srcAllocation`, which will be destroyed.
 | 
						|
    VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY = 2,
 | 
						|
} VmaDefragmentationMoveOperation;
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_virtual
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/// Flags to be passed as VmaVirtualBlockCreateInfo::flags.
 | 
						|
typedef enum VmaVirtualBlockCreateFlagBits
 | 
						|
{
 | 
						|
    /** \brief Enables alternative, linear allocation algorithm in this virtual block.
 | 
						|
 | 
						|
    Specify this flag to enable linear allocation algorithm, which always creates
 | 
						|
    new allocations after last one and doesn't reuse space from allocations freed in
 | 
						|
    between. It trades memory consumption for simplified algorithm and data
 | 
						|
    structure, which has better performance and uses less memory for metadata.
 | 
						|
 | 
						|
    By using this flag, you can achieve behavior of free-at-once, stack,
 | 
						|
    ring buffer, and double stack.
 | 
						|
    For details, see documentation chapter \ref linear_algorithm.
 | 
						|
    */
 | 
						|
    VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001,
 | 
						|
 | 
						|
    /** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags.
 | 
						|
    */
 | 
						|
    VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK =
 | 
						|
        VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT,
 | 
						|
 | 
						|
    VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | 
						|
} VmaVirtualBlockCreateFlagBits;
 | 
						|
/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits.
 | 
						|
typedef VkFlags VmaVirtualBlockCreateFlags;
 | 
						|
 | 
						|
/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags.
 | 
						|
typedef enum VmaVirtualAllocationCreateFlagBits
 | 
						|
{
 | 
						|
    /** \brief Allocation will be created from upper stack in a double stack pool.
 | 
						|
 | 
						|
    This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag.
 | 
						|
    */
 | 
						|
    VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT,
 | 
						|
    /** \brief Allocation strategy that tries to minimize memory usage.
 | 
						|
    */
 | 
						|
    VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
 | 
						|
    /** \brief Allocation strategy that tries to minimize allocation time.
 | 
						|
    */
 | 
						|
    VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
 | 
						|
    /** Allocation strategy that chooses always the lowest offset in available space.
 | 
						|
    This is not the most efficient strategy but achieves highly packed data.
 | 
						|
    */
 | 
						|
    VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
 | 
						|
    /** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags.
 | 
						|
 | 
						|
    These strategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits.
 | 
						|
    */
 | 
						|
    VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK,
 | 
						|
 | 
						|
    VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | 
						|
} VmaVirtualAllocationCreateFlagBits;
 | 
						|
/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits.
 | 
						|
typedef VkFlags VmaVirtualAllocationCreateFlags;
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
#endif // _VMA_ENUM_DECLARATIONS
 | 
						|
 | 
						|
#ifndef _VMA_DATA_TYPES_DECLARATIONS
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_init
 | 
						|
@{ */
 | 
						|
 | 
						|
/** \struct VmaAllocator
 | 
						|
\brief Represents main object of this library initialized.
 | 
						|
 | 
						|
Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
 | 
						|
Call function vmaDestroyAllocator() to destroy it.
 | 
						|
 | 
						|
It is recommended to create just one object of this type per `VkDevice` object,
 | 
						|
right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
 | 
						|
*/
 | 
						|
VK_DEFINE_HANDLE(VmaAllocator)
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_alloc
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/** \struct VmaPool
 | 
						|
\brief Represents custom memory pool
 | 
						|
 | 
						|
Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
 | 
						|
Call function vmaDestroyPool() to destroy it.
 | 
						|
 | 
						|
For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
 | 
						|
*/
 | 
						|
VK_DEFINE_HANDLE(VmaPool)
 | 
						|
 | 
						|
/** \struct VmaAllocation
 | 
						|
\brief Represents single memory allocation.
 | 
						|
 | 
						|
It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
 | 
						|
plus unique offset.
 | 
						|
 | 
						|
There are multiple ways to create such object.
 | 
						|
You need to fill structure VmaAllocationCreateInfo.
 | 
						|
For more information see [Choosing memory type](@ref choosing_memory_type).
 | 
						|
 | 
						|
Although the library provides convenience functions that create Vulkan buffer or image,
 | 
						|
allocate memory for it and bind them together,
 | 
						|
binding of the allocation to a buffer or an image is out of scope of the allocation itself.
 | 
						|
Allocation object can exist without buffer/image bound,
 | 
						|
binding can be done manually by the user, and destruction of it can be done
 | 
						|
independently of destruction of the allocation.
 | 
						|
 | 
						|
The object also remembers its size and some other information.
 | 
						|
To retrieve this information, use function vmaGetAllocationInfo() and inspect
 | 
						|
returned structure VmaAllocationInfo.
 | 
						|
*/
 | 
						|
VK_DEFINE_HANDLE(VmaAllocation)
 | 
						|
 | 
						|
/** \struct VmaDefragmentationContext
 | 
						|
\brief An opaque object that represents started defragmentation process.
 | 
						|
 | 
						|
Fill structure #VmaDefragmentationInfo and call function vmaBeginDefragmentation() to create it.
 | 
						|
Call function vmaEndDefragmentation() to destroy it.
 | 
						|
*/
 | 
						|
VK_DEFINE_HANDLE(VmaDefragmentationContext)
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_virtual
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/** \struct VmaVirtualAllocation
 | 
						|
\brief Represents single memory allocation done inside VmaVirtualBlock.
 | 
						|
 | 
						|
Use it as a unique identifier to virtual allocation within the single block.
 | 
						|
 | 
						|
Use value `VK_NULL_HANDLE` to represent a null/invalid allocation.
 | 
						|
*/
 | 
						|
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaVirtualAllocation)
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_virtual
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/** \struct VmaVirtualBlock
 | 
						|
\brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory.
 | 
						|
 | 
						|
Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it.
 | 
						|
For more information, see documentation chapter \ref virtual_allocator.
 | 
						|
 | 
						|
This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally.
 | 
						|
*/
 | 
						|
VK_DEFINE_HANDLE(VmaVirtualBlock)
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_init
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/// Callback function called after successful vkAllocateMemory.
 | 
						|
typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)(
 | 
						|
    VmaAllocator VMA_NOT_NULL                    allocator,
 | 
						|
    uint32_t                                     memoryType,
 | 
						|
    VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
 | 
						|
    VkDeviceSize                                 size,
 | 
						|
    void* VMA_NULLABLE                           pUserData);
 | 
						|
 | 
						|
/// Callback function called before vkFreeMemory.
 | 
						|
typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)(
 | 
						|
    VmaAllocator VMA_NOT_NULL                    allocator,
 | 
						|
    uint32_t                                     memoryType,
 | 
						|
    VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
 | 
						|
    VkDeviceSize                                 size,
 | 
						|
    void* VMA_NULLABLE                           pUserData);
 | 
						|
 | 
						|
/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
 | 
						|
 | 
						|
Provided for informative purpose, e.g. to gather statistics about number of
 | 
						|
allocations or total amount of memory allocated in Vulkan.
 | 
						|
 | 
						|
Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
 | 
						|
*/
 | 
						|
typedef struct VmaDeviceMemoryCallbacks
 | 
						|
{
 | 
						|
    /// Optional, can be null.
 | 
						|
    PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate;
 | 
						|
    /// Optional, can be null.
 | 
						|
    PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree;
 | 
						|
    /// Optional, can be null.
 | 
						|
    void* VMA_NULLABLE pUserData;
 | 
						|
} VmaDeviceMemoryCallbacks;
 | 
						|
 | 
						|
/** \brief Pointers to some Vulkan functions - a subset used by the library.
 | 
						|
 | 
						|
Used in VmaAllocatorCreateInfo::pVulkanFunctions.
 | 
						|
*/
 | 
						|
typedef struct VmaVulkanFunctions
 | 
						|
{
 | 
						|
    /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
 | 
						|
    PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr;
 | 
						|
    /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
 | 
						|
    PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr;
 | 
						|
    PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties;
 | 
						|
    PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties;
 | 
						|
    PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory;
 | 
						|
    PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory;
 | 
						|
    PFN_vkMapMemory VMA_NULLABLE vkMapMemory;
 | 
						|
    PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory;
 | 
						|
    PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges;
 | 
						|
    PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges;
 | 
						|
    PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory;
 | 
						|
    PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory;
 | 
						|
    PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements;
 | 
						|
    PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements;
 | 
						|
    PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer;
 | 
						|
    PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer;
 | 
						|
    PFN_vkCreateImage VMA_NULLABLE vkCreateImage;
 | 
						|
    PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage;
 | 
						|
    PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer;
 | 
						|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    /// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
 | 
						|
    PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR;
 | 
						|
    /// Fetch "vkGetImageMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
 | 
						|
    PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR;
 | 
						|
#endif
 | 
						|
#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    /// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension.
 | 
						|
    PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR;
 | 
						|
    /// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension.
 | 
						|
    PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR;
 | 
						|
#endif
 | 
						|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    /// Fetch from "vkGetPhysicalDeviceMemoryProperties2" on Vulkan >= 1.1, but you can also fetch it from "vkGetPhysicalDeviceMemoryProperties2KHR" if you enabled extension VK_KHR_get_physical_device_properties2.
 | 
						|
    PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR;
 | 
						|
#endif
 | 
						|
#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
 | 
						|
    /// Fetch from "vkGetDeviceBufferMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceBufferMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
 | 
						|
    PFN_vkGetDeviceBufferMemoryRequirementsKHR VMA_NULLABLE vkGetDeviceBufferMemoryRequirements;
 | 
						|
    /// Fetch from "vkGetDeviceImageMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceImageMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
 | 
						|
    PFN_vkGetDeviceImageMemoryRequirementsKHR VMA_NULLABLE vkGetDeviceImageMemoryRequirements;
 | 
						|
#endif
 | 
						|
#if VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
    PFN_vkGetMemoryWin32HandleKHR VMA_NULLABLE vkGetMemoryWin32HandleKHR;
 | 
						|
#else
 | 
						|
    void* VMA_NULLABLE vkGetMemoryWin32HandleKHR;
 | 
						|
#endif
 | 
						|
} VmaVulkanFunctions;
 | 
						|
 | 
						|
/// Description of a Allocator to be created.
 | 
						|
typedef struct VmaAllocatorCreateInfo
 | 
						|
{
 | 
						|
    /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
 | 
						|
    VmaAllocatorCreateFlags flags;
 | 
						|
    /// Vulkan physical device.
 | 
						|
    /** It must be valid throughout whole lifetime of created allocator. */
 | 
						|
    VkPhysicalDevice VMA_NOT_NULL physicalDevice;
 | 
						|
    /// Vulkan device.
 | 
						|
    /** It must be valid throughout whole lifetime of created allocator. */
 | 
						|
    VkDevice VMA_NOT_NULL device;
 | 
						|
    /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
 | 
						|
    /** Set to 0 to use default, which is currently 256 MiB. */
 | 
						|
    VkDeviceSize preferredLargeHeapBlockSize;
 | 
						|
    /// Custom CPU memory allocation callbacks. Optional.
 | 
						|
    /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
 | 
						|
    const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
 | 
						|
    /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
 | 
						|
    /** Optional, can be null. */
 | 
						|
    const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks;
 | 
						|
    /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
 | 
						|
 | 
						|
    If not NULL, it must be a pointer to an array of
 | 
						|
    `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
 | 
						|
    maximum number of bytes that can be allocated out of particular Vulkan memory
 | 
						|
    heap.
 | 
						|
 | 
						|
    Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
 | 
						|
    heap. This is also the default in case of `pHeapSizeLimit` = NULL.
 | 
						|
 | 
						|
    If there is a limit defined for a heap:
 | 
						|
 | 
						|
    - If user tries to allocate more memory from that heap using this allocator,
 | 
						|
      the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | 
						|
    - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
 | 
						|
      value of this limit will be reported instead when using vmaGetMemoryProperties().
 | 
						|
 | 
						|
    Warning! Using this feature may not be equivalent to installing a GPU with
 | 
						|
    smaller amount of memory, because graphics driver doesn't necessary fail new
 | 
						|
    allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
 | 
						|
    exceeded. It may return success and just silently migrate some device memory
 | 
						|
    blocks to system RAM. This driver behavior can also be controlled using
 | 
						|
    VK_AMD_memory_overallocation_behavior extension.
 | 
						|
    */
 | 
						|
    const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit;
 | 
						|
 | 
						|
    /** \brief Pointers to Vulkan functions. Can be null.
 | 
						|
 | 
						|
    For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions).
 | 
						|
    */
 | 
						|
    const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions;
 | 
						|
    /** \brief Handle to Vulkan instance object.
 | 
						|
 | 
						|
    Starting from version 3.0.0 this member is no longer optional, it must be set!
 | 
						|
    */
 | 
						|
    VkInstance VMA_NOT_NULL instance;
 | 
						|
    /** \brief Optional. Vulkan version that the application uses.
 | 
						|
 | 
						|
    It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`.
 | 
						|
    The patch version number specified is ignored. Only the major and minor versions are considered.
 | 
						|
    Only versions 1.0...1.4 are supported by the current implementation.
 | 
						|
    Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`.
 | 
						|
    It must match the Vulkan version used by the application and supported on the selected physical device,
 | 
						|
    so it must be no higher than `VkApplicationInfo::apiVersion` passed to `vkCreateInstance`
 | 
						|
    and no higher than `VkPhysicalDeviceProperties::apiVersion` found on the physical device used.
 | 
						|
    */
 | 
						|
    uint32_t vulkanApiVersion;
 | 
						|
#if VMA_EXTERNAL_MEMORY
 | 
						|
    /** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type.
 | 
						|
 | 
						|
    If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount`
 | 
						|
    elements, defining external memory handle types of particular Vulkan memory type,
 | 
						|
    to be passed using `VkExportMemoryAllocateInfoKHR`.
 | 
						|
 | 
						|
    Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type.
 | 
						|
    This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL.
 | 
						|
    */
 | 
						|
    const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes;
 | 
						|
#endif // #if VMA_EXTERNAL_MEMORY
 | 
						|
} VmaAllocatorCreateInfo;
 | 
						|
 | 
						|
/// Information about existing #VmaAllocator object.
 | 
						|
typedef struct VmaAllocatorInfo
 | 
						|
{
 | 
						|
    /** \brief Handle to Vulkan instance object.
 | 
						|
 | 
						|
    This is the same value as has been passed through VmaAllocatorCreateInfo::instance.
 | 
						|
    */
 | 
						|
    VkInstance VMA_NOT_NULL instance;
 | 
						|
    /** \brief Handle to Vulkan physical device object.
 | 
						|
 | 
						|
    This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice.
 | 
						|
    */
 | 
						|
    VkPhysicalDevice VMA_NOT_NULL physicalDevice;
 | 
						|
    /** \brief Handle to Vulkan device object.
 | 
						|
 | 
						|
    This is the same value as has been passed through VmaAllocatorCreateInfo::device.
 | 
						|
    */
 | 
						|
    VkDevice VMA_NOT_NULL device;
 | 
						|
} VmaAllocatorInfo;
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_stats
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/** \brief Calculated statistics of memory usage e.g. in a specific memory type, heap, custom pool, or total.
 | 
						|
 | 
						|
These are fast to calculate.
 | 
						|
See functions: vmaGetHeapBudgets(), vmaGetPoolStatistics().
 | 
						|
*/
 | 
						|
typedef struct VmaStatistics
 | 
						|
{
 | 
						|
    /** \brief Number of `VkDeviceMemory` objects - Vulkan memory blocks allocated.
 | 
						|
    */
 | 
						|
    uint32_t blockCount;
 | 
						|
    /** \brief Number of #VmaAllocation objects allocated.
 | 
						|
 | 
						|
    Dedicated allocations have their own blocks, so each one adds 1 to `allocationCount` as well as `blockCount`.
 | 
						|
    */
 | 
						|
    uint32_t allocationCount;
 | 
						|
    /** \brief Number of bytes allocated in `VkDeviceMemory` blocks.
 | 
						|
 | 
						|
    \note To avoid confusion, please be aware that what Vulkan calls an "allocation" - a whole `VkDeviceMemory` object
 | 
						|
    (e.g. as in `VkPhysicalDeviceLimits::maxMemoryAllocationCount`) is called a "block" in VMA, while VMA calls
 | 
						|
    "allocation" a #VmaAllocation object that represents a memory region sub-allocated from such block, usually for a single buffer or image.
 | 
						|
    */
 | 
						|
    VkDeviceSize blockBytes;
 | 
						|
    /** \brief Total number of bytes occupied by all #VmaAllocation objects.
 | 
						|
 | 
						|
    Always less or equal than `blockBytes`.
 | 
						|
    Difference `(blockBytes - allocationBytes)` is the amount of memory allocated from Vulkan
 | 
						|
    but unused by any #VmaAllocation.
 | 
						|
    */
 | 
						|
    VkDeviceSize allocationBytes;
 | 
						|
} VmaStatistics;
 | 
						|
 | 
						|
/** \brief More detailed statistics than #VmaStatistics.
 | 
						|
 | 
						|
These are slower to calculate. Use for debugging purposes.
 | 
						|
See functions: vmaCalculateStatistics(), vmaCalculatePoolStatistics().
 | 
						|
 | 
						|
Previous version of the statistics API provided averages, but they have been removed
 | 
						|
because they can be easily calculated as:
 | 
						|
 | 
						|
\code
 | 
						|
VkDeviceSize allocationSizeAvg = detailedStats.statistics.allocationBytes / detailedStats.statistics.allocationCount;
 | 
						|
VkDeviceSize unusedBytes = detailedStats.statistics.blockBytes - detailedStats.statistics.allocationBytes;
 | 
						|
VkDeviceSize unusedRangeSizeAvg = unusedBytes / detailedStats.unusedRangeCount;
 | 
						|
\endcode
 | 
						|
*/
 | 
						|
typedef struct VmaDetailedStatistics
 | 
						|
{
 | 
						|
    /// Basic statistics.
 | 
						|
    VmaStatistics statistics;
 | 
						|
    /// Number of free ranges of memory between allocations.
 | 
						|
    uint32_t unusedRangeCount;
 | 
						|
    /// Smallest allocation size. `VK_WHOLE_SIZE` if there are 0 allocations.
 | 
						|
    VkDeviceSize allocationSizeMin;
 | 
						|
    /// Largest allocation size. 0 if there are 0 allocations.
 | 
						|
    VkDeviceSize allocationSizeMax;
 | 
						|
    /// Smallest empty range size. `VK_WHOLE_SIZE` if there are 0 empty ranges.
 | 
						|
    VkDeviceSize unusedRangeSizeMin;
 | 
						|
    /// Largest empty range size. 0 if there are 0 empty ranges.
 | 
						|
    VkDeviceSize unusedRangeSizeMax;
 | 
						|
} VmaDetailedStatistics;
 | 
						|
 | 
						|
/** \brief  General statistics from current state of the Allocator -
 | 
						|
total memory usage across all memory heaps and types.
 | 
						|
 | 
						|
These are slower to calculate. Use for debugging purposes.
 | 
						|
See function vmaCalculateStatistics().
 | 
						|
*/
 | 
						|
typedef struct VmaTotalStatistics
 | 
						|
{
 | 
						|
    VmaDetailedStatistics memoryType[VK_MAX_MEMORY_TYPES];
 | 
						|
    VmaDetailedStatistics memoryHeap[VK_MAX_MEMORY_HEAPS];
 | 
						|
    VmaDetailedStatistics total;
 | 
						|
} VmaTotalStatistics;
 | 
						|
 | 
						|
/** \brief Statistics of current memory usage and available budget for a specific memory heap.
 | 
						|
 | 
						|
These are fast to calculate.
 | 
						|
See function vmaGetHeapBudgets().
 | 
						|
*/
 | 
						|
typedef struct VmaBudget
 | 
						|
{
 | 
						|
    /** \brief Statistics fetched from the library.
 | 
						|
    */
 | 
						|
    VmaStatistics statistics;
 | 
						|
    /** \brief Estimated current memory usage of the program, in bytes.
 | 
						|
 | 
						|
    Fetched from system using VK_EXT_memory_budget extension if enabled.
 | 
						|
 | 
						|
    It might be different than `statistics.blockBytes` (usually higher) due to additional implicit objects
 | 
						|
    also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or
 | 
						|
    `VkDeviceMemory` blocks allocated outside of this library, if any.
 | 
						|
    */
 | 
						|
    VkDeviceSize usage;
 | 
						|
    /** \brief Estimated amount of memory available to the program, in bytes.
 | 
						|
 | 
						|
    Fetched from system using VK_EXT_memory_budget extension if enabled.
 | 
						|
 | 
						|
    It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors
 | 
						|
    external to the program, decided by the operating system.
 | 
						|
    Difference `budget - usage` is the amount of additional memory that can probably
 | 
						|
    be allocated without problems. Exceeding the budget may result in various problems.
 | 
						|
    */
 | 
						|
    VkDeviceSize budget;
 | 
						|
} VmaBudget;
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_alloc
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/** \brief Parameters of new #VmaAllocation.
 | 
						|
 | 
						|
To be used with functions like vmaCreateBuffer(), vmaCreateImage(), and many others.
 | 
						|
*/
 | 
						|
typedef struct VmaAllocationCreateInfo
 | 
						|
{
 | 
						|
    /// Use #VmaAllocationCreateFlagBits enum.
 | 
						|
    VmaAllocationCreateFlags flags;
 | 
						|
    /** \brief Intended usage of memory.
 | 
						|
 | 
						|
    You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
 | 
						|
    If `pool` is not null, this member is ignored.
 | 
						|
    */
 | 
						|
    VmaMemoryUsage usage;
 | 
						|
    /** \brief Flags that must be set in a Memory Type chosen for an allocation.
 | 
						|
 | 
						|
    Leave 0 if you specify memory requirements in other way. \n
 | 
						|
    If `pool` is not null, this member is ignored.*/
 | 
						|
    VkMemoryPropertyFlags requiredFlags;
 | 
						|
    /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
 | 
						|
 | 
						|
    Set to 0 if no additional flags are preferred. \n
 | 
						|
    If `pool` is not null, this member is ignored. */
 | 
						|
    VkMemoryPropertyFlags preferredFlags;
 | 
						|
    /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
 | 
						|
 | 
						|
    Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
 | 
						|
    it meets other requirements specified by this structure, with no further
 | 
						|
    restrictions on memory type index. \n
 | 
						|
    If `pool` is not null, this member is ignored.
 | 
						|
    */
 | 
						|
    uint32_t memoryTypeBits;
 | 
						|
    /** \brief Pool that this allocation should be created in.
 | 
						|
 | 
						|
    Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
 | 
						|
    `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
 | 
						|
    */
 | 
						|
    VmaPool VMA_NULLABLE pool;
 | 
						|
    /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
 | 
						|
 | 
						|
    If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
 | 
						|
    null or pointer to a null-terminated string. The string will be then copied to
 | 
						|
    internal buffer, so it doesn't need to be valid after allocation call.
 | 
						|
    */
 | 
						|
    void* VMA_NULLABLE pUserData;
 | 
						|
    /** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
 | 
						|
 | 
						|
    It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object
 | 
						|
    and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | 
						|
    Otherwise, it has the priority of a memory block where it is placed and this variable is ignored.
 | 
						|
    */
 | 
						|
    float priority;
 | 
						|
} VmaAllocationCreateInfo;
 | 
						|
 | 
						|
/// Describes parameter of created #VmaPool.
 | 
						|
typedef struct VmaPoolCreateInfo
 | 
						|
{
 | 
						|
    /** \brief Vulkan memory type index to allocate this pool from.
 | 
						|
    */
 | 
						|
    uint32_t memoryTypeIndex;
 | 
						|
    /** \brief Use combination of #VmaPoolCreateFlagBits.
 | 
						|
    */
 | 
						|
    VmaPoolCreateFlags flags;
 | 
						|
    /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.
 | 
						|
 | 
						|
    Specify nonzero to set explicit, constant size of memory blocks used by this
 | 
						|
    pool.
 | 
						|
 | 
						|
    Leave 0 to use default and let the library manage block sizes automatically.
 | 
						|
    Sizes of particular blocks may vary.
 | 
						|
    In this case, the pool will also support dedicated allocations.
 | 
						|
    */
 | 
						|
    VkDeviceSize blockSize;
 | 
						|
    /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
 | 
						|
 | 
						|
    Set to 0 to have no preallocated blocks and allow the pool be completely empty.
 | 
						|
    */
 | 
						|
    size_t minBlockCount;
 | 
						|
    /** \brief Maximum number of blocks that can be allocated in this pool. Optional.
 | 
						|
 | 
						|
    Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
 | 
						|
 | 
						|
    Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
 | 
						|
    throughout whole lifetime of this pool.
 | 
						|
    */
 | 
						|
    size_t maxBlockCount;
 | 
						|
    /** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations.
 | 
						|
 | 
						|
    It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object.
 | 
						|
    Otherwise, this variable is ignored.
 | 
						|
    */
 | 
						|
    float priority;
 | 
						|
    /** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0.
 | 
						|
 | 
						|
    Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two.
 | 
						|
    It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough,
 | 
						|
    e.g. when doing interop with OpenGL.
 | 
						|
    */
 | 
						|
    VkDeviceSize minAllocationAlignment;
 | 
						|
    /** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional.
 | 
						|
 | 
						|
    Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`.
 | 
						|
    It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`.
 | 
						|
    Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool.
 | 
						|
 | 
						|
    Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`,
 | 
						|
    can be attached automatically by this library when using other, more convenient of its features.
 | 
						|
    */
 | 
						|
    void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkMemoryAllocateInfo) pMemoryAllocateNext;
 | 
						|
} VmaPoolCreateInfo;
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_alloc
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/**
 | 
						|
Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
 | 
						|
 | 
						|
There is also an extended version of this structure that carries additional parameters: #VmaAllocationInfo2.
 | 
						|
*/
 | 
						|
typedef struct VmaAllocationInfo
 | 
						|
{
 | 
						|
    /** \brief Memory type index that this allocation was allocated from.
 | 
						|
 | 
						|
    It never changes.
 | 
						|
    */
 | 
						|
    uint32_t memoryType;
 | 
						|
    /** \brief Handle to Vulkan memory object.
 | 
						|
 | 
						|
    Same memory object can be shared by multiple allocations.
 | 
						|
 | 
						|
    It can change after the allocation is moved during \ref defragmentation.
 | 
						|
    */
 | 
						|
    VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory;
 | 
						|
    /** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation.
 | 
						|
 | 
						|
    You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function
 | 
						|
    vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image,
 | 
						|
    not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation
 | 
						|
    and apply this offset automatically.
 | 
						|
 | 
						|
    It can change after the allocation is moved during \ref defragmentation.
 | 
						|
    */
 | 
						|
    VkDeviceSize offset;
 | 
						|
    /** \brief Size of this allocation, in bytes.
 | 
						|
 | 
						|
    It never changes.
 | 
						|
 | 
						|
    \note Allocation size returned in this variable may be greater than the size
 | 
						|
    requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the
 | 
						|
    allocation is accessible for operations on memory e.g. using a pointer after
 | 
						|
    mapping with vmaMapMemory(), but operations on the resource e.g. using
 | 
						|
    `vkCmdCopyBuffer` must be limited to the size of the resource.
 | 
						|
    */
 | 
						|
    VkDeviceSize size;
 | 
						|
    /** \brief Pointer to the beginning of this allocation as mapped data.
 | 
						|
 | 
						|
    If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
 | 
						|
    created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null.
 | 
						|
 | 
						|
    It can change after call to vmaMapMemory(), vmaUnmapMemory().
 | 
						|
    It can also change after the allocation is moved during \ref defragmentation.
 | 
						|
    */
 | 
						|
    void* VMA_NULLABLE pMappedData;
 | 
						|
    /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
 | 
						|
 | 
						|
    It can change after call to vmaSetAllocationUserData() for this allocation.
 | 
						|
    */
 | 
						|
    void* VMA_NULLABLE pUserData;
 | 
						|
    /** \brief Custom allocation name that was set with vmaSetAllocationName().
 | 
						|
 | 
						|
    It can change after call to vmaSetAllocationName() for this allocation.
 | 
						|
 | 
						|
    Another way to set custom name is to pass it in VmaAllocationCreateInfo::pUserData with
 | 
						|
    additional flag #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT set [DEPRECATED].
 | 
						|
    */
 | 
						|
    const char* VMA_NULLABLE pName;
 | 
						|
} VmaAllocationInfo;
 | 
						|
 | 
						|
/// Extended parameters of a #VmaAllocation object that can be retrieved using function vmaGetAllocationInfo2().
 | 
						|
typedef struct VmaAllocationInfo2
 | 
						|
{
 | 
						|
    /** \brief Basic parameters of the allocation.
 | 
						|
    
 | 
						|
    If you need only these, you can use function vmaGetAllocationInfo() and structure #VmaAllocationInfo instead.
 | 
						|
    */
 | 
						|
    VmaAllocationInfo allocationInfo;
 | 
						|
    /** \brief Size of the `VkDeviceMemory` block that the allocation belongs to.
 | 
						|
    
 | 
						|
    In case of an allocation with dedicated memory, it will be equal to `allocationInfo.size`.
 | 
						|
    */
 | 
						|
    VkDeviceSize blockSize;
 | 
						|
    /** \brief `VK_TRUE` if the allocation has dedicated memory, `VK_FALSE` if it was placed as part of a larger memory block.
 | 
						|
    
 | 
						|
    When `VK_TRUE`, it also means `VkMemoryDedicatedAllocateInfo` was used when creating the allocation
 | 
						|
    (if VK_KHR_dedicated_allocation extension or Vulkan version >= 1.1 is enabled).
 | 
						|
    */
 | 
						|
    VkBool32 dedicatedMemory;
 | 
						|
} VmaAllocationInfo2;
 | 
						|
 | 
						|
/** Callback function called during vmaBeginDefragmentation() to check custom criterion about ending current defragmentation pass.
 | 
						|
 | 
						|
Should return true if the defragmentation needs to stop current pass.
 | 
						|
*/
 | 
						|
typedef VkBool32 (VKAPI_PTR* PFN_vmaCheckDefragmentationBreakFunction)(void* VMA_NULLABLE pUserData);
 | 
						|
 | 
						|
/** \brief Parameters for defragmentation.
 | 
						|
 | 
						|
To be used with function vmaBeginDefragmentation().
 | 
						|
*/
 | 
						|
typedef struct VmaDefragmentationInfo
 | 
						|
{
 | 
						|
    /// \brief Use combination of #VmaDefragmentationFlagBits.
 | 
						|
    VmaDefragmentationFlags flags;
 | 
						|
    /** \brief Custom pool to be defragmented.
 | 
						|
 | 
						|
    If null then default pools will undergo defragmentation process.
 | 
						|
    */
 | 
						|
    VmaPool VMA_NULLABLE pool;
 | 
						|
    /** \brief Maximum numbers of bytes that can be copied during single pass, while moving allocations to different places.
 | 
						|
 | 
						|
    `0` means no limit.
 | 
						|
    */
 | 
						|
    VkDeviceSize maxBytesPerPass;
 | 
						|
    /** \brief Maximum number of allocations that can be moved during single pass to a different place.
 | 
						|
 | 
						|
    `0` means no limit.
 | 
						|
    */
 | 
						|
    uint32_t maxAllocationsPerPass;
 | 
						|
    /** \brief Optional custom callback for stopping vmaBeginDefragmentation().
 | 
						|
 | 
						|
    Have to return true for breaking current defragmentation pass.
 | 
						|
    */
 | 
						|
    PFN_vmaCheckDefragmentationBreakFunction VMA_NULLABLE pfnBreakCallback;
 | 
						|
    /// \brief Optional data to pass to custom callback for stopping pass of defragmentation.
 | 
						|
    void* VMA_NULLABLE pBreakCallbackUserData;
 | 
						|
} VmaDefragmentationInfo;
 | 
						|
 | 
						|
/// Single move of an allocation to be done for defragmentation.
 | 
						|
typedef struct VmaDefragmentationMove
 | 
						|
{
 | 
						|
    /// Operation to be performed on the allocation by vmaEndDefragmentationPass(). Default value is #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY. You can modify it.
 | 
						|
    VmaDefragmentationMoveOperation operation;
 | 
						|
    /// Allocation that should be moved.
 | 
						|
    VmaAllocation VMA_NOT_NULL srcAllocation;
 | 
						|
    /** \brief Temporary allocation pointing to destination memory that will replace `srcAllocation`.
 | 
						|
 | 
						|
    \warning Do not store this allocation in your data structures! It exists only temporarily, for the duration of the defragmentation pass,
 | 
						|
    to be used for binding new buffer/image to the destination memory using e.g. vmaBindBufferMemory().
 | 
						|
    vmaEndDefragmentationPass() will destroy it and make `srcAllocation` point to this memory.
 | 
						|
    */
 | 
						|
    VmaAllocation VMA_NOT_NULL dstTmpAllocation;
 | 
						|
} VmaDefragmentationMove;
 | 
						|
 | 
						|
/** \brief Parameters for incremental defragmentation steps.
 | 
						|
 | 
						|
To be used with function vmaBeginDefragmentationPass().
 | 
						|
*/
 | 
						|
typedef struct VmaDefragmentationPassMoveInfo
 | 
						|
{
 | 
						|
    /// Number of elements in the `pMoves` array.
 | 
						|
    uint32_t moveCount;
 | 
						|
    /** \brief Array of moves to be performed by the user in the current defragmentation pass.
 | 
						|
 | 
						|
    Pointer to an array of `moveCount` elements, owned by VMA, created in vmaBeginDefragmentationPass(), destroyed in vmaEndDefragmentationPass().
 | 
						|
 | 
						|
    For each element, you should:
 | 
						|
 | 
						|
    1. Create a new buffer/image in the place pointed by VmaDefragmentationMove::dstMemory + VmaDefragmentationMove::dstOffset.
 | 
						|
    2. Copy data from the VmaDefragmentationMove::srcAllocation e.g. using `vkCmdCopyBuffer`, `vkCmdCopyImage`.
 | 
						|
    3. Make sure these commands finished executing on the GPU.
 | 
						|
    4. Destroy the old buffer/image.
 | 
						|
 | 
						|
    Only then you can finish defragmentation pass by calling vmaEndDefragmentationPass().
 | 
						|
    After this call, the allocation will point to the new place in memory.
 | 
						|
 | 
						|
    Alternatively, if you cannot move specific allocation, you can set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
 | 
						|
 | 
						|
    Alternatively, if you decide you want to completely remove the allocation:
 | 
						|
 | 
						|
    1. Destroy its buffer/image.
 | 
						|
    2. Set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY.
 | 
						|
 | 
						|
    Then, after vmaEndDefragmentationPass() the allocation will be freed.
 | 
						|
    */
 | 
						|
    VmaDefragmentationMove* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(moveCount) pMoves;
 | 
						|
} VmaDefragmentationPassMoveInfo;
 | 
						|
 | 
						|
/// Statistics returned for defragmentation process in function vmaEndDefragmentation().
 | 
						|
typedef struct VmaDefragmentationStats
 | 
						|
{
 | 
						|
    /// Total number of bytes that have been copied while moving allocations to different places.
 | 
						|
    VkDeviceSize bytesMoved;
 | 
						|
    /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
 | 
						|
    VkDeviceSize bytesFreed;
 | 
						|
    /// Number of allocations that have been moved to different places.
 | 
						|
    uint32_t allocationsMoved;
 | 
						|
    /// Number of empty `VkDeviceMemory` objects that have been released to the system.
 | 
						|
    uint32_t deviceMemoryBlocksFreed;
 | 
						|
} VmaDefragmentationStats;
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_virtual
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock().
 | 
						|
typedef struct VmaVirtualBlockCreateInfo
 | 
						|
{
 | 
						|
    /** \brief Total size of the virtual block.
 | 
						|
 | 
						|
    Sizes can be expressed in bytes or any units you want as long as you are consistent in using them.
 | 
						|
    For example, if you allocate from some array of structures, 1 can mean single instance of entire structure.
 | 
						|
    */
 | 
						|
    VkDeviceSize size;
 | 
						|
 | 
						|
    /** \brief Use combination of #VmaVirtualBlockCreateFlagBits.
 | 
						|
    */
 | 
						|
    VmaVirtualBlockCreateFlags flags;
 | 
						|
 | 
						|
    /** \brief Custom CPU memory allocation callbacks. Optional.
 | 
						|
 | 
						|
    Optional, can be null. When specified, they will be used for all CPU-side memory allocations.
 | 
						|
    */
 | 
						|
    const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
 | 
						|
} VmaVirtualBlockCreateInfo;
 | 
						|
 | 
						|
/// Parameters of created virtual allocation to be passed to vmaVirtualAllocate().
 | 
						|
typedef struct VmaVirtualAllocationCreateInfo
 | 
						|
{
 | 
						|
    /** \brief Size of the allocation.
 | 
						|
 | 
						|
    Cannot be zero.
 | 
						|
    */
 | 
						|
    VkDeviceSize size;
 | 
						|
    /** \brief Required alignment of the allocation. Optional.
 | 
						|
 | 
						|
    Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset.
 | 
						|
    */
 | 
						|
    VkDeviceSize alignment;
 | 
						|
    /** \brief Use combination of #VmaVirtualAllocationCreateFlagBits.
 | 
						|
    */
 | 
						|
    VmaVirtualAllocationCreateFlags flags;
 | 
						|
    /** \brief Custom pointer to be associated with the allocation. Optional.
 | 
						|
 | 
						|
    It can be any value and can be used for user-defined purposes. It can be fetched or changed later.
 | 
						|
    */
 | 
						|
    void* VMA_NULLABLE pUserData;
 | 
						|
} VmaVirtualAllocationCreateInfo;
 | 
						|
 | 
						|
/// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo().
 | 
						|
typedef struct VmaVirtualAllocationInfo
 | 
						|
{
 | 
						|
    /** \brief Offset of the allocation.
 | 
						|
 | 
						|
    Offset at which the allocation was made.
 | 
						|
    */
 | 
						|
    VkDeviceSize offset;
 | 
						|
    /** \brief Size of the allocation.
 | 
						|
 | 
						|
    Same value as passed in VmaVirtualAllocationCreateInfo::size.
 | 
						|
    */
 | 
						|
    VkDeviceSize size;
 | 
						|
    /** \brief Custom pointer associated with the allocation.
 | 
						|
 | 
						|
    Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData().
 | 
						|
    */
 | 
						|
    void* VMA_NULLABLE pUserData;
 | 
						|
} VmaVirtualAllocationInfo;
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
#endif // _VMA_DATA_TYPES_DECLARATIONS
 | 
						|
 | 
						|
#ifndef _VMA_FUNCTION_HEADERS
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_init
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/// Creates #VmaAllocator object.
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
 | 
						|
    const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo,
 | 
						|
    VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator);
 | 
						|
 | 
						|
/// Destroys allocator object.
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
 | 
						|
    VmaAllocator VMA_NULLABLE allocator);
 | 
						|
 | 
						|
/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc.
 | 
						|
 | 
						|
It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to
 | 
						|
`VkPhysicalDevice`, `VkDevice` etc. every time using this function.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo);
 | 
						|
 | 
						|
/**
 | 
						|
PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
 | 
						|
You can access it here, without fetching it again on your own.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties);
 | 
						|
 | 
						|
/**
 | 
						|
PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
 | 
						|
You can access it here, without fetching it again on your own.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties);
 | 
						|
 | 
						|
/**
 | 
						|
\brief Given Memory Type Index, returns Property Flags of this memory type.
 | 
						|
 | 
						|
This is just a convenience function. Same information can be obtained using
 | 
						|
vmaGetMemoryProperties().
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    uint32_t memoryTypeIndex,
 | 
						|
    VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
 | 
						|
 | 
						|
/** \brief Sets index of the current frame.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    uint32_t frameIndex);
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_stats
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/** \brief Retrieves statistics from current state of the Allocator.
 | 
						|
 | 
						|
This function is called "calculate" not "get" because it has to traverse all
 | 
						|
internal data structures, so it may be quite slow. Use it for debugging purposes.
 | 
						|
For faster but more brief statistics suitable to be called every frame or every allocation,
 | 
						|
use vmaGetHeapBudgets().
 | 
						|
 | 
						|
Note that when using allocator from multiple threads, returned information may immediately
 | 
						|
become outdated.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaTotalStatistics* VMA_NOT_NULL pStats);
 | 
						|
 | 
						|
/** \brief Retrieves information about current memory usage and budget for all memory heaps.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used.
 | 
						|
 | 
						|
This function is called "get" not "calculate" because it is very fast, suitable to be called
 | 
						|
every frame or every allocation. For more detailed statistics use vmaCalculateStatistics().
 | 
						|
 | 
						|
Note that when using allocator from multiple threads, returned information may immediately
 | 
						|
become outdated.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaBudget* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pBudgets);
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_alloc
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/**
 | 
						|
\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
 | 
						|
 | 
						|
This algorithm tries to find a memory type that:
 | 
						|
 | 
						|
- Is allowed by memoryTypeBits.
 | 
						|
- Contains all the flags from pAllocationCreateInfo->requiredFlags.
 | 
						|
- Matches intended usage.
 | 
						|
- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
 | 
						|
 | 
						|
\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
 | 
						|
from this function or any other allocating function probably means that your
 | 
						|
device doesn't support any memory type with requested features for the specific
 | 
						|
type of resource you want to use it for. Please check parameters of your
 | 
						|
resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    uint32_t memoryTypeBits,
 | 
						|
    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | 
						|
    uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
 | 
						|
 | 
						|
/**
 | 
						|
\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
 | 
						|
 | 
						|
It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
 | 
						|
It internally creates a temporary, dummy buffer that never has memory bound.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | 
						|
    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | 
						|
    uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
 | 
						|
 | 
						|
/**
 | 
						|
\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
 | 
						|
 | 
						|
It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
 | 
						|
It internally creates a temporary, dummy image that never has memory bound.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | 
						|
    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | 
						|
    uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
 | 
						|
 | 
						|
/** \brief Allocates Vulkan device memory and creates #VmaPool object.
 | 
						|
 | 
						|
\param allocator Allocator object.
 | 
						|
\param pCreateInfo Parameters of pool to create.
 | 
						|
\param[out] pPool Handle to created pool.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo,
 | 
						|
    VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool);
 | 
						|
 | 
						|
/** \brief Destroys #VmaPool object and frees Vulkan device memory.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaPool VMA_NULLABLE pool);
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_stats
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/** \brief Retrieves statistics of existing #VmaPool object.
 | 
						|
 | 
						|
\param allocator Allocator object.
 | 
						|
\param pool Pool object.
 | 
						|
\param[out] pPoolStats Statistics of specified pool.
 | 
						|
 | 
						|
Note that when using the pool from multiple threads, returned information may immediately
 | 
						|
become outdated.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaPool VMA_NOT_NULL pool,
 | 
						|
    VmaStatistics* VMA_NOT_NULL pPoolStats);
 | 
						|
 | 
						|
/** \brief Retrieves detailed statistics of existing #VmaPool object.
 | 
						|
 | 
						|
\param allocator Allocator object.
 | 
						|
\param pool Pool object.
 | 
						|
\param[out] pPoolStats Statistics of specified pool.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaPool VMA_NOT_NULL pool,
 | 
						|
    VmaDetailedStatistics* VMA_NOT_NULL pPoolStats);
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_alloc
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.
 | 
						|
 | 
						|
Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
 | 
						|
`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is
 | 
						|
`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
 | 
						|
 | 
						|
Possible return values:
 | 
						|
 | 
						|
- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.
 | 
						|
- `VK_SUCCESS` - corruption detection has been performed and succeeded.
 | 
						|
- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
 | 
						|
  `VMA_ASSERT` is also fired in that case.
 | 
						|
- Other value: Error returned by Vulkan, e.g. memory mapping failure.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaPool VMA_NOT_NULL pool);
 | 
						|
 | 
						|
/** \brief Retrieves name of a custom pool.
 | 
						|
 | 
						|
After the call `ppName` is either null or points to an internally-owned null-terminated string
 | 
						|
containing name of the pool that was previously set. The pointer becomes invalid when the pool is
 | 
						|
destroyed or its name is changed using vmaSetPoolName().
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaPool VMA_NOT_NULL pool,
 | 
						|
    const char* VMA_NULLABLE* VMA_NOT_NULL ppName);
 | 
						|
 | 
						|
/** \brief Sets name of a custom pool.
 | 
						|
 | 
						|
`pName` can be either null or pointer to a null-terminated string with new name for the pool.
 | 
						|
Function makes internal copy of the string, so it can be changed or freed immediately after this call.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaPool VMA_NOT_NULL pool,
 | 
						|
    const char* VMA_NULLABLE pName);
 | 
						|
 | 
						|
/** \brief General purpose memory allocation.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param pVkMemoryRequirements
 | 
						|
\param pCreateInfo
 | 
						|
\param[out] pAllocation Handle to allocated memory.
 | 
						|
\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
 | 
						|
 | 
						|
You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
 | 
						|
 | 
						|
It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
 | 
						|
vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements,
 | 
						|
    const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
 | 
						|
    VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | 
						|
    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | 
						|
 | 
						|
/** \brief General purpose memory allocation for multiple allocation objects at once.
 | 
						|
 | 
						|
\param allocator Allocator object.
 | 
						|
\param pVkMemoryRequirements Memory requirements for each allocation.
 | 
						|
\param pCreateInfo Creation parameters for each allocation.
 | 
						|
\param allocationCount Number of allocations to make.
 | 
						|
\param[out] pAllocations Pointer to array that will be filled with handles to created allocations.
 | 
						|
\param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.
 | 
						|
 | 
						|
You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
 | 
						|
 | 
						|
Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.
 | 
						|
It is just a general purpose allocation function able to make multiple allocations at once.
 | 
						|
It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.
 | 
						|
 | 
						|
All allocations are made using same parameters. All of them are created out of the same memory pool and type.
 | 
						|
If any allocation fails, all allocations already made within this function call are also freed, so that when
 | 
						|
returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements,
 | 
						|
    const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo,
 | 
						|
    size_t allocationCount,
 | 
						|
    VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,
 | 
						|
    VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo);
 | 
						|
 | 
						|
/** \brief Allocates memory suitable for given `VkBuffer`.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param buffer
 | 
						|
\param pCreateInfo
 | 
						|
\param[out] pAllocation Handle to allocated memory.
 | 
						|
\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
 | 
						|
 | 
						|
It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindBufferMemory().
 | 
						|
 | 
						|
This is a special-purpose function. In most cases you should use vmaCreateBuffer().
 | 
						|
 | 
						|
You must free the allocation using vmaFreeMemory() when no longer needed.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
 | 
						|
    const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
 | 
						|
    VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | 
						|
    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | 
						|
 | 
						|
/** \brief Allocates memory suitable for given `VkImage`.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param image
 | 
						|
\param pCreateInfo
 | 
						|
\param[out] pAllocation Handle to allocated memory.
 | 
						|
\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
 | 
						|
 | 
						|
It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindImageMemory().
 | 
						|
 | 
						|
This is a special-purpose function. In most cases you should use vmaCreateImage().
 | 
						|
 | 
						|
You must free the allocation using vmaFreeMemory() when no longer needed.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
 | 
						|
    const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
 | 
						|
    VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | 
						|
    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | 
						|
 | 
						|
/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
 | 
						|
 | 
						|
Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VmaAllocation VMA_NULLABLE allocation);
 | 
						|
 | 
						|
/** \brief Frees memory and destroys multiple allocations.
 | 
						|
 | 
						|
Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.
 | 
						|
It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),
 | 
						|
vmaAllocateMemoryPages() and other functions.
 | 
						|
It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.
 | 
						|
 | 
						|
Allocations in `pAllocations` array can come from any memory pools and types.
 | 
						|
Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    size_t allocationCount,
 | 
						|
    const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations);
 | 
						|
 | 
						|
/** \brief Returns current information about specified allocation.
 | 
						|
 | 
						|
Current parameters of given allocation are returned in `pAllocationInfo`.
 | 
						|
 | 
						|
Although this function doesn't lock any mutex, so it should be quite efficient,
 | 
						|
you should avoid calling it too often.
 | 
						|
You can retrieve same VmaAllocationInfo structure while creating your resource, from function
 | 
						|
vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
 | 
						|
(e.g. due to defragmentation).
 | 
						|
 | 
						|
There is also a new function vmaGetAllocationInfo2() that offers extended information
 | 
						|
about the allocation, returned using new structure #VmaAllocationInfo2.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo);
 | 
						|
 | 
						|
/** \brief Returns extended information about specified allocation.
 | 
						|
 | 
						|
Current parameters of given allocation are returned in `pAllocationInfo`.
 | 
						|
Extended parameters in structure #VmaAllocationInfo2 include memory block size
 | 
						|
and a flag telling whether the allocation has dedicated memory.
 | 
						|
It can be useful e.g. for interop with OpenGL.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo2(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VmaAllocationInfo2* VMA_NOT_NULL pAllocationInfo);
 | 
						|
 | 
						|
/** \brief Sets pUserData in given allocation to new value.
 | 
						|
 | 
						|
The value of pointer `pUserData` is copied to allocation's `pUserData`.
 | 
						|
It is opaque, so you can use it however you want - e.g.
 | 
						|
as a pointer, ordinal number or some handle to you own data.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    void* VMA_NULLABLE pUserData);
 | 
						|
 | 
						|
/** \brief Sets pName in given allocation to new value.
 | 
						|
 | 
						|
`pName` must be either null, or pointer to a null-terminated string. The function
 | 
						|
makes local copy of the string and sets it as allocation's `pName`. String
 | 
						|
passed as pName doesn't need to be valid for whole lifetime of the allocation -
 | 
						|
you can free it after this call. String previously pointed by allocation's
 | 
						|
`pName` is freed from memory.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    const char* VMA_NULLABLE pName);
 | 
						|
 | 
						|
/**
 | 
						|
\brief Given an allocation, returns Property Flags of its memory type.
 | 
						|
 | 
						|
This is just a convenience function. Same information can be obtained using
 | 
						|
vmaGetAllocationInfo() + vmaGetMemoryProperties().
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
 | 
						|
 | 
						|
 | 
						|
#if VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
/**
 | 
						|
\brief Given an allocation, returns Win32 handle that may be imported by other processes or APIs.
 | 
						|
 | 
						|
\param hTargetProcess Must be a valid handle to target process or null. If it's null, the function returns
 | 
						|
    handle for the current process.
 | 
						|
\param[out] pHandle Output parameter that returns the handle.
 | 
						|
 | 
						|
The function fills `pHandle` with handle that can be used in target process.
 | 
						|
The handle is fetched using function `vkGetMemoryWin32HandleKHR`.
 | 
						|
When no longer needed, you must close it using:
 | 
						|
 | 
						|
\code
 | 
						|
CloseHandle(handle);
 | 
						|
\endcode
 | 
						|
 | 
						|
You can close it any time, before or after destroying the allocation object.
 | 
						|
It is reference-counted internally by Windows.
 | 
						|
 | 
						|
Note the handle is returned for the entire `VkDeviceMemory` block that the allocation belongs to.
 | 
						|
If the allocation is sub-allocated from a larger block, you may need to consider the offset of the allocation
 | 
						|
(VmaAllocationInfo::offset).
 | 
						|
 | 
						|
If the function fails with `VK_ERROR_FEATURE_NOT_PRESENT` error code, please double-check
 | 
						|
that VmaVulkanFunctions::vkGetMemoryWin32HandleKHR function pointer is set, e.g. either by using `VMA_DYNAMIC_VULKAN_FUNCTIONS`
 | 
						|
or by manually passing it through VmaAllocatorCreateInfo::pVulkanFunctions.
 | 
						|
 | 
						|
For more information, see chapter \ref vk_khr_external_memory_win32.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaGetMemoryWin32Handle(VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation, HANDLE hTargetProcess, HANDLE* VMA_NOT_NULL pHandle);
 | 
						|
#endif // VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
 | 
						|
/** \brief Maps memory represented by given allocation and returns pointer to it.
 | 
						|
 | 
						|
Maps memory represented by given allocation to make it accessible to CPU code.
 | 
						|
When succeeded, `*ppData` contains pointer to first byte of this memory.
 | 
						|
 | 
						|
\warning
 | 
						|
If the allocation is part of a bigger `VkDeviceMemory` block, returned pointer is
 | 
						|
correctly offsetted to the beginning of region assigned to this particular allocation.
 | 
						|
Unlike the result of `vkMapMemory`, it points to the allocation, not to the beginning of the whole block.
 | 
						|
You should not add VmaAllocationInfo::offset to it!
 | 
						|
 | 
						|
Mapping is internally reference-counted and synchronized, so despite raw Vulkan
 | 
						|
function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
 | 
						|
multiple times simultaneously, it is safe to call this function on allocations
 | 
						|
assigned to the same memory block. Actual Vulkan memory will be mapped on first
 | 
						|
mapping and unmapped on last unmapping.
 | 
						|
 | 
						|
If the function succeeded, you must call vmaUnmapMemory() to unmap the
 | 
						|
allocation when mapping is no longer needed or before freeing the allocation, at
 | 
						|
the latest.
 | 
						|
 | 
						|
It also safe to call this function multiple times on the same allocation. You
 | 
						|
must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
 | 
						|
 | 
						|
It is also safe to call this function on allocation created with
 | 
						|
#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
 | 
						|
You must still call vmaUnmapMemory() same number of times as you called
 | 
						|
vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
 | 
						|
"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
 | 
						|
 | 
						|
This function fails when used on allocation made in memory type that is not
 | 
						|
`HOST_VISIBLE`.
 | 
						|
 | 
						|
This function doesn't automatically flush or invalidate caches.
 | 
						|
If the allocation is made from a memory types that is not `HOST_COHERENT`,
 | 
						|
you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    void* VMA_NULLABLE* VMA_NOT_NULL ppData);
 | 
						|
 | 
						|
/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
 | 
						|
 | 
						|
For details, see description of vmaMapMemory().
 | 
						|
 | 
						|
This function doesn't automatically flush or invalidate caches.
 | 
						|
If the allocation is made from a memory types that is not `HOST_COHERENT`,
 | 
						|
you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation);
 | 
						|
 | 
						|
/** \brief Flushes memory of given allocation.
 | 
						|
 | 
						|
Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.
 | 
						|
It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`.
 | 
						|
Unmap operation doesn't do that automatically.
 | 
						|
 | 
						|
- `offset` must be relative to the beginning of allocation.
 | 
						|
- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
 | 
						|
- `offset` and `size` don't have to be aligned.
 | 
						|
  They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
 | 
						|
- If `size` is 0, this call is ignored.
 | 
						|
- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
 | 
						|
  this call is ignored.
 | 
						|
 | 
						|
Warning! `offset` and `size` are relative to the contents of given `allocation`.
 | 
						|
If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
 | 
						|
Do not pass allocation's offset as `offset`!!!
 | 
						|
 | 
						|
This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
 | 
						|
called, otherwise `VK_SUCCESS`.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkDeviceSize offset,
 | 
						|
    VkDeviceSize size);
 | 
						|
 | 
						|
/** \brief Invalidates memory of given allocation.
 | 
						|
 | 
						|
Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.
 | 
						|
It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`.
 | 
						|
Map operation doesn't do that automatically.
 | 
						|
 | 
						|
- `offset` must be relative to the beginning of allocation.
 | 
						|
- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
 | 
						|
- `offset` and `size` don't have to be aligned.
 | 
						|
  They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
 | 
						|
- If `size` is 0, this call is ignored.
 | 
						|
- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
 | 
						|
  this call is ignored.
 | 
						|
 | 
						|
Warning! `offset` and `size` are relative to the contents of given `allocation`.
 | 
						|
If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
 | 
						|
Do not pass allocation's offset as `offset`!!!
 | 
						|
 | 
						|
This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if
 | 
						|
it is called, otherwise `VK_SUCCESS`.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkDeviceSize offset,
 | 
						|
    VkDeviceSize size);
 | 
						|
 | 
						|
/** \brief Flushes memory of given set of allocations.
 | 
						|
 | 
						|
Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations.
 | 
						|
For more information, see documentation of vmaFlushAllocation().
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param allocationCount
 | 
						|
\param allocations
 | 
						|
\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all offsets are zero.
 | 
						|
\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
 | 
						|
 | 
						|
This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
 | 
						|
called, otherwise `VK_SUCCESS`.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    uint32_t allocationCount,
 | 
						|
    const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
 | 
						|
    const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
 | 
						|
    const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
 | 
						|
 | 
						|
/** \brief Invalidates memory of given set of allocations.
 | 
						|
 | 
						|
Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations.
 | 
						|
For more information, see documentation of vmaInvalidateAllocation().
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param allocationCount
 | 
						|
\param allocations
 | 
						|
\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all offsets are zero.
 | 
						|
\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
 | 
						|
 | 
						|
This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is
 | 
						|
called, otherwise `VK_SUCCESS`.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    uint32_t allocationCount,
 | 
						|
    const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
 | 
						|
    const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
 | 
						|
    const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
 | 
						|
 | 
						|
/** \brief Maps the allocation temporarily if needed, copies data from specified host pointer to it, and flushes the memory from the host caches if needed.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param pSrcHostPointer Pointer to the host data that become source of the copy.
 | 
						|
\param dstAllocation   Handle to the allocation that becomes destination of the copy.
 | 
						|
\param dstAllocationLocalOffset  Offset within `dstAllocation` where to write copied data, in bytes.
 | 
						|
\param size            Number of bytes to copy.
 | 
						|
 | 
						|
This is a convenience function that allows to copy data from a host pointer to an allocation easily.
 | 
						|
Same behavior can be achieved by calling vmaMapMemory(), `memcpy()`, vmaUnmapMemory(), vmaFlushAllocation().
 | 
						|
 | 
						|
This function can be called only for allocations created in a memory type that has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
 | 
						|
It can be ensured e.g. by using #VMA_MEMORY_USAGE_AUTO and #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or
 | 
						|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
 | 
						|
Otherwise, the function will fail and generate a Validation Layers error.
 | 
						|
 | 
						|
`dstAllocationLocalOffset` is relative to the contents of given `dstAllocation`.
 | 
						|
If you mean whole allocation, you should pass 0.
 | 
						|
Do not pass allocation's offset within device memory block this parameter!
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyMemoryToAllocation(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const void* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(size) pSrcHostPointer,
 | 
						|
    VmaAllocation VMA_NOT_NULL dstAllocation,
 | 
						|
    VkDeviceSize dstAllocationLocalOffset,
 | 
						|
    VkDeviceSize size);
 | 
						|
 | 
						|
/** \brief Invalidates memory in the host caches if needed, maps the allocation temporarily if needed, and copies data from it to a specified host pointer.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param srcAllocation   Handle to the allocation that becomes source of the copy.
 | 
						|
\param srcAllocationLocalOffset  Offset within `srcAllocation` where to read copied data, in bytes.
 | 
						|
\param pDstHostPointer Pointer to the host memory that become destination of the copy.
 | 
						|
\param size            Number of bytes to copy.
 | 
						|
 | 
						|
This is a convenience function that allows to copy data from an allocation to a host pointer easily.
 | 
						|
Same behavior can be achieved by calling vmaInvalidateAllocation(), vmaMapMemory(), `memcpy()`, vmaUnmapMemory().
 | 
						|
 | 
						|
This function should be called only for allocations created in a memory type that has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
 | 
						|
and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT` flag.
 | 
						|
It can be ensured e.g. by using #VMA_MEMORY_USAGE_AUTO and #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
 | 
						|
Otherwise, the function may fail and generate a Validation Layers error.
 | 
						|
It may also work very slowly when reading from an uncached memory.
 | 
						|
 | 
						|
`srcAllocationLocalOffset` is relative to the contents of given `srcAllocation`.
 | 
						|
If you mean whole allocation, you should pass 0.
 | 
						|
Do not pass allocation's offset within device memory block as this parameter!
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyAllocationToMemory(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL srcAllocation,
 | 
						|
    VkDeviceSize srcAllocationLocalOffset,
 | 
						|
    void* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(size) pDstHostPointer,
 | 
						|
    VkDeviceSize size);
 | 
						|
 | 
						|
/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.
 | 
						|
 | 
						|
Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
 | 
						|
`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are
 | 
						|
`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
 | 
						|
 | 
						|
Possible return values:
 | 
						|
 | 
						|
- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.
 | 
						|
- `VK_SUCCESS` - corruption detection has been performed and succeeded.
 | 
						|
- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
 | 
						|
  `VMA_ASSERT` is also fired in that case.
 | 
						|
- Other value: Error returned by Vulkan, e.g. memory mapping failure.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    uint32_t memoryTypeBits);
 | 
						|
 | 
						|
/** \brief Begins defragmentation process.
 | 
						|
 | 
						|
\param allocator Allocator object.
 | 
						|
\param pInfo Structure filled with parameters of defragmentation.
 | 
						|
\param[out] pContext Context object that must be passed to vmaEndDefragmentation() to finish defragmentation.
 | 
						|
\returns
 | 
						|
- `VK_SUCCESS` if defragmentation can begin.
 | 
						|
- `VK_ERROR_FEATURE_NOT_PRESENT` if defragmentation is not supported.
 | 
						|
 | 
						|
For more information about defragmentation, see documentation chapter:
 | 
						|
[Defragmentation](@ref defragmentation).
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VmaDefragmentationInfo* VMA_NOT_NULL pInfo,
 | 
						|
    VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext);
 | 
						|
 | 
						|
/** \brief Ends defragmentation process.
 | 
						|
 | 
						|
\param allocator Allocator object.
 | 
						|
\param context Context object that has been created by vmaBeginDefragmentation().
 | 
						|
\param[out] pStats Optional stats for the defragmentation. Can be null.
 | 
						|
 | 
						|
Use this function to finish defragmentation started by vmaBeginDefragmentation().
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaDefragmentationContext VMA_NOT_NULL context,
 | 
						|
    VmaDefragmentationStats* VMA_NULLABLE pStats);
 | 
						|
 | 
						|
/** \brief Starts single defragmentation pass.
 | 
						|
 | 
						|
\param allocator Allocator object.
 | 
						|
\param context Context object that has been created by vmaBeginDefragmentation().
 | 
						|
\param[out] pPassInfo Computed information for current pass.
 | 
						|
\returns
 | 
						|
- `VK_SUCCESS` if no more moves are possible. Then you can omit call to vmaEndDefragmentationPass() and simply end whole defragmentation.
 | 
						|
- `VK_INCOMPLETE` if there are pending moves returned in `pPassInfo`. You need to perform them, call vmaEndDefragmentationPass(),
 | 
						|
  and then preferably try another pass with vmaBeginDefragmentationPass().
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaDefragmentationContext VMA_NOT_NULL context,
 | 
						|
    VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
 | 
						|
 | 
						|
/** \brief Ends single defragmentation pass.
 | 
						|
 | 
						|
\param allocator Allocator object.
 | 
						|
\param context Context object that has been created by vmaBeginDefragmentation().
 | 
						|
\param pPassInfo Computed information for current pass filled by vmaBeginDefragmentationPass() and possibly modified by you.
 | 
						|
 | 
						|
Returns `VK_SUCCESS` if no more moves are possible or `VK_INCOMPLETE` if more defragmentations are possible.
 | 
						|
 | 
						|
Ends incremental defragmentation pass and commits all defragmentation moves from `pPassInfo`.
 | 
						|
After this call:
 | 
						|
 | 
						|
- Allocations at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY
 | 
						|
  (which is the default) will be pointing to the new destination place.
 | 
						|
- Allocation at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY
 | 
						|
  will be freed.
 | 
						|
 | 
						|
If no more moves are possible you can end whole defragmentation.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaDefragmentationContext VMA_NOT_NULL context,
 | 
						|
    VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
 | 
						|
 | 
						|
/** \brief Binds buffer to allocation.
 | 
						|
 | 
						|
Binds specified buffer to region of memory represented by specified allocation.
 | 
						|
Gets `VkDeviceMemory` handle and offset from the allocation.
 | 
						|
If you want to create a buffer, allocate memory for it and bind them together separately,
 | 
						|
you should use this function for binding instead of standard `vkBindBufferMemory()`,
 | 
						|
because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
 | 
						|
allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
 | 
						|
(which is illegal in Vulkan).
 | 
						|
 | 
						|
It is recommended to use function vmaCreateBuffer() instead of this one.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer);
 | 
						|
 | 
						|
/** \brief Binds buffer to allocation with additional parameters.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param allocation
 | 
						|
\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
 | 
						|
\param buffer
 | 
						|
\param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null.
 | 
						|
 | 
						|
This function is similar to vmaBindBufferMemory(), but it provides additional parameters.
 | 
						|
 | 
						|
If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
 | 
						|
or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
 | 
						|
    const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindBufferMemoryInfoKHR) pNext);
 | 
						|
 | 
						|
/** \brief Binds image to allocation.
 | 
						|
 | 
						|
Binds specified image to region of memory represented by specified allocation.
 | 
						|
Gets `VkDeviceMemory` handle and offset from the allocation.
 | 
						|
If you want to create an image, allocate memory for it and bind them together separately,
 | 
						|
you should use this function for binding instead of standard `vkBindImageMemory()`,
 | 
						|
because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
 | 
						|
allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
 | 
						|
(which is illegal in Vulkan).
 | 
						|
 | 
						|
It is recommended to use function vmaCreateImage() instead of this one.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkImage VMA_NOT_NULL_NON_DISPATCHABLE image);
 | 
						|
 | 
						|
/** \brief Binds image to allocation with additional parameters.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param allocation
 | 
						|
\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
 | 
						|
\param image
 | 
						|
\param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null.
 | 
						|
 | 
						|
This function is similar to vmaBindImageMemory(), but it provides additional parameters.
 | 
						|
 | 
						|
If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
 | 
						|
or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
 | 
						|
    const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindImageMemoryInfoKHR) pNext);
 | 
						|
 | 
						|
/** \brief Creates a new `VkBuffer`, allocates and binds memory for it.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param pBufferCreateInfo
 | 
						|
\param pAllocationCreateInfo
 | 
						|
\param[out] pBuffer Buffer that was created.
 | 
						|
\param[out] pAllocation Allocation that was created.
 | 
						|
\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
 | 
						|
 | 
						|
This function automatically:
 | 
						|
 | 
						|
-# Creates buffer.
 | 
						|
-# Allocates appropriate memory for it.
 | 
						|
-# Binds the buffer with the memory.
 | 
						|
 | 
						|
If any of these operations fail, buffer and allocation are not created,
 | 
						|
returned value is negative error code, `*pBuffer` and `*pAllocation` are null.
 | 
						|
 | 
						|
If the function succeeded, you must destroy both buffer and allocation when you
 | 
						|
no longer need them using either convenience function vmaDestroyBuffer() or
 | 
						|
separately, using `vkDestroyBuffer()` and vmaFreeMemory().
 | 
						|
 | 
						|
If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
 | 
						|
VK_KHR_dedicated_allocation extension is used internally to query driver whether
 | 
						|
it requires or prefers the new buffer to have dedicated allocation. If yes,
 | 
						|
and if dedicated allocation is possible
 | 
						|
(#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
 | 
						|
allocation for this buffer, just like when using
 | 
						|
#VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | 
						|
 | 
						|
\note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer,
 | 
						|
although recommended as a good practice, is out of scope of this library and could be implemented
 | 
						|
by the user as a higher-level logic on top of VMA.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | 
						|
    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | 
						|
    VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
 | 
						|
    VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | 
						|
    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | 
						|
 | 
						|
/** \brief Creates a buffer with additional minimum alignment.
 | 
						|
 | 
						|
Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom,
 | 
						|
minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g.
 | 
						|
for interop with OpenGL.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | 
						|
    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | 
						|
    VkDeviceSize minAlignment,
 | 
						|
    VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
 | 
						|
    VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | 
						|
    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | 
						|
 | 
						|
/** \brief Creates a new `VkBuffer`, binds already created memory for it.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param allocation Allocation that provides memory to be used for binding new buffer to it.
 | 
						|
\param pBufferCreateInfo
 | 
						|
\param[out] pBuffer Buffer that was created.
 | 
						|
 | 
						|
This function automatically:
 | 
						|
 | 
						|
-# Creates buffer.
 | 
						|
-# Binds the buffer with the supplied memory.
 | 
						|
 | 
						|
If any of these operations fail, buffer is not created,
 | 
						|
returned value is negative error code and `*pBuffer` is null.
 | 
						|
 | 
						|
If the function succeeded, you must destroy the buffer when you
 | 
						|
no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding
 | 
						|
allocation you can use convenience function vmaDestroyBuffer().
 | 
						|
 | 
						|
\note There is a new version of this function augmented with parameter `allocationLocalOffset` - see vmaCreateAliasingBuffer2().
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | 
						|
    VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer);
 | 
						|
 | 
						|
/** \brief Creates a new `VkBuffer`, binds already created memory for it.
 | 
						|
 | 
						|
\param allocator
 | 
						|
\param allocation Allocation that provides memory to be used for binding new buffer to it.
 | 
						|
\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the allocation. Normally it should be 0.
 | 
						|
\param pBufferCreateInfo 
 | 
						|
\param[out] pBuffer Buffer that was created.
 | 
						|
 | 
						|
This function automatically:
 | 
						|
 | 
						|
-# Creates buffer.
 | 
						|
-# Binds the buffer with the supplied memory.
 | 
						|
 | 
						|
If any of these operations fail, buffer is not created,
 | 
						|
returned value is negative error code and `*pBuffer` is null.
 | 
						|
 | 
						|
If the function succeeded, you must destroy the buffer when you
 | 
						|
no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding
 | 
						|
allocation you can use convenience function vmaDestroyBuffer().
 | 
						|
 | 
						|
\note This is a new version of the function augmented with parameter `allocationLocalOffset`.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | 
						|
    VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer);
 | 
						|
 | 
						|
/** \brief Destroys Vulkan buffer and frees allocated memory.
 | 
						|
 | 
						|
This is just a convenience function equivalent to:
 | 
						|
 | 
						|
\code
 | 
						|
vkDestroyBuffer(device, buffer, allocationCallbacks);
 | 
						|
vmaFreeMemory(allocator, allocation);
 | 
						|
\endcode
 | 
						|
 | 
						|
It is safe to pass null as buffer and/or allocation.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer,
 | 
						|
    VmaAllocation VMA_NULLABLE allocation);
 | 
						|
 | 
						|
/// Function similar to vmaCreateBuffer().
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | 
						|
    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | 
						|
    VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage,
 | 
						|
    VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | 
						|
    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | 
						|
 | 
						|
/// Function similar to vmaCreateAliasingBuffer() but for images.
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | 
						|
    VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage);
 | 
						|
 | 
						|
/// Function similar to vmaCreateAliasingBuffer2() but for images.
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | 
						|
    VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage);
 | 
						|
 | 
						|
/** \brief Destroys Vulkan image and frees allocated memory.
 | 
						|
 | 
						|
This is just a convenience function equivalent to:
 | 
						|
 | 
						|
\code
 | 
						|
vkDestroyImage(device, image, allocationCallbacks);
 | 
						|
vmaFreeMemory(allocator, allocation);
 | 
						|
\endcode
 | 
						|
 | 
						|
It is safe to pass null as image and/or allocation.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
 | 
						|
    VmaAllocation VMA_NULLABLE allocation);
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
/**
 | 
						|
\addtogroup group_virtual
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/** \brief Creates new #VmaVirtualBlock object.
 | 
						|
 | 
						|
\param pCreateInfo Parameters for creation.
 | 
						|
\param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
 | 
						|
    const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
 | 
						|
    VmaVirtualBlock VMA_NULLABLE* VMA_NOT_NULL pVirtualBlock);
 | 
						|
 | 
						|
/** \brief Destroys #VmaVirtualBlock object.
 | 
						|
 | 
						|
Please note that you should consciously handle virtual allocations that could remain unfreed in the block.
 | 
						|
You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock()
 | 
						|
if you are sure this is what you want. If you do neither, an assert is called.
 | 
						|
 | 
						|
If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`,
 | 
						|
don't forget to free them.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(
 | 
						|
    VmaVirtualBlock VMA_NULLABLE virtualBlock);
 | 
						|
 | 
						|
/** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(
 | 
						|
    VmaVirtualBlock VMA_NOT_NULL virtualBlock);
 | 
						|
 | 
						|
/** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(
 | 
						|
    VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo);
 | 
						|
 | 
						|
/** \brief Allocates new virtual allocation inside given #VmaVirtualBlock.
 | 
						|
 | 
						|
If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned
 | 
						|
(despite the function doesn't ever allocate actual GPU memory).
 | 
						|
`pAllocation` is then set to `VK_NULL_HANDLE` and `pOffset`, if not null, it set to `UINT64_MAX`.
 | 
						|
 | 
						|
\param virtualBlock Virtual block
 | 
						|
\param pCreateInfo Parameters for the allocation
 | 
						|
\param[out] pAllocation Returned handle of the new allocation
 | 
						|
\param[out] pOffset Returned offset of the new allocation. Optional, can be null.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(
 | 
						|
    VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
 | 
						|
    VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation,
 | 
						|
    VkDeviceSize* VMA_NULLABLE pOffset);
 | 
						|
 | 
						|
/** \brief Frees virtual allocation inside given #VmaVirtualBlock.
 | 
						|
 | 
						|
It is correct to call this function with `allocation == VK_NULL_HANDLE` - it does nothing.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(
 | 
						|
    VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation);
 | 
						|
 | 
						|
/** \brief Frees all virtual allocations inside given #VmaVirtualBlock.
 | 
						|
 | 
						|
You must either call this function or free each virtual allocation individually with vmaVirtualFree()
 | 
						|
before destroying a virtual block. Otherwise, an assert is called.
 | 
						|
 | 
						|
If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`,
 | 
						|
don't forget to free it as well.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(
 | 
						|
    VmaVirtualBlock VMA_NOT_NULL virtualBlock);
 | 
						|
 | 
						|
/** \brief Changes custom pointer associated with given virtual allocation.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(
 | 
						|
    VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation,
 | 
						|
    void* VMA_NULLABLE pUserData);
 | 
						|
 | 
						|
/** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
 | 
						|
 | 
						|
This function is fast to call. For more detailed statistics, see vmaCalculateVirtualBlockStatistics().
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(
 | 
						|
    VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    VmaStatistics* VMA_NOT_NULL pStats);
 | 
						|
 | 
						|
/** \brief Calculates and returns detailed statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
 | 
						|
 | 
						|
This function is slow to call. Use for debugging purposes.
 | 
						|
For less detailed statistics, see vmaGetVirtualBlockStatistics().
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(
 | 
						|
    VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    VmaDetailedStatistics* VMA_NOT_NULL pStats);
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
/**
 | 
						|
\addtogroup group_stats
 | 
						|
@{
 | 
						|
*/
 | 
						|
 | 
						|
/** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock.
 | 
						|
\param virtualBlock Virtual block.
 | 
						|
\param[out] ppStatsString Returned string.
 | 
						|
\param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStatistics(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces.
 | 
						|
 | 
						|
Returned string must be freed using vmaFreeVirtualBlockStatsString().
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(
 | 
						|
    VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
 | 
						|
    VkBool32 detailedMap);
 | 
						|
 | 
						|
/// Frees a string returned by vmaBuildVirtualBlockStatsString().
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(
 | 
						|
    VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    char* VMA_NULLABLE pStatsString);
 | 
						|
 | 
						|
/** \brief Builds and returns statistics as a null-terminated string in JSON format.
 | 
						|
\param allocator
 | 
						|
\param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
 | 
						|
\param detailedMap
 | 
						|
*/
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
 | 
						|
    VkBool32 detailedMap);
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    char* VMA_NULLABLE pStatsString);
 | 
						|
 | 
						|
/** @} */
 | 
						|
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
 | 
						|
#endif // _VMA_FUNCTION_HEADERS
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//    IMPLEMENTATION
 | 
						|
//
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
// For Visual Studio IntelliSense.
 | 
						|
#if defined(__cplusplus) && defined(__INTELLISENSE__)
 | 
						|
#define VMA_IMPLEMENTATION
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef VMA_IMPLEMENTATION
 | 
						|
#undef VMA_IMPLEMENTATION
 | 
						|
 | 
						|
#include <cstdint>
 | 
						|
#include <cstdlib>
 | 
						|
#include <cstring>
 | 
						|
#include <cinttypes>
 | 
						|
#include <utility>
 | 
						|
#include <type_traits>
 | 
						|
 | 
						|
#if !defined(VMA_CPP20)
 | 
						|
    #if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20
 | 
						|
        #define VMA_CPP20 1
 | 
						|
    #else
 | 
						|
        #define VMA_CPP20 0
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
    #include <intrin.h> // For functions like __popcnt, _BitScanForward etc.
 | 
						|
#endif
 | 
						|
#if VMA_CPP20
 | 
						|
    #include <bit>
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    #include <cstdio> // For snprintf
 | 
						|
#endif
 | 
						|
 | 
						|
/*******************************************************************************
 | 
						|
CONFIGURATION SECTION
 | 
						|
 | 
						|
Define some of these macros before each #include of this header or change them
 | 
						|
here if you need other then default behavior depending on your environment.
 | 
						|
*/
 | 
						|
#ifndef _VMA_CONFIGURATION
 | 
						|
 | 
						|
/*
 | 
						|
Define this macro to 1 to make the library fetch pointers to Vulkan functions
 | 
						|
internally, like:
 | 
						|
 | 
						|
    vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
 | 
						|
*/
 | 
						|
#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
 | 
						|
    #define VMA_STATIC_VULKAN_FUNCTIONS 1
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
Define this macro to 1 to make the library fetch pointers to Vulkan functions
 | 
						|
internally, like:
 | 
						|
 | 
						|
    vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory");
 | 
						|
 | 
						|
To use this feature in new versions of VMA you now have to pass
 | 
						|
VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as
 | 
						|
VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null.
 | 
						|
*/
 | 
						|
#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS)
 | 
						|
    #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_USE_STL_SHARED_MUTEX
 | 
						|
    #if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
 | 
						|
        #define VMA_USE_STL_SHARED_MUTEX 1
 | 
						|
    // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus
 | 
						|
    // Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.
 | 
						|
    #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L
 | 
						|
        #define VMA_USE_STL_SHARED_MUTEX 1
 | 
						|
    #else
 | 
						|
        #define VMA_USE_STL_SHARED_MUTEX 0
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
Define this macro to include custom header files without having to edit this file directly, e.g.:
 | 
						|
 | 
						|
    // Inside of "my_vma_configuration_user_includes.h":
 | 
						|
 | 
						|
    #include "my_custom_assert.h" // for MY_CUSTOM_ASSERT
 | 
						|
    #include "my_custom_min.h" // for my_custom_min
 | 
						|
    #include <algorithm>
 | 
						|
    #include <mutex>
 | 
						|
 | 
						|
    // Inside a different file, which includes "vk_mem_alloc.h":
 | 
						|
 | 
						|
    #define VMA_CONFIGURATION_USER_INCLUDES_H "my_vma_configuration_user_includes.h"
 | 
						|
    #define VMA_ASSERT(expr) MY_CUSTOM_ASSERT(expr)
 | 
						|
    #define VMA_MIN(v1, v2)  (my_custom_min(v1, v2))
 | 
						|
    #include "vk_mem_alloc.h"
 | 
						|
    ...
 | 
						|
 | 
						|
The following headers are used in this CONFIGURATION section only, so feel free to
 | 
						|
remove them if not needed.
 | 
						|
*/
 | 
						|
#if !defined(VMA_CONFIGURATION_USER_INCLUDES_H)
 | 
						|
    #include <cassert> // for assert
 | 
						|
    #include <algorithm> // for min, max, swap
 | 
						|
    #include <mutex>
 | 
						|
#else
 | 
						|
    #include VMA_CONFIGURATION_USER_INCLUDES_H
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_NULL
 | 
						|
   // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
 | 
						|
   #define VMA_NULL   nullptr
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_FALLTHROUGH
 | 
						|
    #if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
 | 
						|
        #define VMA_FALLTHROUGH [[fallthrough]]
 | 
						|
    #else
 | 
						|
        #define VMA_FALLTHROUGH
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
// Normal assert to check for programmer's errors, especially in Debug configuration.
 | 
						|
#ifndef VMA_ASSERT
 | 
						|
   #ifdef NDEBUG
 | 
						|
       #define VMA_ASSERT(expr)
 | 
						|
   #else
 | 
						|
       #define VMA_ASSERT(expr)         assert(expr)
 | 
						|
   #endif
 | 
						|
#endif
 | 
						|
 | 
						|
// Assert that will be called very often, like inside data structures e.g. operator[].
 | 
						|
// Making it non-empty can make program slow.
 | 
						|
#ifndef VMA_HEAVY_ASSERT
 | 
						|
   #ifdef NDEBUG
 | 
						|
       #define VMA_HEAVY_ASSERT(expr)
 | 
						|
   #else
 | 
						|
       #define VMA_HEAVY_ASSERT(expr)   //VMA_ASSERT(expr)
 | 
						|
   #endif
 | 
						|
#endif
 | 
						|
 | 
						|
// Assert used for reporting memory leaks - unfreed allocations.
 | 
						|
#ifndef VMA_ASSERT_LEAK
 | 
						|
    #define VMA_ASSERT_LEAK(expr)   VMA_ASSERT(expr)
 | 
						|
#endif
 | 
						|
 | 
						|
// If your compiler is not compatible with C++17 and definition of
 | 
						|
// aligned_alloc() function is missing, uncommenting following line may help:
 | 
						|
 | 
						|
//#include <malloc.h>
 | 
						|
 | 
						|
#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)
 | 
						|
#include <cstdlib>
 | 
						|
static void* vma_aligned_alloc(size_t alignment, size_t size)
 | 
						|
{
 | 
						|
    // alignment must be >= sizeof(void*)
 | 
						|
    if(alignment < sizeof(void*))
 | 
						|
    {
 | 
						|
        alignment = sizeof(void*);
 | 
						|
    }
 | 
						|
 | 
						|
    return memalign(alignment, size);
 | 
						|
}
 | 
						|
#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC))
 | 
						|
#include <cstdlib>
 | 
						|
 | 
						|
#if defined(__APPLE__)
 | 
						|
#include <AvailabilityMacros.h>
 | 
						|
#endif
 | 
						|
 | 
						|
static void* vma_aligned_alloc(size_t alignment, size_t size)
 | 
						|
{
 | 
						|
    // Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4)
 | 
						|
    // Therefore, for now disable this specific exception until a proper solution is found.
 | 
						|
    //#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0))
 | 
						|
    //#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0
 | 
						|
    //    // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only
 | 
						|
    //    // with the MacOSX11.0 SDK in Xcode 12 (which is what adds
 | 
						|
    //    // MAC_OS_X_VERSION_10_16), even though the function is marked
 | 
						|
    //    // available for 10.15. That is why the preprocessor checks for 10.16 but
 | 
						|
    //    // the __builtin_available checks for 10.15.
 | 
						|
    //    // People who use C++17 could call aligned_alloc with the 10.15 SDK already.
 | 
						|
    //    if (__builtin_available(macOS 10.15, iOS 13, *))
 | 
						|
    //        return aligned_alloc(alignment, size);
 | 
						|
    //#endif
 | 
						|
    //#endif
 | 
						|
 | 
						|
    // alignment must be >= sizeof(void*)
 | 
						|
    if(alignment < sizeof(void*))
 | 
						|
    {
 | 
						|
        alignment = sizeof(void*);
 | 
						|
    }
 | 
						|
 | 
						|
    void *pointer;
 | 
						|
    if(posix_memalign(&pointer, alignment, size) == 0)
 | 
						|
        return pointer;
 | 
						|
    return VMA_NULL;
 | 
						|
}
 | 
						|
#elif defined(_WIN32)
 | 
						|
static void* vma_aligned_alloc(size_t alignment, size_t size)
 | 
						|
{
 | 
						|
    return _aligned_malloc(size, alignment);
 | 
						|
}
 | 
						|
#elif __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
 | 
						|
static void* vma_aligned_alloc(size_t alignment, size_t size)
 | 
						|
{
 | 
						|
    return aligned_alloc(alignment, size);
 | 
						|
}
 | 
						|
#else
 | 
						|
static void* vma_aligned_alloc(size_t alignment, size_t size)
 | 
						|
{
 | 
						|
    VMA_ASSERT(0 && "Could not implement aligned_alloc automatically. Please enable C++17 or later in your compiler or provide custom implementation of macro VMA_SYSTEM_ALIGNED_MALLOC (and VMA_SYSTEM_ALIGNED_FREE if needed) using the API of your system.");
 | 
						|
    return VMA_NULL;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN32)
 | 
						|
static void vma_aligned_free(void* ptr)
 | 
						|
{
 | 
						|
    _aligned_free(ptr);
 | 
						|
}
 | 
						|
#else
 | 
						|
static void vma_aligned_free(void* VMA_NULLABLE ptr)
 | 
						|
{
 | 
						|
    free(ptr);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_ALIGN_OF
 | 
						|
   #define VMA_ALIGN_OF(type)       (alignof(type))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_SYSTEM_ALIGNED_MALLOC
 | 
						|
   #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_SYSTEM_ALIGNED_FREE
 | 
						|
   // VMA_SYSTEM_FREE is the old name, but might have been defined by the user
 | 
						|
   #if defined(VMA_SYSTEM_FREE)
 | 
						|
      #define VMA_SYSTEM_ALIGNED_FREE(ptr)     VMA_SYSTEM_FREE(ptr)
 | 
						|
   #else
 | 
						|
      #define VMA_SYSTEM_ALIGNED_FREE(ptr)     vma_aligned_free(ptr)
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_COUNT_BITS_SET
 | 
						|
    // Returns number of bits set to 1 in (v)
 | 
						|
    #define VMA_COUNT_BITS_SET(v) VmaCountBitsSet(v)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_BITSCAN_LSB
 | 
						|
    // Scans integer for index of first nonzero value from the Least Significant Bit (LSB). If mask is 0 then returns UINT8_MAX
 | 
						|
    #define VMA_BITSCAN_LSB(mask) VmaBitScanLSB(mask)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_BITSCAN_MSB
 | 
						|
    // Scans integer for index of first nonzero value from the Most Significant Bit (MSB). If mask is 0 then returns UINT8_MAX
 | 
						|
    #define VMA_BITSCAN_MSB(mask) VmaBitScanMSB(mask)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_MIN
 | 
						|
   #define VMA_MIN(v1, v2)    ((std::min)((v1), (v2)))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_MAX
 | 
						|
   #define VMA_MAX(v1, v2)    ((std::max)((v1), (v2)))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_SORT
 | 
						|
   #define VMA_SORT(beg, end, cmp)  std::sort(beg, end, cmp)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_DEBUG_LOG_FORMAT
 | 
						|
   #define VMA_DEBUG_LOG_FORMAT(format, ...)
 | 
						|
   /*
 | 
						|
   #define VMA_DEBUG_LOG_FORMAT(format, ...) do { \
 | 
						|
       printf((format), __VA_ARGS__); \
 | 
						|
       printf("\n"); \
 | 
						|
   } while(false)
 | 
						|
   */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_DEBUG_LOG
 | 
						|
    #define VMA_DEBUG_LOG(str)   VMA_DEBUG_LOG_FORMAT("%s", (str))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_LEAK_LOG_FORMAT
 | 
						|
    #define VMA_LEAK_LOG_FORMAT(format, ...)   VMA_DEBUG_LOG_FORMAT(format, __VA_ARGS__)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_CLASS_NO_COPY
 | 
						|
    #define VMA_CLASS_NO_COPY(className) \
 | 
						|
        private: \
 | 
						|
            className(const className&) = delete; \
 | 
						|
            className& operator=(const className&) = delete;
 | 
						|
#endif
 | 
						|
#ifndef VMA_CLASS_NO_COPY_NO_MOVE
 | 
						|
    #define VMA_CLASS_NO_COPY_NO_MOVE(className) \
 | 
						|
        private: \
 | 
						|
            className(const className&) = delete; \
 | 
						|
            className(className&&) = delete; \
 | 
						|
            className& operator=(const className&) = delete; \
 | 
						|
            className& operator=(className&&) = delete;
 | 
						|
#endif
 | 
						|
 | 
						|
// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num)
 | 
						|
    {
 | 
						|
        snprintf(outStr, strLen, "%" PRIu32, num);
 | 
						|
    }
 | 
						|
    static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num)
 | 
						|
    {
 | 
						|
        snprintf(outStr, strLen, "%" PRIu64, num);
 | 
						|
    }
 | 
						|
    static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr)
 | 
						|
    {
 | 
						|
        snprintf(outStr, strLen, "%p", ptr);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_MUTEX
 | 
						|
    class VmaMutex
 | 
						|
    {
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaMutex)
 | 
						|
    public:
 | 
						|
        VmaMutex() { }
 | 
						|
        void Lock() { m_Mutex.lock(); }
 | 
						|
        void Unlock() { m_Mutex.unlock(); }
 | 
						|
        bool TryLock() { return m_Mutex.try_lock(); }
 | 
						|
    private:
 | 
						|
        std::mutex m_Mutex;
 | 
						|
    };
 | 
						|
    #define VMA_MUTEX VmaMutex
 | 
						|
#endif
 | 
						|
 | 
						|
// Read-write mutex, where "read" is shared access, "write" is exclusive access.
 | 
						|
#ifndef VMA_RW_MUTEX
 | 
						|
    #if VMA_USE_STL_SHARED_MUTEX
 | 
						|
        // Use std::shared_mutex from C++17.
 | 
						|
        #include <shared_mutex>
 | 
						|
        class VmaRWMutex
 | 
						|
        {
 | 
						|
        public:
 | 
						|
            void LockRead() { m_Mutex.lock_shared(); }
 | 
						|
            void UnlockRead() { m_Mutex.unlock_shared(); }
 | 
						|
            bool TryLockRead() { return m_Mutex.try_lock_shared(); }
 | 
						|
            void LockWrite() { m_Mutex.lock(); }
 | 
						|
            void UnlockWrite() { m_Mutex.unlock(); }
 | 
						|
            bool TryLockWrite() { return m_Mutex.try_lock(); }
 | 
						|
        private:
 | 
						|
            std::shared_mutex m_Mutex;
 | 
						|
        };
 | 
						|
        #define VMA_RW_MUTEX VmaRWMutex
 | 
						|
    #elif defined(_WIN32) && defined(WINVER) && defined(SRWLOCK_INIT) && WINVER >= 0x0600
 | 
						|
        // Use SRWLOCK from WinAPI.
 | 
						|
        // Minimum supported client = Windows Vista, server = Windows Server 2008.
 | 
						|
        class VmaRWMutex
 | 
						|
        {
 | 
						|
        public:
 | 
						|
            VmaRWMutex() { InitializeSRWLock(&m_Lock); }
 | 
						|
            void LockRead() { AcquireSRWLockShared(&m_Lock); }
 | 
						|
            void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }
 | 
						|
            bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; }
 | 
						|
            void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }
 | 
						|
            void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }
 | 
						|
            bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; }
 | 
						|
        private:
 | 
						|
            SRWLOCK m_Lock;
 | 
						|
        };
 | 
						|
        #define VMA_RW_MUTEX VmaRWMutex
 | 
						|
    #else
 | 
						|
        // Less efficient fallback: Use normal mutex.
 | 
						|
        class VmaRWMutex
 | 
						|
        {
 | 
						|
        public:
 | 
						|
            void LockRead() { m_Mutex.Lock(); }
 | 
						|
            void UnlockRead() { m_Mutex.Unlock(); }
 | 
						|
            bool TryLockRead() { return m_Mutex.TryLock(); }
 | 
						|
            void LockWrite() { m_Mutex.Lock(); }
 | 
						|
            void UnlockWrite() { m_Mutex.Unlock(); }
 | 
						|
            bool TryLockWrite() { return m_Mutex.TryLock(); }
 | 
						|
        private:
 | 
						|
            VMA_MUTEX m_Mutex;
 | 
						|
        };
 | 
						|
        #define VMA_RW_MUTEX VmaRWMutex
 | 
						|
    #endif // #if VMA_USE_STL_SHARED_MUTEX
 | 
						|
#endif // #ifndef VMA_RW_MUTEX
 | 
						|
 | 
						|
/*
 | 
						|
If providing your own implementation, you need to implement a subset of std::atomic.
 | 
						|
*/
 | 
						|
#ifndef VMA_ATOMIC_UINT32
 | 
						|
    #include <atomic>
 | 
						|
    #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_ATOMIC_UINT64
 | 
						|
    #include <atomic>
 | 
						|
    #define VMA_ATOMIC_UINT64 std::atomic<uint64_t>
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
 | 
						|
    /**
 | 
						|
    Every allocation will have its own memory block.
 | 
						|
    Define to 1 for debugging purposes only.
 | 
						|
    */
 | 
						|
    #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_MIN_ALIGNMENT
 | 
						|
    /**
 | 
						|
    Minimum alignment of all allocations, in bytes.
 | 
						|
    Set to more than 1 for debugging purposes. Must be power of two.
 | 
						|
    */
 | 
						|
    #ifdef VMA_DEBUG_ALIGNMENT // Old name
 | 
						|
        #define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT
 | 
						|
    #else
 | 
						|
        #define VMA_MIN_ALIGNMENT (1)
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_DEBUG_MARGIN
 | 
						|
    /**
 | 
						|
    Minimum margin after every allocation, in bytes.
 | 
						|
    Set nonzero for debugging purposes only.
 | 
						|
    */
 | 
						|
    #define VMA_DEBUG_MARGIN (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS
 | 
						|
    /**
 | 
						|
    Define this macro to 1 to automatically fill new allocations and destroyed
 | 
						|
    allocations with some bit pattern.
 | 
						|
    */
 | 
						|
    #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_DEBUG_DETECT_CORRUPTION
 | 
						|
    /**
 | 
						|
    Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to
 | 
						|
    enable writing magic value to the margin after every allocation and
 | 
						|
    validating it, so that memory corruptions (out-of-bounds writes) are detected.
 | 
						|
    */
 | 
						|
    #define VMA_DEBUG_DETECT_CORRUPTION (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_DEBUG_GLOBAL_MUTEX
 | 
						|
    /**
 | 
						|
    Set this to 1 for debugging purposes only, to enable single mutex protecting all
 | 
						|
    entry calls to the library. Can be useful for debugging multithreading issues.
 | 
						|
    */
 | 
						|
    #define VMA_DEBUG_GLOBAL_MUTEX (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
 | 
						|
    /**
 | 
						|
    Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
 | 
						|
    Set to more than 1 for debugging purposes only. Must be power of two.
 | 
						|
    */
 | 
						|
    #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
 | 
						|
    /*
 | 
						|
    Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount
 | 
						|
    and return error instead of leaving up to Vulkan implementation what to do in such cases.
 | 
						|
    */
 | 
						|
    #define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_SMALL_HEAP_MAX_SIZE
 | 
						|
   /// Maximum size of a memory heap in Vulkan to consider it "small".
 | 
						|
   #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
 | 
						|
   /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
 | 
						|
   #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
Mapping hysteresis is a logic that launches when vmaMapMemory/vmaUnmapMemory is called
 | 
						|
or a persistently mapped allocation is created and destroyed several times in a row.
 | 
						|
It keeps additional +1 mapping of a device memory block to prevent calling actual
 | 
						|
vkMapMemory/vkUnmapMemory too many times, which may improve performance and help
 | 
						|
tools like RenderDoc.
 | 
						|
*/
 | 
						|
#ifndef VMA_MAPPING_HYSTERESIS_ENABLED
 | 
						|
    #define VMA_MAPPING_HYSTERESIS_ENABLED 1
 | 
						|
#endif
 | 
						|
 | 
						|
#define VMA_VALIDATE(cond) do { if(!(cond)) { \
 | 
						|
        VMA_ASSERT(0 && "Validation failed: " #cond); \
 | 
						|
        return false; \
 | 
						|
    } } while(false)
 | 
						|
 | 
						|
/*******************************************************************************
 | 
						|
END OF CONFIGURATION
 | 
						|
*/
 | 
						|
#endif // _VMA_CONFIGURATION
 | 
						|
 | 
						|
 | 
						|
static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC;
 | 
						|
static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;
 | 
						|
// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.
 | 
						|
static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;
 | 
						|
 | 
						|
// Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants.
 | 
						|
static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040;
 | 
						|
static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080;
 | 
						|
static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000;
 | 
						|
static const uint32_t VK_IMAGE_CREATE_DISJOINT_BIT_COPY = 0x00000200;
 | 
						|
static const int32_t VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY = 1000158000;
 | 
						|
static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;
 | 
						|
static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
 | 
						|
static const uint32_t VMA_VENDOR_ID_AMD = 4098;
 | 
						|
 | 
						|
// This one is tricky. Vulkan specification defines this code as available since
 | 
						|
// Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131.
 | 
						|
// See pull request #207.
 | 
						|
#define VK_ERROR_UNKNOWN_COPY ((VkResult)-13)
 | 
						|
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
// Correspond to values of enum VmaSuballocationType.
 | 
						|
static const char* VMA_SUBALLOCATION_TYPE_NAMES[] =
 | 
						|
{
 | 
						|
    "FREE",
 | 
						|
    "UNKNOWN",
 | 
						|
    "BUFFER",
 | 
						|
    "IMAGE_UNKNOWN",
 | 
						|
    "IMAGE_LINEAR",
 | 
						|
    "IMAGE_OPTIMAL",
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
static VkAllocationCallbacks VmaEmptyAllocationCallbacks =
 | 
						|
    { VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
 | 
						|
 | 
						|
 | 
						|
#ifndef _VMA_ENUM_DECLARATIONS
 | 
						|
 | 
						|
enum VmaSuballocationType
 | 
						|
{
 | 
						|
    VMA_SUBALLOCATION_TYPE_FREE = 0,
 | 
						|
    VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
 | 
						|
    VMA_SUBALLOCATION_TYPE_BUFFER = 2,
 | 
						|
    VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
 | 
						|
    VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
 | 
						|
    VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
 | 
						|
    VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
 | 
						|
};
 | 
						|
 | 
						|
enum VMA_CACHE_OPERATION
 | 
						|
{
 | 
						|
    VMA_CACHE_FLUSH,
 | 
						|
    VMA_CACHE_INVALIDATE
 | 
						|
};
 | 
						|
 | 
						|
enum class VmaAllocationRequestType
 | 
						|
{
 | 
						|
    Normal,
 | 
						|
    TLSF,
 | 
						|
    // Used by "Linear" algorithm.
 | 
						|
    UpperAddress,
 | 
						|
    EndOf1st,
 | 
						|
    EndOf2nd,
 | 
						|
};
 | 
						|
 | 
						|
#endif // _VMA_ENUM_DECLARATIONS
 | 
						|
 | 
						|
#ifndef _VMA_FORWARD_DECLARATIONS
 | 
						|
// Opaque handle used by allocation algorithms to identify single allocation in any conforming way.
 | 
						|
VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaAllocHandle);
 | 
						|
 | 
						|
struct VmaMutexLock;
 | 
						|
struct VmaMutexLockRead;
 | 
						|
struct VmaMutexLockWrite;
 | 
						|
 | 
						|
template<typename T>
 | 
						|
struct AtomicTransactionalIncrement;
 | 
						|
 | 
						|
template<typename T>
 | 
						|
struct VmaStlAllocator;
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
class VmaVector;
 | 
						|
 | 
						|
template<typename T, typename AllocatorT, size_t N>
 | 
						|
class VmaSmallVector;
 | 
						|
 | 
						|
template<typename T>
 | 
						|
class VmaPoolAllocator;
 | 
						|
 | 
						|
template<typename T>
 | 
						|
struct VmaListItem;
 | 
						|
 | 
						|
template<typename T>
 | 
						|
class VmaRawList;
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
class VmaList;
 | 
						|
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
class VmaIntrusiveLinkedList;
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
class VmaStringBuilder;
 | 
						|
class VmaJsonWriter;
 | 
						|
#endif
 | 
						|
 | 
						|
class VmaDeviceMemoryBlock;
 | 
						|
 | 
						|
struct VmaDedicatedAllocationListItemTraits;
 | 
						|
class VmaDedicatedAllocationList;
 | 
						|
 | 
						|
struct VmaSuballocation;
 | 
						|
struct VmaSuballocationOffsetLess;
 | 
						|
struct VmaSuballocationOffsetGreater;
 | 
						|
struct VmaSuballocationItemSizeLess;
 | 
						|
 | 
						|
typedef VmaList<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> VmaSuballocationList;
 | 
						|
 | 
						|
struct VmaAllocationRequest;
 | 
						|
 | 
						|
class VmaBlockMetadata;
 | 
						|
class VmaBlockMetadata_Linear;
 | 
						|
class VmaBlockMetadata_TLSF;
 | 
						|
 | 
						|
class VmaBlockVector;
 | 
						|
 | 
						|
struct VmaPoolListItemTraits;
 | 
						|
 | 
						|
struct VmaCurrentBudgetData;
 | 
						|
 | 
						|
class VmaAllocationObjectAllocator;
 | 
						|
 | 
						|
#endif // _VMA_FORWARD_DECLARATIONS
 | 
						|
 | 
						|
 | 
						|
#ifndef _VMA_FUNCTIONS
 | 
						|
 | 
						|
/*
 | 
						|
Returns number of bits set to 1 in (v).
 | 
						|
 | 
						|
On specific platforms and compilers you can use intrinsics like:
 | 
						|
 | 
						|
Visual Studio:
 | 
						|
    return __popcnt(v);
 | 
						|
GCC, Clang:
 | 
						|
    return static_cast<uint32_t>(__builtin_popcount(v));
 | 
						|
 | 
						|
Define macro VMA_COUNT_BITS_SET to provide your optimized implementation.
 | 
						|
But you need to check in runtime whether user's CPU supports these, as some old processors don't.
 | 
						|
*/
 | 
						|
static inline uint32_t VmaCountBitsSet(uint32_t v)
 | 
						|
{
 | 
						|
#if VMA_CPP20
 | 
						|
    return std::popcount(v);
 | 
						|
#else
 | 
						|
    uint32_t c = v - ((v >> 1) & 0x55555555);
 | 
						|
    c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
 | 
						|
    c = ((c >> 4) + c) & 0x0F0F0F0F;
 | 
						|
    c = ((c >> 8) + c) & 0x00FF00FF;
 | 
						|
    c = ((c >> 16) + c) & 0x0000FFFF;
 | 
						|
    return c;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static inline uint8_t VmaBitScanLSB(uint64_t mask)
 | 
						|
{
 | 
						|
#if defined(_MSC_VER) && defined(_WIN64)
 | 
						|
    unsigned long pos;
 | 
						|
    if (_BitScanForward64(&pos, mask))
 | 
						|
        return static_cast<uint8_t>(pos);
 | 
						|
    return UINT8_MAX;
 | 
						|
#elif VMA_CPP20
 | 
						|
    if(mask)
 | 
						|
        return static_cast<uint8_t>(std::countr_zero(mask));
 | 
						|
    return UINT8_MAX;
 | 
						|
#elif defined __GNUC__ || defined __clang__
 | 
						|
    return static_cast<uint8_t>(__builtin_ffsll(mask)) - 1U;
 | 
						|
#else
 | 
						|
    uint8_t pos = 0;
 | 
						|
    uint64_t bit = 1;
 | 
						|
    do
 | 
						|
    {
 | 
						|
        if (mask & bit)
 | 
						|
            return pos;
 | 
						|
        bit <<= 1;
 | 
						|
    } while (pos++ < 63);
 | 
						|
    return UINT8_MAX;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static inline uint8_t VmaBitScanLSB(uint32_t mask)
 | 
						|
{
 | 
						|
#ifdef _MSC_VER
 | 
						|
    unsigned long pos;
 | 
						|
    if (_BitScanForward(&pos, mask))
 | 
						|
        return static_cast<uint8_t>(pos);
 | 
						|
    return UINT8_MAX;
 | 
						|
#elif VMA_CPP20
 | 
						|
    if(mask)
 | 
						|
        return static_cast<uint8_t>(std::countr_zero(mask));
 | 
						|
    return UINT8_MAX;
 | 
						|
#elif defined __GNUC__ || defined __clang__
 | 
						|
    return static_cast<uint8_t>(__builtin_ffs(mask)) - 1U;
 | 
						|
#else
 | 
						|
    uint8_t pos = 0;
 | 
						|
    uint32_t bit = 1;
 | 
						|
    do
 | 
						|
    {
 | 
						|
        if (mask & bit)
 | 
						|
            return pos;
 | 
						|
        bit <<= 1;
 | 
						|
    } while (pos++ < 31);
 | 
						|
    return UINT8_MAX;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static inline uint8_t VmaBitScanMSB(uint64_t mask)
 | 
						|
{
 | 
						|
#if defined(_MSC_VER) && defined(_WIN64)
 | 
						|
    unsigned long pos;
 | 
						|
    if (_BitScanReverse64(&pos, mask))
 | 
						|
        return static_cast<uint8_t>(pos);
 | 
						|
#elif VMA_CPP20
 | 
						|
    if(mask)
 | 
						|
        return 63 - static_cast<uint8_t>(std::countl_zero(mask));
 | 
						|
#elif defined __GNUC__ || defined __clang__
 | 
						|
    if (mask)
 | 
						|
        return 63 - static_cast<uint8_t>(__builtin_clzll(mask));
 | 
						|
#else
 | 
						|
    uint8_t pos = 63;
 | 
						|
    uint64_t bit = 1ULL << 63;
 | 
						|
    do
 | 
						|
    {
 | 
						|
        if (mask & bit)
 | 
						|
            return pos;
 | 
						|
        bit >>= 1;
 | 
						|
    } while (pos-- > 0);
 | 
						|
#endif
 | 
						|
    return UINT8_MAX;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint8_t VmaBitScanMSB(uint32_t mask)
 | 
						|
{
 | 
						|
#ifdef _MSC_VER
 | 
						|
    unsigned long pos;
 | 
						|
    if (_BitScanReverse(&pos, mask))
 | 
						|
        return static_cast<uint8_t>(pos);
 | 
						|
#elif VMA_CPP20
 | 
						|
    if(mask)
 | 
						|
        return 31 - static_cast<uint8_t>(std::countl_zero(mask));
 | 
						|
#elif defined __GNUC__ || defined __clang__
 | 
						|
    if (mask)
 | 
						|
        return 31 - static_cast<uint8_t>(__builtin_clz(mask));
 | 
						|
#else
 | 
						|
    uint8_t pos = 31;
 | 
						|
    uint32_t bit = 1UL << 31;
 | 
						|
    do
 | 
						|
    {
 | 
						|
        if (mask & bit)
 | 
						|
            return pos;
 | 
						|
        bit >>= 1;
 | 
						|
    } while (pos-- > 0);
 | 
						|
#endif
 | 
						|
    return UINT8_MAX;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Returns true if given number is a power of two.
 | 
						|
T must be unsigned integer number or signed integer but always nonnegative.
 | 
						|
For 0 returns true.
 | 
						|
*/
 | 
						|
template <typename T>
 | 
						|
inline bool VmaIsPow2(T x)
 | 
						|
{
 | 
						|
    return (x & (x - 1)) == 0;
 | 
						|
}
 | 
						|
 | 
						|
// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
 | 
						|
// Use types like uint32_t, uint64_t as T.
 | 
						|
template <typename T>
 | 
						|
static inline T VmaAlignUp(T val, T alignment)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
 | 
						|
    return (val + alignment - 1) & ~(alignment - 1);
 | 
						|
}
 | 
						|
 | 
						|
// Aligns given value down to nearest multiply of align value. For example: VmaAlignDown(11, 8) = 8.
 | 
						|
// Use types like uint32_t, uint64_t as T.
 | 
						|
template <typename T>
 | 
						|
static inline T VmaAlignDown(T val, T alignment)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
 | 
						|
    return val & ~(alignment - 1);
 | 
						|
}
 | 
						|
 | 
						|
// Division with mathematical rounding to nearest number.
 | 
						|
template <typename T>
 | 
						|
static inline T VmaRoundDiv(T x, T y)
 | 
						|
{
 | 
						|
    return (x + (y / (T)2)) / y;
 | 
						|
}
 | 
						|
 | 
						|
// Divide by 'y' and round up to nearest integer.
 | 
						|
template <typename T>
 | 
						|
static inline T VmaDivideRoundingUp(T x, T y)
 | 
						|
{
 | 
						|
    return (x + y - (T)1) / y;
 | 
						|
}
 | 
						|
 | 
						|
// Returns smallest power of 2 greater or equal to v.
 | 
						|
static inline uint32_t VmaNextPow2(uint32_t v)
 | 
						|
{
 | 
						|
    v--;
 | 
						|
    v |= v >> 1;
 | 
						|
    v |= v >> 2;
 | 
						|
    v |= v >> 4;
 | 
						|
    v |= v >> 8;
 | 
						|
    v |= v >> 16;
 | 
						|
    v++;
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint64_t VmaNextPow2(uint64_t v)
 | 
						|
{
 | 
						|
    v--;
 | 
						|
    v |= v >> 1;
 | 
						|
    v |= v >> 2;
 | 
						|
    v |= v >> 4;
 | 
						|
    v |= v >> 8;
 | 
						|
    v |= v >> 16;
 | 
						|
    v |= v >> 32;
 | 
						|
    v++;
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
// Returns largest power of 2 less or equal to v.
 | 
						|
static inline uint32_t VmaPrevPow2(uint32_t v)
 | 
						|
{
 | 
						|
    v |= v >> 1;
 | 
						|
    v |= v >> 2;
 | 
						|
    v |= v >> 4;
 | 
						|
    v |= v >> 8;
 | 
						|
    v |= v >> 16;
 | 
						|
    v = v ^ (v >> 1);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint64_t VmaPrevPow2(uint64_t v)
 | 
						|
{
 | 
						|
    v |= v >> 1;
 | 
						|
    v |= v >> 2;
 | 
						|
    v |= v >> 4;
 | 
						|
    v |= v >> 8;
 | 
						|
    v |= v >> 16;
 | 
						|
    v |= v >> 32;
 | 
						|
    v = v ^ (v >> 1);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool VmaStrIsEmpty(const char* pStr)
 | 
						|
{
 | 
						|
    return pStr == VMA_NULL || *pStr == '\0';
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Returns true if two memory blocks occupy overlapping pages.
 | 
						|
ResourceA must be in less memory offset than ResourceB.
 | 
						|
 | 
						|
Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
 | 
						|
chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
 | 
						|
*/
 | 
						|
static inline bool VmaBlocksOnSamePage(
 | 
						|
    VkDeviceSize resourceAOffset,
 | 
						|
    VkDeviceSize resourceASize,
 | 
						|
    VkDeviceSize resourceBOffset,
 | 
						|
    VkDeviceSize pageSize)
 | 
						|
{
 | 
						|
    VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
 | 
						|
    VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
 | 
						|
    VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
 | 
						|
    VkDeviceSize resourceBStart = resourceBOffset;
 | 
						|
    VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
 | 
						|
    return resourceAEndPage == resourceBStartPage;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Returns true if given suballocation types could conflict and must respect
 | 
						|
VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
 | 
						|
or linear image and another one is optimal image. If type is unknown, behave
 | 
						|
conservatively.
 | 
						|
*/
 | 
						|
static inline bool VmaIsBufferImageGranularityConflict(
 | 
						|
    VmaSuballocationType suballocType1,
 | 
						|
    VmaSuballocationType suballocType2)
 | 
						|
{
 | 
						|
    if (suballocType1 > suballocType2)
 | 
						|
    {
 | 
						|
        std::swap(suballocType1, suballocType2);
 | 
						|
    }
 | 
						|
 | 
						|
    switch (suballocType1)
 | 
						|
    {
 | 
						|
    case VMA_SUBALLOCATION_TYPE_FREE:
 | 
						|
        return false;
 | 
						|
    case VMA_SUBALLOCATION_TYPE_UNKNOWN:
 | 
						|
        return true;
 | 
						|
    case VMA_SUBALLOCATION_TYPE_BUFFER:
 | 
						|
        return
 | 
						|
            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
 | 
						|
            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
 | 
						|
    case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
 | 
						|
        return
 | 
						|
            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
 | 
						|
            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
 | 
						|
            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
 | 
						|
    case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
 | 
						|
        return
 | 
						|
            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
 | 
						|
    case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
 | 
						|
        return false;
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void VmaWriteMagicValue(void* pData, VkDeviceSize offset)
 | 
						|
{
 | 
						|
#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
 | 
						|
    uint32_t* pDst = (uint32_t*)((char*)pData + offset);
 | 
						|
    const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
 | 
						|
    for (size_t i = 0; i < numberCount; ++i, ++pDst)
 | 
						|
    {
 | 
						|
        *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;
 | 
						|
    }
 | 
						|
#else
 | 
						|
    // no-op
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset)
 | 
						|
{
 | 
						|
#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
 | 
						|
    const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset);
 | 
						|
    const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
 | 
						|
    for (size_t i = 0; i < numberCount; ++i, ++pSrc)
 | 
						|
    {
 | 
						|
        if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE)
 | 
						|
        {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Fills structure with parameters of an example buffer to be used for transfers
 | 
						|
during GPU memory defragmentation.
 | 
						|
*/
 | 
						|
static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo)
 | 
						|
{
 | 
						|
    memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));
 | 
						|
    outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
 | 
						|
    outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | 
						|
    outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
Performs binary search and returns iterator to first element that is greater or
 | 
						|
equal to (key), according to comparison (cmp).
 | 
						|
 | 
						|
Cmp should return true if first argument is less than second argument.
 | 
						|
 | 
						|
Returned value is the found element, if present in the collection or place where
 | 
						|
new element with value (key) should be inserted.
 | 
						|
*/
 | 
						|
template <typename CmpLess, typename IterT, typename KeyT>
 | 
						|
static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp)
 | 
						|
{
 | 
						|
    size_t down = 0, up = size_t(end - beg);
 | 
						|
    while (down < up)
 | 
						|
    {
 | 
						|
        const size_t mid = down + (up - down) / 2;  // Overflow-safe midpoint calculation
 | 
						|
        if (cmp(*(beg + mid), key))
 | 
						|
        {
 | 
						|
            down = mid + 1;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            up = mid;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return beg + down;
 | 
						|
}
 | 
						|
 | 
						|
template<typename CmpLess, typename IterT, typename KeyT>
 | 
						|
IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp)
 | 
						|
{
 | 
						|
    IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>(
 | 
						|
        beg, end, value, cmp);
 | 
						|
    if (it == end ||
 | 
						|
        (!cmp(*it, value) && !cmp(value, *it)))
 | 
						|
    {
 | 
						|
        return it;
 | 
						|
    }
 | 
						|
    return end;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Returns true if all pointers in the array are not-null and unique.
 | 
						|
Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.
 | 
						|
T must be pointer type, e.g. VmaAllocation, VmaPool.
 | 
						|
*/
 | 
						|
template<typename T>
 | 
						|
static bool VmaValidatePointerArray(uint32_t count, const T* arr)
 | 
						|
{
 | 
						|
    for (uint32_t i = 0; i < count; ++i)
 | 
						|
    {
 | 
						|
        const T iPtr = arr[i];
 | 
						|
        if (iPtr == VMA_NULL)
 | 
						|
        {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        for (uint32_t j = i + 1; j < count; ++j)
 | 
						|
        {
 | 
						|
            if (iPtr == arr[j])
 | 
						|
            {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
template<typename MainT, typename NewT>
 | 
						|
static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct)
 | 
						|
{
 | 
						|
    newStruct->pNext = mainStruct->pNext;
 | 
						|
    mainStruct->pNext = newStruct;
 | 
						|
}
 | 
						|
// Finds structure with s->sType == sType in mainStruct->pNext chain.
 | 
						|
// Returns pointer to it. If not found, returns null.
 | 
						|
template<typename FindT, typename MainT>
 | 
						|
static inline const FindT* VmaPnextChainFind(const MainT* mainStruct, VkStructureType sType)
 | 
						|
{
 | 
						|
    for(const VkBaseInStructure* s = (const VkBaseInStructure*)mainStruct->pNext;
 | 
						|
        s != VMA_NULL; s = s->pNext)
 | 
						|
    {
 | 
						|
        if(s->sType == sType)
 | 
						|
        {
 | 
						|
            return (const FindT*)s;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return VMA_NULL;
 | 
						|
}
 | 
						|
 | 
						|
// An abstraction over buffer or image `usage` flags, depending on available extensions.
 | 
						|
struct VmaBufferImageUsage
 | 
						|
{
 | 
						|
#if VMA_KHR_MAINTENANCE5
 | 
						|
    typedef uint64_t BaseType; // VkFlags64
 | 
						|
#else
 | 
						|
    typedef uint32_t BaseType; // VkFlags32
 | 
						|
#endif
 | 
						|
 | 
						|
    static const VmaBufferImageUsage UNKNOWN;
 | 
						|
 | 
						|
    BaseType Value;
 | 
						|
 | 
						|
    VmaBufferImageUsage() { *this = UNKNOWN; }
 | 
						|
    explicit VmaBufferImageUsage(BaseType usage) : Value(usage) { }
 | 
						|
    VmaBufferImageUsage(const VkBufferCreateInfo &createInfo, bool useKhrMaintenance5);
 | 
						|
    explicit VmaBufferImageUsage(const VkImageCreateInfo &createInfo);
 | 
						|
 | 
						|
    bool operator==(const VmaBufferImageUsage& rhs) const { return Value == rhs.Value; }
 | 
						|
    bool operator!=(const VmaBufferImageUsage& rhs) const { return Value != rhs.Value; }
 | 
						|
 | 
						|
    bool Contains(BaseType flag) const { return (Value & flag) != 0; }
 | 
						|
    bool ContainsDeviceAccess() const
 | 
						|
    {
 | 
						|
        // This relies on values of VK_IMAGE_USAGE_TRANSFER* being the same as VK_BUFFER_IMAGE_TRANSFER*.
 | 
						|
        return (Value & ~BaseType(VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT)) != 0;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
const VmaBufferImageUsage VmaBufferImageUsage::UNKNOWN = VmaBufferImageUsage(0);
 | 
						|
 | 
						|
VmaBufferImageUsage::VmaBufferImageUsage(const VkBufferCreateInfo &createInfo,
 | 
						|
    bool useKhrMaintenance5)
 | 
						|
{
 | 
						|
#if VMA_KHR_MAINTENANCE5
 | 
						|
    if(useKhrMaintenance5)
 | 
						|
    {
 | 
						|
        // If VkBufferCreateInfo::pNext chain contains VkBufferUsageFlags2CreateInfoKHR,
 | 
						|
        // take usage from it and ignore VkBufferCreateInfo::usage, per specification
 | 
						|
        // of the VK_KHR_maintenance5 extension.
 | 
						|
        const VkBufferUsageFlags2CreateInfoKHR* const usageFlags2 =
 | 
						|
            VmaPnextChainFind<VkBufferUsageFlags2CreateInfoKHR>(&createInfo, VK_STRUCTURE_TYPE_BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR);
 | 
						|
        if(usageFlags2)
 | 
						|
        {
 | 
						|
            this->Value = usageFlags2->usage;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    this->Value = (BaseType)createInfo.usage;
 | 
						|
}
 | 
						|
 | 
						|
VmaBufferImageUsage::VmaBufferImageUsage(const VkImageCreateInfo &createInfo)
 | 
						|
{
 | 
						|
    // Maybe in the future there will be VK_KHR_maintenanceN extension with structure
 | 
						|
    // VkImageUsageFlags2CreateInfoKHR, like the one for buffers...
 | 
						|
 | 
						|
    this->Value = (BaseType)createInfo.usage;
 | 
						|
}
 | 
						|
 | 
						|
// This is the main algorithm that guides the selection of a memory type best for an allocation -
 | 
						|
// converts usage to required/preferred/not preferred flags.
 | 
						|
static bool FindMemoryPreferences(
 | 
						|
    bool isIntegratedGPU,
 | 
						|
    const VmaAllocationCreateInfo& allocCreateInfo,
 | 
						|
    VmaBufferImageUsage bufImgUsage,
 | 
						|
    VkMemoryPropertyFlags& outRequiredFlags,
 | 
						|
    VkMemoryPropertyFlags& outPreferredFlags,
 | 
						|
    VkMemoryPropertyFlags& outNotPreferredFlags)
 | 
						|
{
 | 
						|
    outRequiredFlags = allocCreateInfo.requiredFlags;
 | 
						|
    outPreferredFlags = allocCreateInfo.preferredFlags;
 | 
						|
    outNotPreferredFlags = 0;
 | 
						|
 | 
						|
    switch(allocCreateInfo.usage)
 | 
						|
    {
 | 
						|
    case VMA_MEMORY_USAGE_UNKNOWN:
 | 
						|
        break;
 | 
						|
    case VMA_MEMORY_USAGE_GPU_ONLY:
 | 
						|
        if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
 | 
						|
        {
 | 
						|
            outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case VMA_MEMORY_USAGE_CPU_ONLY:
 | 
						|
        outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
 | 
						|
        break;
 | 
						|
    case VMA_MEMORY_USAGE_CPU_TO_GPU:
 | 
						|
        outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | 
						|
        if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
 | 
						|
        {
 | 
						|
            outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case VMA_MEMORY_USAGE_GPU_TO_CPU:
 | 
						|
        outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | 
						|
        outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
 | 
						|
        break;
 | 
						|
    case VMA_MEMORY_USAGE_CPU_COPY:
 | 
						|
        outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | 
						|
        break;
 | 
						|
    case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED:
 | 
						|
        outRequiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
 | 
						|
        break;
 | 
						|
    case VMA_MEMORY_USAGE_AUTO:
 | 
						|
    case VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE:
 | 
						|
    case VMA_MEMORY_USAGE_AUTO_PREFER_HOST:
 | 
						|
    {
 | 
						|
        if(bufImgUsage == VmaBufferImageUsage::UNKNOWN)
 | 
						|
        {
 | 
						|
            VMA_ASSERT(0 && "VMA_MEMORY_USAGE_AUTO* values can only be used with functions like vmaCreateBuffer, vmaCreateImage so that the details of the created resource are known."
 | 
						|
                " Maybe you use VkBufferUsageFlags2CreateInfoKHR but forgot to use VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT?" );
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        const bool deviceAccess = bufImgUsage.ContainsDeviceAccess();
 | 
						|
        const bool hostAccessSequentialWrite = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT) != 0;
 | 
						|
        const bool hostAccessRandom = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) != 0;
 | 
						|
        const bool hostAccessAllowTransferInstead = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) != 0;
 | 
						|
        const bool preferDevice = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
 | 
						|
        const bool preferHost = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST;
 | 
						|
 | 
						|
        // CPU random access - e.g. a buffer written to or transferred from GPU to read back on CPU.
 | 
						|
        if(hostAccessRandom)
 | 
						|
        {
 | 
						|
            // Prefer cached. Cannot require it, because some platforms don't have it (e.g. Raspberry Pi - see #362)!
 | 
						|
            outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
 | 
						|
 | 
						|
            if (!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
 | 
						|
            {
 | 
						|
                // Nice if it will end up in HOST_VISIBLE, but more importantly prefer DEVICE_LOCAL.
 | 
						|
                // Omitting HOST_VISIBLE here is intentional.
 | 
						|
                // In case there is DEVICE_LOCAL | HOST_VISIBLE | HOST_CACHED, it will pick that one.
 | 
						|
                // Otherwise, this will give same weight to DEVICE_LOCAL as HOST_VISIBLE | HOST_CACHED and select the former if occurs first on the list.
 | 
						|
                outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // Always CPU memory.
 | 
						|
                outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        // CPU sequential write - may be CPU or host-visible GPU memory, uncached and write-combined.
 | 
						|
        else if(hostAccessSequentialWrite)
 | 
						|
        {
 | 
						|
            // Want uncached and write-combined.
 | 
						|
            outNotPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
 | 
						|
 | 
						|
            if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
 | 
						|
            {
 | 
						|
                outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | 
						|
                // Direct GPU access, CPU sequential write (e.g. a dynamic uniform buffer updated every frame)
 | 
						|
                if(deviceAccess)
 | 
						|
                {
 | 
						|
                    // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose GPU memory.
 | 
						|
                    if(preferHost)
 | 
						|
                        outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | 
						|
                    else
 | 
						|
                        outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | 
						|
                }
 | 
						|
                // GPU no direct access, CPU sequential write (e.g. an upload buffer to be transferred to the GPU)
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose CPU memory.
 | 
						|
                    if(preferDevice)
 | 
						|
                        outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | 
						|
                    else
 | 
						|
                        outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        // No CPU access
 | 
						|
        else
 | 
						|
        {
 | 
						|
            // if(deviceAccess)
 | 
						|
            //
 | 
						|
            // GPU access, no CPU access (e.g. a color attachment image) - prefer GPU memory,
 | 
						|
            // unless there is a clear preference from the user not to do so.
 | 
						|
            //
 | 
						|
            // else:
 | 
						|
            //
 | 
						|
            // No direct GPU access, no CPU access, just transfers.
 | 
						|
            // It may be staging copy intended for e.g. preserving image for next frame (then better GPU memory) or
 | 
						|
            // a "swap file" copy to free some GPU memory (then better CPU memory).
 | 
						|
            // Up to the user to decide. If no preferece, assume the former and choose GPU memory.
 | 
						|
 | 
						|
            if(preferHost)
 | 
						|
                outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | 
						|
            else
 | 
						|
                outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // Avoid DEVICE_COHERENT unless explicitly requested.
 | 
						|
    if(((allocCreateInfo.requiredFlags | allocCreateInfo.preferredFlags) &
 | 
						|
        (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0)
 | 
						|
    {
 | 
						|
        outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Memory allocation
 | 
						|
 | 
						|
static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
 | 
						|
{
 | 
						|
    void* result = VMA_NULL;
 | 
						|
    if ((pAllocationCallbacks != VMA_NULL) &&
 | 
						|
        (pAllocationCallbacks->pfnAllocation != VMA_NULL))
 | 
						|
    {
 | 
						|
        result = (*pAllocationCallbacks->pfnAllocation)(
 | 
						|
            pAllocationCallbacks->pUserData,
 | 
						|
            size,
 | 
						|
            alignment,
 | 
						|
            VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
 | 
						|
    }
 | 
						|
    VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed.");
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
 | 
						|
{
 | 
						|
    if ((pAllocationCallbacks != VMA_NULL) &&
 | 
						|
        (pAllocationCallbacks->pfnFree != VMA_NULL))
 | 
						|
    {
 | 
						|
        (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_SYSTEM_ALIGNED_FREE(ptr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
 | 
						|
{
 | 
						|
    return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
 | 
						|
{
 | 
						|
    return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
 | 
						|
}
 | 
						|
 | 
						|
#define vma_new(allocator, type)   new(VmaAllocate<type>(allocator))(type)
 | 
						|
 | 
						|
#define vma_new_array(allocator, type, count)   new(VmaAllocateArray<type>((allocator), (count)))(type)
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
 | 
						|
{
 | 
						|
    ptr->~T();
 | 
						|
    VmaFree(pAllocationCallbacks, ptr);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
 | 
						|
{
 | 
						|
    if (ptr != VMA_NULL)
 | 
						|
    {
 | 
						|
        for (size_t i = count; i--; )
 | 
						|
        {
 | 
						|
            ptr[i].~T();
 | 
						|
        }
 | 
						|
        VmaFree(pAllocationCallbacks, ptr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr)
 | 
						|
{
 | 
						|
    if (srcStr != VMA_NULL)
 | 
						|
    {
 | 
						|
        const size_t len = strlen(srcStr);
 | 
						|
        char* const result = vma_new_array(allocs, char, len + 1);
 | 
						|
        memcpy(result, srcStr, len + 1);
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
    return VMA_NULL;
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen)
 | 
						|
{
 | 
						|
    if (srcStr != VMA_NULL)
 | 
						|
    {
 | 
						|
        char* const result = vma_new_array(allocs, char, strLen + 1);
 | 
						|
        memcpy(result, srcStr, strLen);
 | 
						|
        result[strLen] = '\0';
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
    return VMA_NULL;
 | 
						|
}
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
 | 
						|
static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str)
 | 
						|
{
 | 
						|
    if (str != VMA_NULL)
 | 
						|
    {
 | 
						|
        const size_t len = strlen(str);
 | 
						|
        vma_delete_array(allocs, str, len + 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template<typename CmpLess, typename VectorT>
 | 
						|
size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
 | 
						|
{
 | 
						|
    const size_t indexToInsert = VmaBinaryFindFirstNotLess(
 | 
						|
        vector.data(),
 | 
						|
        vector.data() + vector.size(),
 | 
						|
        value,
 | 
						|
        CmpLess()) - vector.data();
 | 
						|
    VmaVectorInsert(vector, indexToInsert, value);
 | 
						|
    return indexToInsert;
 | 
						|
}
 | 
						|
 | 
						|
template<typename CmpLess, typename VectorT>
 | 
						|
bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
 | 
						|
{
 | 
						|
    CmpLess comparator;
 | 
						|
    typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
 | 
						|
        vector.begin(),
 | 
						|
        vector.end(),
 | 
						|
        value,
 | 
						|
        comparator);
 | 
						|
    if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
 | 
						|
    {
 | 
						|
        size_t indexToRemove = it - vector.begin();
 | 
						|
        VmaVectorRemove(vector, indexToRemove);
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
#endif // _VMA_FUNCTIONS
 | 
						|
 | 
						|
#ifndef _VMA_STATISTICS_FUNCTIONS
 | 
						|
 | 
						|
static void VmaClearStatistics(VmaStatistics& outStats)
 | 
						|
{
 | 
						|
    outStats.blockCount = 0;
 | 
						|
    outStats.allocationCount = 0;
 | 
						|
    outStats.blockBytes = 0;
 | 
						|
    outStats.allocationBytes = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void VmaAddStatistics(VmaStatistics& inoutStats, const VmaStatistics& src)
 | 
						|
{
 | 
						|
    inoutStats.blockCount += src.blockCount;
 | 
						|
    inoutStats.allocationCount += src.allocationCount;
 | 
						|
    inoutStats.blockBytes += src.blockBytes;
 | 
						|
    inoutStats.allocationBytes += src.allocationBytes;
 | 
						|
}
 | 
						|
 | 
						|
static void VmaClearDetailedStatistics(VmaDetailedStatistics& outStats)
 | 
						|
{
 | 
						|
    VmaClearStatistics(outStats.statistics);
 | 
						|
    outStats.unusedRangeCount = 0;
 | 
						|
    outStats.allocationSizeMin = VK_WHOLE_SIZE;
 | 
						|
    outStats.allocationSizeMax = 0;
 | 
						|
    outStats.unusedRangeSizeMin = VK_WHOLE_SIZE;
 | 
						|
    outStats.unusedRangeSizeMax = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void VmaAddDetailedStatisticsAllocation(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
 | 
						|
{
 | 
						|
    inoutStats.statistics.allocationCount++;
 | 
						|
    inoutStats.statistics.allocationBytes += size;
 | 
						|
    inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, size);
 | 
						|
    inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, size);
 | 
						|
}
 | 
						|
 | 
						|
static void VmaAddDetailedStatisticsUnusedRange(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
 | 
						|
{
 | 
						|
    inoutStats.unusedRangeCount++;
 | 
						|
    inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, size);
 | 
						|
    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, size);
 | 
						|
}
 | 
						|
 | 
						|
static void VmaAddDetailedStatistics(VmaDetailedStatistics& inoutStats, const VmaDetailedStatistics& src)
 | 
						|
{
 | 
						|
    VmaAddStatistics(inoutStats.statistics, src.statistics);
 | 
						|
    inoutStats.unusedRangeCount += src.unusedRangeCount;
 | 
						|
    inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, src.allocationSizeMin);
 | 
						|
    inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, src.allocationSizeMax);
 | 
						|
    inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, src.unusedRangeSizeMin);
 | 
						|
    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, src.unusedRangeSizeMax);
 | 
						|
}
 | 
						|
 | 
						|
#endif // _VMA_STATISTICS_FUNCTIONS
 | 
						|
 | 
						|
#ifndef _VMA_MUTEX_LOCK
 | 
						|
// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
 | 
						|
struct VmaMutexLock
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLock)
 | 
						|
public:
 | 
						|
    VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) :
 | 
						|
        m_pMutex(useMutex ? &mutex : VMA_NULL)
 | 
						|
    {
 | 
						|
        if (m_pMutex) { m_pMutex->Lock(); }
 | 
						|
    }
 | 
						|
    ~VmaMutexLock() {  if (m_pMutex) { m_pMutex->Unlock(); } }
 | 
						|
 | 
						|
private:
 | 
						|
    VMA_MUTEX* m_pMutex;
 | 
						|
};
 | 
						|
 | 
						|
// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.
 | 
						|
struct VmaMutexLockRead
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockRead)
 | 
						|
public:
 | 
						|
    VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) :
 | 
						|
        m_pMutex(useMutex ? &mutex : VMA_NULL)
 | 
						|
    {
 | 
						|
        if (m_pMutex) { m_pMutex->LockRead(); }
 | 
						|
    }
 | 
						|
    ~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } }
 | 
						|
 | 
						|
private:
 | 
						|
    VMA_RW_MUTEX* m_pMutex;
 | 
						|
};
 | 
						|
 | 
						|
// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.
 | 
						|
struct VmaMutexLockWrite
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockWrite)
 | 
						|
public:
 | 
						|
    VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex)
 | 
						|
        : m_pMutex(useMutex ? &mutex : VMA_NULL)
 | 
						|
    {
 | 
						|
        if (m_pMutex) { m_pMutex->LockWrite(); }
 | 
						|
    }
 | 
						|
    ~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } }
 | 
						|
 | 
						|
private:
 | 
						|
    VMA_RW_MUTEX* m_pMutex;
 | 
						|
};
 | 
						|
 | 
						|
#if VMA_DEBUG_GLOBAL_MUTEX
 | 
						|
    static VMA_MUTEX gDebugGlobalMutex;
 | 
						|
    #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
 | 
						|
#else
 | 
						|
    #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
#endif
 | 
						|
#endif // _VMA_MUTEX_LOCK
 | 
						|
 | 
						|
#ifndef _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
 | 
						|
// An object that increments given atomic but decrements it back in the destructor unless Commit() is called.
 | 
						|
template<typename AtomicT>
 | 
						|
struct AtomicTransactionalIncrement
 | 
						|
{
 | 
						|
public:
 | 
						|
    using T = decltype(AtomicT().load());
 | 
						|
 | 
						|
    ~AtomicTransactionalIncrement()
 | 
						|
    {
 | 
						|
        if(m_Atomic)
 | 
						|
            --(*m_Atomic);
 | 
						|
    }
 | 
						|
 | 
						|
    void Commit() { m_Atomic = VMA_NULL; }
 | 
						|
    T Increment(AtomicT* atomic)
 | 
						|
    {
 | 
						|
        m_Atomic = atomic;
 | 
						|
        return m_Atomic->fetch_add(1);
 | 
						|
    }
 | 
						|
 | 
						|
private:
 | 
						|
    AtomicT* m_Atomic = VMA_NULL;
 | 
						|
};
 | 
						|
#endif // _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
 | 
						|
 | 
						|
#ifndef _VMA_STL_ALLOCATOR
 | 
						|
// STL-compatible allocator.
 | 
						|
template<typename T>
 | 
						|
struct VmaStlAllocator
 | 
						|
{
 | 
						|
    const VkAllocationCallbacks* const m_pCallbacks;
 | 
						|
    typedef T value_type;
 | 
						|
 | 
						|
    VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) {}
 | 
						|
    template<typename U>
 | 
						|
    VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) {}
 | 
						|
    VmaStlAllocator(const VmaStlAllocator&) = default;
 | 
						|
    VmaStlAllocator& operator=(const VmaStlAllocator&) = delete;
 | 
						|
 | 
						|
    T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
 | 
						|
    void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
 | 
						|
 | 
						|
    template<typename U>
 | 
						|
    bool operator==(const VmaStlAllocator<U>& rhs) const
 | 
						|
    {
 | 
						|
        return m_pCallbacks == rhs.m_pCallbacks;
 | 
						|
    }
 | 
						|
    template<typename U>
 | 
						|
    bool operator!=(const VmaStlAllocator<U>& rhs) const
 | 
						|
    {
 | 
						|
        return m_pCallbacks != rhs.m_pCallbacks;
 | 
						|
    }
 | 
						|
};
 | 
						|
#endif // _VMA_STL_ALLOCATOR
 | 
						|
 | 
						|
#ifndef _VMA_VECTOR
 | 
						|
/* Class with interface compatible with subset of std::vector.
 | 
						|
T must be POD because constructors and destructors are not called and memcpy is
 | 
						|
used for these objects. */
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
class VmaVector
 | 
						|
{
 | 
						|
public:
 | 
						|
    typedef T value_type;
 | 
						|
    typedef T* iterator;
 | 
						|
    typedef const T* const_iterator;
 | 
						|
 | 
						|
    VmaVector(const AllocatorT& allocator);
 | 
						|
    VmaVector(size_t count, const AllocatorT& allocator);
 | 
						|
    // This version of the constructor is here for compatibility with pre-C++14 std::vector.
 | 
						|
    // value is unused.
 | 
						|
    VmaVector(size_t count, const T& value, const AllocatorT& allocator) : VmaVector(count, allocator) {}
 | 
						|
    VmaVector(const VmaVector<T, AllocatorT>& src);
 | 
						|
    VmaVector& operator=(const VmaVector& rhs);
 | 
						|
    ~VmaVector() { VmaFree(m_Allocator.m_pCallbacks, m_pArray); }
 | 
						|
 | 
						|
    bool empty() const { return m_Count == 0; }
 | 
						|
    size_t size() const { return m_Count; }
 | 
						|
    T* data() { return m_pArray; }
 | 
						|
    T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
 | 
						|
    T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
 | 
						|
    const T* data() const { return m_pArray; }
 | 
						|
    const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
 | 
						|
    const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
 | 
						|
 | 
						|
    iterator begin() { return m_pArray; }
 | 
						|
    iterator end() { return m_pArray + m_Count; }
 | 
						|
    const_iterator cbegin() const { return m_pArray; }
 | 
						|
    const_iterator cend() const { return m_pArray + m_Count; }
 | 
						|
    const_iterator begin() const { return cbegin(); }
 | 
						|
    const_iterator end() const { return cend(); }
 | 
						|
 | 
						|
    void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
 | 
						|
    void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
 | 
						|
    void push_front(const T& src) { insert(0, src); }
 | 
						|
 | 
						|
    void push_back(const T& src);
 | 
						|
    void reserve(size_t newCapacity, bool freeMemory = false);
 | 
						|
    void resize(size_t newCount);
 | 
						|
    void clear() { resize(0); }
 | 
						|
    void shrink_to_fit();
 | 
						|
    void insert(size_t index, const T& src);
 | 
						|
    void remove(size_t index);
 | 
						|
 | 
						|
    T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
 | 
						|
    const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
 | 
						|
 | 
						|
private:
 | 
						|
    AllocatorT m_Allocator;
 | 
						|
    T* m_pArray;
 | 
						|
    size_t m_Count;
 | 
						|
    size_t m_Capacity;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_VECTOR_FUNCTIONS
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
VmaVector<T, AllocatorT>::VmaVector(const AllocatorT& allocator)
 | 
						|
    : m_Allocator(allocator),
 | 
						|
    m_pArray(VMA_NULL),
 | 
						|
    m_Count(0),
 | 
						|
    m_Capacity(0) {}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
VmaVector<T, AllocatorT>::VmaVector(size_t count, const AllocatorT& allocator)
 | 
						|
    : m_Allocator(allocator),
 | 
						|
    m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
 | 
						|
    m_Count(count),
 | 
						|
    m_Capacity(count) {}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
VmaVector<T, AllocatorT>::VmaVector(const VmaVector& src)
 | 
						|
    : m_Allocator(src.m_Allocator),
 | 
						|
    m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
 | 
						|
    m_Count(src.m_Count),
 | 
						|
    m_Capacity(src.m_Count)
 | 
						|
{
 | 
						|
    if (m_Count != 0)
 | 
						|
    {
 | 
						|
        memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
VmaVector<T, AllocatorT>& VmaVector<T, AllocatorT>::operator=(const VmaVector& rhs)
 | 
						|
{
 | 
						|
    if (&rhs != this)
 | 
						|
    {
 | 
						|
        resize(rhs.m_Count);
 | 
						|
        if (m_Count != 0)
 | 
						|
        {
 | 
						|
            memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return *this;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
void VmaVector<T, AllocatorT>::push_back(const T& src)
 | 
						|
{
 | 
						|
    const size_t newIndex = size();
 | 
						|
    resize(newIndex + 1);
 | 
						|
    m_pArray[newIndex] = src;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
void VmaVector<T, AllocatorT>::reserve(size_t newCapacity, bool freeMemory)
 | 
						|
{
 | 
						|
    newCapacity = VMA_MAX(newCapacity, m_Count);
 | 
						|
 | 
						|
    if ((newCapacity < m_Capacity) && !freeMemory)
 | 
						|
    {
 | 
						|
        newCapacity = m_Capacity;
 | 
						|
    }
 | 
						|
 | 
						|
    if (newCapacity != m_Capacity)
 | 
						|
    {
 | 
						|
        T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
 | 
						|
        if (m_Count != 0)
 | 
						|
        {
 | 
						|
            memcpy(newArray, m_pArray, m_Count * sizeof(T));
 | 
						|
        }
 | 
						|
        VmaFree(m_Allocator.m_pCallbacks, m_pArray);
 | 
						|
        m_Capacity = newCapacity;
 | 
						|
        m_pArray = newArray;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
void VmaVector<T, AllocatorT>::resize(size_t newCount)
 | 
						|
{
 | 
						|
    size_t newCapacity = m_Capacity;
 | 
						|
    if (newCount > m_Capacity)
 | 
						|
    {
 | 
						|
        newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
 | 
						|
    }
 | 
						|
 | 
						|
    if (newCapacity != m_Capacity)
 | 
						|
    {
 | 
						|
        T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
 | 
						|
        const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
 | 
						|
        if (elementsToCopy != 0)
 | 
						|
        {
 | 
						|
            memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
 | 
						|
        }
 | 
						|
        VmaFree(m_Allocator.m_pCallbacks, m_pArray);
 | 
						|
        m_Capacity = newCapacity;
 | 
						|
        m_pArray = newArray;
 | 
						|
    }
 | 
						|
 | 
						|
    m_Count = newCount;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
void VmaVector<T, AllocatorT>::shrink_to_fit()
 | 
						|
{
 | 
						|
    if (m_Capacity > m_Count)
 | 
						|
    {
 | 
						|
        T* newArray = VMA_NULL;
 | 
						|
        if (m_Count > 0)
 | 
						|
        {
 | 
						|
            newArray = VmaAllocateArray<T>(m_Allocator.m_pCallbacks, m_Count);
 | 
						|
            memcpy(newArray, m_pArray, m_Count * sizeof(T));
 | 
						|
        }
 | 
						|
        VmaFree(m_Allocator.m_pCallbacks, m_pArray);
 | 
						|
        m_Capacity = m_Count;
 | 
						|
        m_pArray = newArray;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
void VmaVector<T, AllocatorT>::insert(size_t index, const T& src)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(index <= m_Count);
 | 
						|
    const size_t oldCount = size();
 | 
						|
    resize(oldCount + 1);
 | 
						|
    if (index < oldCount)
 | 
						|
    {
 | 
						|
        memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
 | 
						|
    }
 | 
						|
    m_pArray[index] = src;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
void VmaVector<T, AllocatorT>::remove(size_t index)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(index < m_Count);
 | 
						|
    const size_t oldCount = size();
 | 
						|
    if (index < oldCount - 1)
 | 
						|
    {
 | 
						|
        memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
 | 
						|
    }
 | 
						|
    resize(oldCount - 1);
 | 
						|
}
 | 
						|
#endif // _VMA_VECTOR_FUNCTIONS
 | 
						|
 | 
						|
template<typename T, typename allocatorT>
 | 
						|
static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
 | 
						|
{
 | 
						|
    vec.insert(index, item);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename allocatorT>
 | 
						|
static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
 | 
						|
{
 | 
						|
    vec.remove(index);
 | 
						|
}
 | 
						|
#endif // _VMA_VECTOR
 | 
						|
 | 
						|
#ifndef _VMA_SMALL_VECTOR
 | 
						|
/*
 | 
						|
This is a vector (a variable-sized array), optimized for the case when the array is small.
 | 
						|
 | 
						|
It contains some number of elements in-place, which allows it to avoid heap allocation
 | 
						|
when the actual number of elements is below that threshold. This allows normal "small"
 | 
						|
cases to be fast without losing generality for large inputs.
 | 
						|
*/
 | 
						|
template<typename T, typename AllocatorT, size_t N>
 | 
						|
class VmaSmallVector
 | 
						|
{
 | 
						|
public:
 | 
						|
    typedef T value_type;
 | 
						|
    typedef T* iterator;
 | 
						|
 | 
						|
    VmaSmallVector(const AllocatorT& allocator);
 | 
						|
    VmaSmallVector(size_t count, const AllocatorT& allocator);
 | 
						|
    template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
 | 
						|
    VmaSmallVector(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete;
 | 
						|
    template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
 | 
						|
    VmaSmallVector<T, AllocatorT, N>& operator=(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete;
 | 
						|
    ~VmaSmallVector() = default;
 | 
						|
 | 
						|
    bool empty() const { return m_Count == 0; }
 | 
						|
    size_t size() const { return m_Count; }
 | 
						|
    T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
 | 
						|
    T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
 | 
						|
    T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
 | 
						|
    const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
 | 
						|
    const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
 | 
						|
    const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
 | 
						|
 | 
						|
    iterator begin() { return data(); }
 | 
						|
    iterator end() { return data() + m_Count; }
 | 
						|
 | 
						|
    void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
 | 
						|
    void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
 | 
						|
    void push_front(const T& src) { insert(0, src); }
 | 
						|
 | 
						|
    void push_back(const T& src);
 | 
						|
    void resize(size_t newCount, bool freeMemory = false);
 | 
						|
    void clear(bool freeMemory = false);
 | 
						|
    void insert(size_t index, const T& src);
 | 
						|
    void remove(size_t index);
 | 
						|
 | 
						|
    T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
 | 
						|
    const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
 | 
						|
 | 
						|
private:
 | 
						|
    size_t m_Count;
 | 
						|
    T m_StaticArray[N]; // Used when m_Size <= N
 | 
						|
    VmaVector<T, AllocatorT> m_DynamicArray; // Used when m_Size > N
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_SMALL_VECTOR_FUNCTIONS
 | 
						|
template<typename T, typename AllocatorT, size_t N>
 | 
						|
VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(const AllocatorT& allocator)
 | 
						|
    : m_Count(0),
 | 
						|
    m_DynamicArray(allocator) {}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT, size_t N>
 | 
						|
VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(size_t count, const AllocatorT& allocator)
 | 
						|
    : m_Count(count),
 | 
						|
    m_DynamicArray(count > N ? count : 0, allocator) {}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT, size_t N>
 | 
						|
void VmaSmallVector<T, AllocatorT, N>::push_back(const T& src)
 | 
						|
{
 | 
						|
    const size_t newIndex = size();
 | 
						|
    resize(newIndex + 1);
 | 
						|
    data()[newIndex] = src;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT, size_t N>
 | 
						|
void VmaSmallVector<T, AllocatorT, N>::resize(size_t newCount, bool freeMemory)
 | 
						|
{
 | 
						|
    if (newCount > N && m_Count > N)
 | 
						|
    {
 | 
						|
        // Any direction, staying in m_DynamicArray
 | 
						|
        m_DynamicArray.resize(newCount);
 | 
						|
        if (freeMemory)
 | 
						|
        {
 | 
						|
            m_DynamicArray.shrink_to_fit();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (newCount > N && m_Count <= N)
 | 
						|
    {
 | 
						|
        // Growing, moving from m_StaticArray to m_DynamicArray
 | 
						|
        m_DynamicArray.resize(newCount);
 | 
						|
        if (m_Count > 0)
 | 
						|
        {
 | 
						|
            memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (newCount <= N && m_Count > N)
 | 
						|
    {
 | 
						|
        // Shrinking, moving from m_DynamicArray to m_StaticArray
 | 
						|
        if (newCount > 0)
 | 
						|
        {
 | 
						|
            memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T));
 | 
						|
        }
 | 
						|
        m_DynamicArray.resize(0);
 | 
						|
        if (freeMemory)
 | 
						|
        {
 | 
						|
            m_DynamicArray.shrink_to_fit();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        // Any direction, staying in m_StaticArray - nothing to do here
 | 
						|
    }
 | 
						|
    m_Count = newCount;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT, size_t N>
 | 
						|
void VmaSmallVector<T, AllocatorT, N>::clear(bool freeMemory)
 | 
						|
{
 | 
						|
    m_DynamicArray.clear();
 | 
						|
    if (freeMemory)
 | 
						|
    {
 | 
						|
        m_DynamicArray.shrink_to_fit();
 | 
						|
    }
 | 
						|
    m_Count = 0;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT, size_t N>
 | 
						|
void VmaSmallVector<T, AllocatorT, N>::insert(size_t index, const T& src)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(index <= m_Count);
 | 
						|
    const size_t oldCount = size();
 | 
						|
    resize(oldCount + 1);
 | 
						|
    T* const dataPtr = data();
 | 
						|
    if (index < oldCount)
 | 
						|
    {
 | 
						|
        //  I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray.
 | 
						|
        memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T));
 | 
						|
    }
 | 
						|
    dataPtr[index] = src;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT, size_t N>
 | 
						|
void VmaSmallVector<T, AllocatorT, N>::remove(size_t index)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(index < m_Count);
 | 
						|
    const size_t oldCount = size();
 | 
						|
    if (index < oldCount - 1)
 | 
						|
    {
 | 
						|
        //  I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray.
 | 
						|
        T* const dataPtr = data();
 | 
						|
        memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T));
 | 
						|
    }
 | 
						|
    resize(oldCount - 1);
 | 
						|
}
 | 
						|
#endif // _VMA_SMALL_VECTOR_FUNCTIONS
 | 
						|
#endif // _VMA_SMALL_VECTOR
 | 
						|
 | 
						|
#ifndef _VMA_POOL_ALLOCATOR
 | 
						|
/*
 | 
						|
Allocator for objects of type T using a list of arrays (pools) to speed up
 | 
						|
allocation. Number of elements that can be allocated is not bounded because
 | 
						|
allocator can create multiple blocks.
 | 
						|
*/
 | 
						|
template<typename T>
 | 
						|
class VmaPoolAllocator
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaPoolAllocator)
 | 
						|
public:
 | 
						|
    VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity);
 | 
						|
    ~VmaPoolAllocator();
 | 
						|
    template<typename... Types> T* Alloc(Types&&... args);
 | 
						|
    void Free(T* ptr);
 | 
						|
 | 
						|
private:
 | 
						|
    union Item
 | 
						|
    {
 | 
						|
        uint32_t NextFreeIndex;
 | 
						|
        alignas(T) char Value[sizeof(T)];
 | 
						|
    };
 | 
						|
    struct ItemBlock
 | 
						|
    {
 | 
						|
        Item* pItems;
 | 
						|
        uint32_t Capacity;
 | 
						|
        uint32_t FirstFreeIndex;
 | 
						|
    };
 | 
						|
 | 
						|
    const VkAllocationCallbacks* m_pAllocationCallbacks;
 | 
						|
    const uint32_t m_FirstBlockCapacity;
 | 
						|
    VmaVector<ItemBlock, VmaStlAllocator<ItemBlock>> m_ItemBlocks;
 | 
						|
 | 
						|
    ItemBlock& CreateNewBlock();
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_POOL_ALLOCATOR_FUNCTIONS
 | 
						|
template<typename T>
 | 
						|
VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity)
 | 
						|
    : m_pAllocationCallbacks(pAllocationCallbacks),
 | 
						|
    m_FirstBlockCapacity(firstBlockCapacity),
 | 
						|
    m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_FirstBlockCapacity > 1);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
VmaPoolAllocator<T>::~VmaPoolAllocator()
 | 
						|
{
 | 
						|
    for (size_t i = m_ItemBlocks.size(); i--;)
 | 
						|
        vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);
 | 
						|
    m_ItemBlocks.clear();
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
template<typename... Types> T* VmaPoolAllocator<T>::Alloc(Types&&... args)
 | 
						|
{
 | 
						|
    for (size_t i = m_ItemBlocks.size(); i--; )
 | 
						|
    {
 | 
						|
        ItemBlock& block = m_ItemBlocks[i];
 | 
						|
        // This block has some free items: Use first one.
 | 
						|
        if (block.FirstFreeIndex != UINT32_MAX)
 | 
						|
        {
 | 
						|
            Item* const pItem = &block.pItems[block.FirstFreeIndex];
 | 
						|
            block.FirstFreeIndex = pItem->NextFreeIndex;
 | 
						|
            T* result = (T*)&pItem->Value;
 | 
						|
            new(result)T(std::forward<Types>(args)...); // Explicit constructor call.
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // No block has free item: Create new one and use it.
 | 
						|
    ItemBlock& newBlock = CreateNewBlock();
 | 
						|
    Item* const pItem = &newBlock.pItems[0];
 | 
						|
    newBlock.FirstFreeIndex = pItem->NextFreeIndex;
 | 
						|
    T* result = (T*)&pItem->Value;
 | 
						|
    new(result) T(std::forward<Types>(args)...); // Explicit constructor call.
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
void VmaPoolAllocator<T>::Free(T* ptr)
 | 
						|
{
 | 
						|
    // Search all memory blocks to find ptr.
 | 
						|
    for (size_t i = m_ItemBlocks.size(); i--; )
 | 
						|
    {
 | 
						|
        ItemBlock& block = m_ItemBlocks[i];
 | 
						|
 | 
						|
        // Casting to union.
 | 
						|
        Item* pItemPtr;
 | 
						|
        memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
 | 
						|
 | 
						|
        // Check if pItemPtr is in address range of this block.
 | 
						|
        if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity))
 | 
						|
        {
 | 
						|
            ptr->~T(); // Explicit destructor call.
 | 
						|
            const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
 | 
						|
            pItemPtr->NextFreeIndex = block.FirstFreeIndex;
 | 
						|
            block.FirstFreeIndex = index;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
 | 
						|
{
 | 
						|
    const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?
 | 
						|
        m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2;
 | 
						|
 | 
						|
    const ItemBlock newBlock =
 | 
						|
    {
 | 
						|
        vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),
 | 
						|
        newBlockCapacity,
 | 
						|
        0
 | 
						|
    };
 | 
						|
 | 
						|
    m_ItemBlocks.push_back(newBlock);
 | 
						|
 | 
						|
    // Setup singly-linked list of all free items in this block.
 | 
						|
    for (uint32_t i = 0; i < newBlockCapacity - 1; ++i)
 | 
						|
        newBlock.pItems[i].NextFreeIndex = i + 1;
 | 
						|
    newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;
 | 
						|
    return m_ItemBlocks.back();
 | 
						|
}
 | 
						|
#endif // _VMA_POOL_ALLOCATOR_FUNCTIONS
 | 
						|
#endif // _VMA_POOL_ALLOCATOR
 | 
						|
 | 
						|
#ifndef _VMA_RAW_LIST
 | 
						|
template<typename T>
 | 
						|
struct VmaListItem
 | 
						|
{
 | 
						|
    VmaListItem* pPrev;
 | 
						|
    VmaListItem* pNext;
 | 
						|
    T Value;
 | 
						|
};
 | 
						|
 | 
						|
// Doubly linked list.
 | 
						|
template<typename T>
 | 
						|
class VmaRawList
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaRawList)
 | 
						|
public:
 | 
						|
    typedef VmaListItem<T> ItemType;
 | 
						|
 | 
						|
    VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
 | 
						|
    // Intentionally not calling Clear, because that would be unnecessary
 | 
						|
    // computations to return all items to m_ItemAllocator as free.
 | 
						|
    ~VmaRawList() = default;
 | 
						|
 | 
						|
    size_t GetCount() const { return m_Count; }
 | 
						|
    bool IsEmpty() const { return m_Count == 0; }
 | 
						|
 | 
						|
    ItemType* Front() { return m_pFront; }
 | 
						|
    ItemType* Back() { return m_pBack; }
 | 
						|
    const ItemType* Front() const { return m_pFront; }
 | 
						|
    const ItemType* Back() const { return m_pBack; }
 | 
						|
 | 
						|
    ItemType* PushFront();
 | 
						|
    ItemType* PushBack();
 | 
						|
    ItemType* PushFront(const T& value);
 | 
						|
    ItemType* PushBack(const T& value);
 | 
						|
    void PopFront();
 | 
						|
    void PopBack();
 | 
						|
 | 
						|
    // Item can be null - it means PushBack.
 | 
						|
    ItemType* InsertBefore(ItemType* pItem);
 | 
						|
    // Item can be null - it means PushFront.
 | 
						|
    ItemType* InsertAfter(ItemType* pItem);
 | 
						|
    ItemType* InsertBefore(ItemType* pItem, const T& value);
 | 
						|
    ItemType* InsertAfter(ItemType* pItem, const T& value);
 | 
						|
 | 
						|
    void Clear();
 | 
						|
    void Remove(ItemType* pItem);
 | 
						|
 | 
						|
private:
 | 
						|
    const VkAllocationCallbacks* const m_pAllocationCallbacks;
 | 
						|
    VmaPoolAllocator<ItemType> m_ItemAllocator;
 | 
						|
    ItemType* m_pFront;
 | 
						|
    ItemType* m_pBack;
 | 
						|
    size_t m_Count;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_RAW_LIST_FUNCTIONS
 | 
						|
template<typename T>
 | 
						|
VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks)
 | 
						|
    : m_pAllocationCallbacks(pAllocationCallbacks),
 | 
						|
    m_ItemAllocator(pAllocationCallbacks, 128),
 | 
						|
    m_pFront(VMA_NULL),
 | 
						|
    m_pBack(VMA_NULL),
 | 
						|
    m_Count(0) {}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
VmaListItem<T>* VmaRawList<T>::PushFront()
 | 
						|
{
 | 
						|
    ItemType* const pNewItem = m_ItemAllocator.Alloc();
 | 
						|
    pNewItem->pPrev = VMA_NULL;
 | 
						|
    if (IsEmpty())
 | 
						|
    {
 | 
						|
        pNewItem->pNext = VMA_NULL;
 | 
						|
        m_pFront = pNewItem;
 | 
						|
        m_pBack = pNewItem;
 | 
						|
        m_Count = 1;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        pNewItem->pNext = m_pFront;
 | 
						|
        m_pFront->pPrev = pNewItem;
 | 
						|
        m_pFront = pNewItem;
 | 
						|
        ++m_Count;
 | 
						|
    }
 | 
						|
    return pNewItem;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
VmaListItem<T>* VmaRawList<T>::PushBack()
 | 
						|
{
 | 
						|
    ItemType* const pNewItem = m_ItemAllocator.Alloc();
 | 
						|
    pNewItem->pNext = VMA_NULL;
 | 
						|
    if(IsEmpty())
 | 
						|
    {
 | 
						|
        pNewItem->pPrev = VMA_NULL;
 | 
						|
        m_pFront = pNewItem;
 | 
						|
        m_pBack = pNewItem;
 | 
						|
        m_Count = 1;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        pNewItem->pPrev = m_pBack;
 | 
						|
        m_pBack->pNext = pNewItem;
 | 
						|
        m_pBack = pNewItem;
 | 
						|
        ++m_Count;
 | 
						|
    }
 | 
						|
    return pNewItem;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
 | 
						|
{
 | 
						|
    ItemType* const pNewItem = PushFront();
 | 
						|
    pNewItem->Value = value;
 | 
						|
    return pNewItem;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
 | 
						|
{
 | 
						|
    ItemType* const pNewItem = PushBack();
 | 
						|
    pNewItem->Value = value;
 | 
						|
    return pNewItem;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
void VmaRawList<T>::PopFront()
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(m_Count > 0);
 | 
						|
    ItemType* const pFrontItem = m_pFront;
 | 
						|
    ItemType* const pNextItem = pFrontItem->pNext;
 | 
						|
    if (pNextItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        pNextItem->pPrev = VMA_NULL;
 | 
						|
    }
 | 
						|
    m_pFront = pNextItem;
 | 
						|
    m_ItemAllocator.Free(pFrontItem);
 | 
						|
    --m_Count;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
void VmaRawList<T>::PopBack()
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(m_Count > 0);
 | 
						|
    ItemType* const pBackItem = m_pBack;
 | 
						|
    ItemType* const pPrevItem = pBackItem->pPrev;
 | 
						|
    if(pPrevItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        pPrevItem->pNext = VMA_NULL;
 | 
						|
    }
 | 
						|
    m_pBack = pPrevItem;
 | 
						|
    m_ItemAllocator.Free(pBackItem);
 | 
						|
    --m_Count;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
void VmaRawList<T>::Clear()
 | 
						|
{
 | 
						|
    if (IsEmpty() == false)
 | 
						|
    {
 | 
						|
        ItemType* pItem = m_pBack;
 | 
						|
        while (pItem != VMA_NULL)
 | 
						|
        {
 | 
						|
            ItemType* const pPrevItem = pItem->pPrev;
 | 
						|
            m_ItemAllocator.Free(pItem);
 | 
						|
            pItem = pPrevItem;
 | 
						|
        }
 | 
						|
        m_pFront = VMA_NULL;
 | 
						|
        m_pBack = VMA_NULL;
 | 
						|
        m_Count = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
void VmaRawList<T>::Remove(ItemType* pItem)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(pItem != VMA_NULL);
 | 
						|
    VMA_HEAVY_ASSERT(m_Count > 0);
 | 
						|
 | 
						|
    if(pItem->pPrev != VMA_NULL)
 | 
						|
    {
 | 
						|
        pItem->pPrev->pNext = pItem->pNext;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(m_pFront == pItem);
 | 
						|
        m_pFront = pItem->pNext;
 | 
						|
    }
 | 
						|
 | 
						|
    if(pItem->pNext != VMA_NULL)
 | 
						|
    {
 | 
						|
        pItem->pNext->pPrev = pItem->pPrev;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(m_pBack == pItem);
 | 
						|
        m_pBack = pItem->pPrev;
 | 
						|
    }
 | 
						|
 | 
						|
    m_ItemAllocator.Free(pItem);
 | 
						|
    --m_Count;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
 | 
						|
{
 | 
						|
    if(pItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        ItemType* const prevItem = pItem->pPrev;
 | 
						|
        ItemType* const newItem = m_ItemAllocator.Alloc();
 | 
						|
        newItem->pPrev = prevItem;
 | 
						|
        newItem->pNext = pItem;
 | 
						|
        pItem->pPrev = newItem;
 | 
						|
        if(prevItem != VMA_NULL)
 | 
						|
        {
 | 
						|
            prevItem->pNext = newItem;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            VMA_HEAVY_ASSERT(m_pFront == pItem);
 | 
						|
            m_pFront = newItem;
 | 
						|
        }
 | 
						|
        ++m_Count;
 | 
						|
        return newItem;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        return PushBack();
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
 | 
						|
{
 | 
						|
    if(pItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        ItemType* const nextItem = pItem->pNext;
 | 
						|
        ItemType* const newItem = m_ItemAllocator.Alloc();
 | 
						|
        newItem->pNext = nextItem;
 | 
						|
        newItem->pPrev = pItem;
 | 
						|
        pItem->pNext = newItem;
 | 
						|
        if(nextItem != VMA_NULL)
 | 
						|
        {
 | 
						|
            nextItem->pPrev = newItem;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            VMA_HEAVY_ASSERT(m_pBack == pItem);
 | 
						|
            m_pBack = newItem;
 | 
						|
        }
 | 
						|
        ++m_Count;
 | 
						|
        return newItem;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        return PushFront();
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
 | 
						|
{
 | 
						|
    ItemType* const newItem = InsertBefore(pItem);
 | 
						|
    newItem->Value = value;
 | 
						|
    return newItem;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
 | 
						|
{
 | 
						|
    ItemType* const newItem = InsertAfter(pItem);
 | 
						|
    newItem->Value = value;
 | 
						|
    return newItem;
 | 
						|
}
 | 
						|
#endif // _VMA_RAW_LIST_FUNCTIONS
 | 
						|
#endif // _VMA_RAW_LIST
 | 
						|
 | 
						|
#ifndef _VMA_LIST
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
class VmaList
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaList)
 | 
						|
public:
 | 
						|
    class reverse_iterator;
 | 
						|
    class const_iterator;
 | 
						|
    class const_reverse_iterator;
 | 
						|
 | 
						|
    class iterator
 | 
						|
    {
 | 
						|
        friend class const_iterator;
 | 
						|
        friend class VmaList<T, AllocatorT>;
 | 
						|
    public:
 | 
						|
        iterator() :  m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
 | 
						|
        iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | 
						|
 | 
						|
        T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
 | 
						|
        T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
 | 
						|
 | 
						|
        bool operator==(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
 | 
						|
        bool operator!=(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
 | 
						|
 | 
						|
        iterator operator++(int) { iterator result = *this; ++*this; return result; }
 | 
						|
        iterator operator--(int) { iterator result = *this; --*this; return result; }
 | 
						|
 | 
						|
        iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
 | 
						|
        iterator& operator--();
 | 
						|
 | 
						|
    private:
 | 
						|
        VmaRawList<T>* m_pList;
 | 
						|
        VmaListItem<T>* m_pItem;
 | 
						|
 | 
						|
        iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList),  m_pItem(pItem) {}
 | 
						|
    };
 | 
						|
    class reverse_iterator
 | 
						|
    {
 | 
						|
        friend class const_reverse_iterator;
 | 
						|
        friend class VmaList<T, AllocatorT>;
 | 
						|
    public:
 | 
						|
        reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
 | 
						|
        reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | 
						|
 | 
						|
        T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
 | 
						|
        T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
 | 
						|
 | 
						|
        bool operator==(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
 | 
						|
        bool operator!=(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
 | 
						|
 | 
						|
        reverse_iterator operator++(int) { reverse_iterator result = *this; ++* this; return result; }
 | 
						|
        reverse_iterator operator--(int) { reverse_iterator result = *this; --* this; return result; }
 | 
						|
 | 
						|
        reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
 | 
						|
        reverse_iterator& operator--();
 | 
						|
 | 
						|
    private:
 | 
						|
        VmaRawList<T>* m_pList;
 | 
						|
        VmaListItem<T>* m_pItem;
 | 
						|
 | 
						|
        reverse_iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList),  m_pItem(pItem) {}
 | 
						|
    };
 | 
						|
    class const_iterator
 | 
						|
    {
 | 
						|
        friend class VmaList<T, AllocatorT>;
 | 
						|
    public:
 | 
						|
        const_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
 | 
						|
        const_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | 
						|
        const_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | 
						|
 | 
						|
        iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; }
 | 
						|
 | 
						|
        const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
 | 
						|
        const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
 | 
						|
 | 
						|
        bool operator==(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
 | 
						|
        bool operator!=(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
 | 
						|
 | 
						|
        const_iterator operator++(int) { const_iterator result = *this; ++* this; return result; }
 | 
						|
        const_iterator operator--(int) { const_iterator result = *this; --* this; return result; }
 | 
						|
 | 
						|
        const_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
 | 
						|
        const_iterator& operator--();
 | 
						|
 | 
						|
    private:
 | 
						|
        const VmaRawList<T>* m_pList;
 | 
						|
        const VmaListItem<T>* m_pItem;
 | 
						|
 | 
						|
        const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
 | 
						|
    };
 | 
						|
    class const_reverse_iterator
 | 
						|
    {
 | 
						|
        friend class VmaList<T, AllocatorT>;
 | 
						|
    public:
 | 
						|
        const_reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
 | 
						|
        const_reverse_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | 
						|
        const_reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | 
						|
 | 
						|
        reverse_iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; }
 | 
						|
 | 
						|
        const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
 | 
						|
        const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
 | 
						|
 | 
						|
        bool operator==(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
 | 
						|
        bool operator!=(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
 | 
						|
 | 
						|
        const_reverse_iterator operator++(int) { const_reverse_iterator result = *this; ++* this; return result; }
 | 
						|
        const_reverse_iterator operator--(int) { const_reverse_iterator result = *this; --* this; return result; }
 | 
						|
 | 
						|
        const_reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
 | 
						|
        const_reverse_iterator& operator--();
 | 
						|
 | 
						|
    private:
 | 
						|
        const VmaRawList<T>* m_pList;
 | 
						|
        const VmaListItem<T>* m_pItem;
 | 
						|
 | 
						|
        const_reverse_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
 | 
						|
    };
 | 
						|
 | 
						|
    VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) {}
 | 
						|
 | 
						|
    bool empty() const { return m_RawList.IsEmpty(); }
 | 
						|
    size_t size() const { return m_RawList.GetCount(); }
 | 
						|
 | 
						|
    iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
 | 
						|
    iterator end() { return iterator(&m_RawList, VMA_NULL); }
 | 
						|
 | 
						|
    const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
 | 
						|
    const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
 | 
						|
 | 
						|
    const_iterator begin() const { return cbegin(); }
 | 
						|
    const_iterator end() const { return cend(); }
 | 
						|
 | 
						|
    reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); }
 | 
						|
    reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); }
 | 
						|
 | 
						|
    const_reverse_iterator crbegin() const { return const_reverse_iterator(&m_RawList, m_RawList.Back()); }
 | 
						|
    const_reverse_iterator crend() const { return const_reverse_iterator(&m_RawList, VMA_NULL); }
 | 
						|
 | 
						|
    const_reverse_iterator rbegin() const { return crbegin(); }
 | 
						|
    const_reverse_iterator rend() const { return crend(); }
 | 
						|
 | 
						|
    void push_back(const T& value) { m_RawList.PushBack(value); }
 | 
						|
    iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
 | 
						|
 | 
						|
    void clear() { m_RawList.Clear(); }
 | 
						|
    void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
 | 
						|
 | 
						|
private:
 | 
						|
    VmaRawList<T> m_RawList;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_LIST_FUNCTIONS
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
typename VmaList<T, AllocatorT>::iterator& VmaList<T, AllocatorT>::iterator::operator--()
 | 
						|
{
 | 
						|
    if (m_pItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        m_pItem = m_pItem->pPrev;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
 | 
						|
        m_pItem = m_pList->Back();
 | 
						|
    }
 | 
						|
    return *this;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
typename VmaList<T, AllocatorT>::reverse_iterator& VmaList<T, AllocatorT>::reverse_iterator::operator--()
 | 
						|
{
 | 
						|
    if (m_pItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        m_pItem = m_pItem->pNext;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
 | 
						|
        m_pItem = m_pList->Front();
 | 
						|
    }
 | 
						|
    return *this;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
typename VmaList<T, AllocatorT>::const_iterator& VmaList<T, AllocatorT>::const_iterator::operator--()
 | 
						|
{
 | 
						|
    if (m_pItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        m_pItem = m_pItem->pPrev;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
 | 
						|
        m_pItem = m_pList->Back();
 | 
						|
    }
 | 
						|
    return *this;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, typename AllocatorT>
 | 
						|
typename VmaList<T, AllocatorT>::const_reverse_iterator& VmaList<T, AllocatorT>::const_reverse_iterator::operator--()
 | 
						|
{
 | 
						|
    if (m_pItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        m_pItem = m_pItem->pNext;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
 | 
						|
        m_pItem = m_pList->Back();
 | 
						|
    }
 | 
						|
    return *this;
 | 
						|
}
 | 
						|
#endif // _VMA_LIST_FUNCTIONS
 | 
						|
#endif // _VMA_LIST
 | 
						|
 | 
						|
#ifndef _VMA_INTRUSIVE_LINKED_LIST
 | 
						|
/*
 | 
						|
Expected interface of ItemTypeTraits:
 | 
						|
struct MyItemTypeTraits
 | 
						|
{
 | 
						|
    typedef MyItem ItemType;
 | 
						|
    static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; }
 | 
						|
    static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; }
 | 
						|
    static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; }
 | 
						|
    static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; }
 | 
						|
};
 | 
						|
*/
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
class VmaIntrusiveLinkedList
 | 
						|
{
 | 
						|
public:
 | 
						|
    typedef typename ItemTypeTraits::ItemType ItemType;
 | 
						|
    static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); }
 | 
						|
    static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); }
 | 
						|
 | 
						|
    // Movable, not copyable.
 | 
						|
    VmaIntrusiveLinkedList() = default;
 | 
						|
    VmaIntrusiveLinkedList(VmaIntrusiveLinkedList && src);
 | 
						|
    VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList&) = delete;
 | 
						|
    VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src);
 | 
						|
    VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList&) = delete;
 | 
						|
    ~VmaIntrusiveLinkedList() { VMA_HEAVY_ASSERT(IsEmpty()); }
 | 
						|
 | 
						|
    size_t GetCount() const { return m_Count; }
 | 
						|
    bool IsEmpty() const { return m_Count == 0; }
 | 
						|
    ItemType* Front() { return m_Front; }
 | 
						|
    ItemType* Back() { return m_Back; }
 | 
						|
    const ItemType* Front() const { return m_Front; }
 | 
						|
    const ItemType* Back() const { return m_Back; }
 | 
						|
 | 
						|
    void PushBack(ItemType* item);
 | 
						|
    void PushFront(ItemType* item);
 | 
						|
    ItemType* PopBack();
 | 
						|
    ItemType* PopFront();
 | 
						|
 | 
						|
    // MyItem can be null - it means PushBack.
 | 
						|
    void InsertBefore(ItemType* existingItem, ItemType* newItem);
 | 
						|
    // MyItem can be null - it means PushFront.
 | 
						|
    void InsertAfter(ItemType* existingItem, ItemType* newItem);
 | 
						|
    void Remove(ItemType* item);
 | 
						|
    void RemoveAll();
 | 
						|
 | 
						|
private:
 | 
						|
    ItemType* m_Front = VMA_NULL;
 | 
						|
    ItemType* m_Back = VMA_NULL;
 | 
						|
    size_t m_Count = 0;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
VmaIntrusiveLinkedList<ItemTypeTraits>::VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src)
 | 
						|
    : m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count)
 | 
						|
{
 | 
						|
    src.m_Front = src.m_Back = VMA_NULL;
 | 
						|
    src.m_Count = 0;
 | 
						|
}
 | 
						|
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
VmaIntrusiveLinkedList<ItemTypeTraits>& VmaIntrusiveLinkedList<ItemTypeTraits>::operator=(VmaIntrusiveLinkedList&& src)
 | 
						|
{
 | 
						|
    if (&src != this)
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(IsEmpty());
 | 
						|
        m_Front = src.m_Front;
 | 
						|
        m_Back = src.m_Back;
 | 
						|
        m_Count = src.m_Count;
 | 
						|
        src.m_Front = src.m_Back = VMA_NULL;
 | 
						|
        src.m_Count = 0;
 | 
						|
    }
 | 
						|
    return *this;
 | 
						|
}
 | 
						|
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
void VmaIntrusiveLinkedList<ItemTypeTraits>::PushBack(ItemType* item)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
 | 
						|
    if (IsEmpty())
 | 
						|
    {
 | 
						|
        m_Front = item;
 | 
						|
        m_Back = item;
 | 
						|
        m_Count = 1;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        ItemTypeTraits::AccessPrev(item) = m_Back;
 | 
						|
        ItemTypeTraits::AccessNext(m_Back) = item;
 | 
						|
        m_Back = item;
 | 
						|
        ++m_Count;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
void VmaIntrusiveLinkedList<ItemTypeTraits>::PushFront(ItemType* item)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
 | 
						|
    if (IsEmpty())
 | 
						|
    {
 | 
						|
        m_Front = item;
 | 
						|
        m_Back = item;
 | 
						|
        m_Count = 1;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        ItemTypeTraits::AccessNext(item) = m_Front;
 | 
						|
        ItemTypeTraits::AccessPrev(m_Front) = item;
 | 
						|
        m_Front = item;
 | 
						|
        ++m_Count;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopBack()
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(m_Count > 0);
 | 
						|
    ItemType* const backItem = m_Back;
 | 
						|
    ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem);
 | 
						|
    if (prevItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        ItemTypeTraits::AccessNext(prevItem) = VMA_NULL;
 | 
						|
    }
 | 
						|
    m_Back = prevItem;
 | 
						|
    --m_Count;
 | 
						|
    ItemTypeTraits::AccessPrev(backItem) = VMA_NULL;
 | 
						|
    ItemTypeTraits::AccessNext(backItem) = VMA_NULL;
 | 
						|
    return backItem;
 | 
						|
}
 | 
						|
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopFront()
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(m_Count > 0);
 | 
						|
    ItemType* const frontItem = m_Front;
 | 
						|
    ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem);
 | 
						|
    if (nextItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL;
 | 
						|
    }
 | 
						|
    m_Front = nextItem;
 | 
						|
    --m_Count;
 | 
						|
    ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL;
 | 
						|
    ItemTypeTraits::AccessNext(frontItem) = VMA_NULL;
 | 
						|
    return frontItem;
 | 
						|
}
 | 
						|
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertBefore(ItemType* existingItem, ItemType* newItem)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
 | 
						|
    if (existingItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem);
 | 
						|
        ItemTypeTraits::AccessPrev(newItem) = prevItem;
 | 
						|
        ItemTypeTraits::AccessNext(newItem) = existingItem;
 | 
						|
        ItemTypeTraits::AccessPrev(existingItem) = newItem;
 | 
						|
        if (prevItem != VMA_NULL)
 | 
						|
        {
 | 
						|
            ItemTypeTraits::AccessNext(prevItem) = newItem;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            VMA_HEAVY_ASSERT(m_Front == existingItem);
 | 
						|
            m_Front = newItem;
 | 
						|
        }
 | 
						|
        ++m_Count;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        PushBack(newItem);
 | 
						|
}
 | 
						|
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertAfter(ItemType* existingItem, ItemType* newItem)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
 | 
						|
    if (existingItem != VMA_NULL)
 | 
						|
    {
 | 
						|
        ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem);
 | 
						|
        ItemTypeTraits::AccessNext(newItem) = nextItem;
 | 
						|
        ItemTypeTraits::AccessPrev(newItem) = existingItem;
 | 
						|
        ItemTypeTraits::AccessNext(existingItem) = newItem;
 | 
						|
        if (nextItem != VMA_NULL)
 | 
						|
        {
 | 
						|
            ItemTypeTraits::AccessPrev(nextItem) = newItem;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            VMA_HEAVY_ASSERT(m_Back == existingItem);
 | 
						|
            m_Back = newItem;
 | 
						|
        }
 | 
						|
        ++m_Count;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        return PushFront(newItem);
 | 
						|
}
 | 
						|
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
void VmaIntrusiveLinkedList<ItemTypeTraits>::Remove(ItemType* item)
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0);
 | 
						|
    if (ItemTypeTraits::GetPrev(item) != VMA_NULL)
 | 
						|
    {
 | 
						|
        ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(m_Front == item);
 | 
						|
        m_Front = ItemTypeTraits::GetNext(item);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ItemTypeTraits::GetNext(item) != VMA_NULL)
 | 
						|
    {
 | 
						|
        ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(m_Back == item);
 | 
						|
        m_Back = ItemTypeTraits::GetPrev(item);
 | 
						|
    }
 | 
						|
    ItemTypeTraits::AccessPrev(item) = VMA_NULL;
 | 
						|
    ItemTypeTraits::AccessNext(item) = VMA_NULL;
 | 
						|
    --m_Count;
 | 
						|
}
 | 
						|
 | 
						|
template<typename ItemTypeTraits>
 | 
						|
void VmaIntrusiveLinkedList<ItemTypeTraits>::RemoveAll()
 | 
						|
{
 | 
						|
    if (!IsEmpty())
 | 
						|
    {
 | 
						|
        ItemType* item = m_Back;
 | 
						|
        while (item != VMA_NULL)
 | 
						|
        {
 | 
						|
            ItemType* const prevItem = ItemTypeTraits::AccessPrev(item);
 | 
						|
            ItemTypeTraits::AccessPrev(item) = VMA_NULL;
 | 
						|
            ItemTypeTraits::AccessNext(item) = VMA_NULL;
 | 
						|
            item = prevItem;
 | 
						|
        }
 | 
						|
        m_Front = VMA_NULL;
 | 
						|
        m_Back = VMA_NULL;
 | 
						|
        m_Count = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif // _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
 | 
						|
#endif // _VMA_INTRUSIVE_LINKED_LIST
 | 
						|
 | 
						|
#if !defined(_VMA_STRING_BUILDER) && VMA_STATS_STRING_ENABLED
 | 
						|
class VmaStringBuilder
 | 
						|
{
 | 
						|
public:
 | 
						|
    VmaStringBuilder(const VkAllocationCallbacks* allocationCallbacks) : m_Data(VmaStlAllocator<char>(allocationCallbacks)) {}
 | 
						|
    ~VmaStringBuilder() = default;
 | 
						|
 | 
						|
    size_t GetLength() const { return m_Data.size(); }
 | 
						|
    const char* GetData() const { return m_Data.data(); }
 | 
						|
    void AddNewLine() { Add('\n'); }
 | 
						|
    void Add(char ch) { m_Data.push_back(ch); }
 | 
						|
 | 
						|
    void Add(const char* pStr);
 | 
						|
    void AddNumber(uint32_t num);
 | 
						|
    void AddNumber(uint64_t num);
 | 
						|
    void AddPointer(const void* ptr);
 | 
						|
 | 
						|
private:
 | 
						|
    VmaVector<char, VmaStlAllocator<char>> m_Data;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_STRING_BUILDER_FUNCTIONS
 | 
						|
void VmaStringBuilder::Add(const char* pStr)
 | 
						|
{
 | 
						|
    const size_t strLen = strlen(pStr);
 | 
						|
    if (strLen > 0)
 | 
						|
    {
 | 
						|
        const size_t oldCount = m_Data.size();
 | 
						|
        m_Data.resize(oldCount + strLen);
 | 
						|
        memcpy(m_Data.data() + oldCount, pStr, strLen);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaStringBuilder::AddNumber(uint32_t num)
 | 
						|
{
 | 
						|
    char buf[11];
 | 
						|
    buf[10] = '\0';
 | 
						|
    char* p = &buf[10];
 | 
						|
    do
 | 
						|
    {
 | 
						|
        *--p = '0' + (char)(num % 10);
 | 
						|
        num /= 10;
 | 
						|
    } while (num);
 | 
						|
    Add(p);
 | 
						|
}
 | 
						|
 | 
						|
void VmaStringBuilder::AddNumber(uint64_t num)
 | 
						|
{
 | 
						|
    char buf[21];
 | 
						|
    buf[20] = '\0';
 | 
						|
    char* p = &buf[20];
 | 
						|
    do
 | 
						|
    {
 | 
						|
        *--p = '0' + (char)(num % 10);
 | 
						|
        num /= 10;
 | 
						|
    } while (num);
 | 
						|
    Add(p);
 | 
						|
}
 | 
						|
 | 
						|
void VmaStringBuilder::AddPointer(const void* ptr)
 | 
						|
{
 | 
						|
    char buf[21];
 | 
						|
    VmaPtrToStr(buf, sizeof(buf), ptr);
 | 
						|
    Add(buf);
 | 
						|
}
 | 
						|
#endif //_VMA_STRING_BUILDER_FUNCTIONS
 | 
						|
#endif // _VMA_STRING_BUILDER
 | 
						|
 | 
						|
#if !defined(_VMA_JSON_WRITER) && VMA_STATS_STRING_ENABLED
 | 
						|
/*
 | 
						|
Allows to conveniently build a correct JSON document to be written to the
 | 
						|
VmaStringBuilder passed to the constructor.
 | 
						|
*/
 | 
						|
class VmaJsonWriter
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaJsonWriter)
 | 
						|
public:
 | 
						|
    // sb - string builder to write the document to. Must remain alive for the whole lifetime of this object.
 | 
						|
    VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
 | 
						|
    ~VmaJsonWriter();
 | 
						|
 | 
						|
    // Begins object by writing "{".
 | 
						|
    // Inside an object, you must call pairs of WriteString and a value, e.g.:
 | 
						|
    // j.BeginObject(true); j.WriteString("A"); j.WriteNumber(1); j.WriteString("B"); j.WriteNumber(2); j.EndObject();
 | 
						|
    // Will write: { "A": 1, "B": 2 }
 | 
						|
    void BeginObject(bool singleLine = false);
 | 
						|
    // Ends object by writing "}".
 | 
						|
    void EndObject();
 | 
						|
 | 
						|
    // Begins array by writing "[".
 | 
						|
    // Inside an array, you can write a sequence of any values.
 | 
						|
    void BeginArray(bool singleLine = false);
 | 
						|
    // Ends array by writing "[".
 | 
						|
    void EndArray();
 | 
						|
 | 
						|
    // Writes a string value inside "".
 | 
						|
    // pStr can contain any ANSI characters, including '"', new line etc. - they will be properly escaped.
 | 
						|
    void WriteString(const char* pStr);
 | 
						|
 | 
						|
    // Begins writing a string value.
 | 
						|
    // Call BeginString, ContinueString, ContinueString, ..., EndString instead of
 | 
						|
    // WriteString to conveniently build the string content incrementally, made of
 | 
						|
    // parts including numbers.
 | 
						|
    void BeginString(const char* pStr = VMA_NULL);
 | 
						|
    // Posts next part of an open string.
 | 
						|
    void ContinueString(const char* pStr);
 | 
						|
    // Posts next part of an open string. The number is converted to decimal characters.
 | 
						|
    void ContinueString(uint32_t n);
 | 
						|
    void ContinueString(uint64_t n);
 | 
						|
    // Posts next part of an open string. Pointer value is converted to characters
 | 
						|
    // using "%p" formatting - shown as hexadecimal number, e.g.: 000000081276Ad00
 | 
						|
    void ContinueString_Pointer(const void* ptr);
 | 
						|
    // Ends writing a string value by writing '"'.
 | 
						|
    void EndString(const char* pStr = VMA_NULL);
 | 
						|
 | 
						|
    // Writes a number value.
 | 
						|
    void WriteNumber(uint32_t n);
 | 
						|
    void WriteNumber(uint64_t n);
 | 
						|
    // Writes a boolean value - false or true.
 | 
						|
    void WriteBool(bool b);
 | 
						|
    // Writes a null value.
 | 
						|
    void WriteNull();
 | 
						|
 | 
						|
private:
 | 
						|
    enum COLLECTION_TYPE
 | 
						|
    {
 | 
						|
        COLLECTION_TYPE_OBJECT,
 | 
						|
        COLLECTION_TYPE_ARRAY,
 | 
						|
    };
 | 
						|
    struct StackItem
 | 
						|
    {
 | 
						|
        COLLECTION_TYPE type;
 | 
						|
        uint32_t valueCount;
 | 
						|
        bool singleLineMode;
 | 
						|
    };
 | 
						|
 | 
						|
    static const char* const INDENT;
 | 
						|
 | 
						|
    VmaStringBuilder& m_SB;
 | 
						|
    VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
 | 
						|
    bool m_InsideString;
 | 
						|
 | 
						|
    void BeginValue(bool isString);
 | 
						|
    void WriteIndent(bool oneLess = false);
 | 
						|
};
 | 
						|
const char* const VmaJsonWriter::INDENT = "  ";
 | 
						|
 | 
						|
#ifndef _VMA_JSON_WRITER_FUNCTIONS
 | 
						|
VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb)
 | 
						|
    : m_SB(sb),
 | 
						|
    m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
 | 
						|
    m_InsideString(false) {}
 | 
						|
 | 
						|
VmaJsonWriter::~VmaJsonWriter()
 | 
						|
{
 | 
						|
    VMA_ASSERT(!m_InsideString);
 | 
						|
    VMA_ASSERT(m_Stack.empty());
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::BeginObject(bool singleLine)
 | 
						|
{
 | 
						|
    VMA_ASSERT(!m_InsideString);
 | 
						|
 | 
						|
    BeginValue(false);
 | 
						|
    m_SB.Add('{');
 | 
						|
 | 
						|
    StackItem item;
 | 
						|
    item.type = COLLECTION_TYPE_OBJECT;
 | 
						|
    item.valueCount = 0;
 | 
						|
    item.singleLineMode = singleLine;
 | 
						|
    m_Stack.push_back(item);
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::EndObject()
 | 
						|
{
 | 
						|
    VMA_ASSERT(!m_InsideString);
 | 
						|
 | 
						|
    WriteIndent(true);
 | 
						|
    m_SB.Add('}');
 | 
						|
 | 
						|
    VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
 | 
						|
    m_Stack.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::BeginArray(bool singleLine)
 | 
						|
{
 | 
						|
    VMA_ASSERT(!m_InsideString);
 | 
						|
 | 
						|
    BeginValue(false);
 | 
						|
    m_SB.Add('[');
 | 
						|
 | 
						|
    StackItem item;
 | 
						|
    item.type = COLLECTION_TYPE_ARRAY;
 | 
						|
    item.valueCount = 0;
 | 
						|
    item.singleLineMode = singleLine;
 | 
						|
    m_Stack.push_back(item);
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::EndArray()
 | 
						|
{
 | 
						|
    VMA_ASSERT(!m_InsideString);
 | 
						|
 | 
						|
    WriteIndent(true);
 | 
						|
    m_SB.Add(']');
 | 
						|
 | 
						|
    VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
 | 
						|
    m_Stack.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::WriteString(const char* pStr)
 | 
						|
{
 | 
						|
    BeginString(pStr);
 | 
						|
    EndString();
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::BeginString(const char* pStr)
 | 
						|
{
 | 
						|
    VMA_ASSERT(!m_InsideString);
 | 
						|
 | 
						|
    BeginValue(true);
 | 
						|
    m_SB.Add('"');
 | 
						|
    m_InsideString = true;
 | 
						|
    if (pStr != VMA_NULL && pStr[0] != '\0')
 | 
						|
    {
 | 
						|
        ContinueString(pStr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::ContinueString(const char* pStr)
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_InsideString);
 | 
						|
 | 
						|
    const size_t strLen = strlen(pStr);
 | 
						|
    for (size_t i = 0; i < strLen; ++i)
 | 
						|
    {
 | 
						|
        char ch = pStr[i];
 | 
						|
        if (ch == '\\')
 | 
						|
        {
 | 
						|
            m_SB.Add("\\\\");
 | 
						|
        }
 | 
						|
        else if (ch == '"')
 | 
						|
        {
 | 
						|
            m_SB.Add("\\\"");
 | 
						|
        }
 | 
						|
        else if ((uint8_t)ch >= 32)
 | 
						|
        {
 | 
						|
            m_SB.Add(ch);
 | 
						|
        }
 | 
						|
        else switch (ch)
 | 
						|
        {
 | 
						|
        case '\b':
 | 
						|
            m_SB.Add("\\b");
 | 
						|
            break;
 | 
						|
        case '\f':
 | 
						|
            m_SB.Add("\\f");
 | 
						|
            break;
 | 
						|
        case '\n':
 | 
						|
            m_SB.Add("\\n");
 | 
						|
            break;
 | 
						|
        case '\r':
 | 
						|
            m_SB.Add("\\r");
 | 
						|
            break;
 | 
						|
        case '\t':
 | 
						|
            m_SB.Add("\\t");
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            VMA_ASSERT(0 && "Character not currently supported.");
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::ContinueString(uint32_t n)
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_InsideString);
 | 
						|
    m_SB.AddNumber(n);
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::ContinueString(uint64_t n)
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_InsideString);
 | 
						|
    m_SB.AddNumber(n);
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_InsideString);
 | 
						|
    m_SB.AddPointer(ptr);
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::EndString(const char* pStr)
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_InsideString);
 | 
						|
    if (pStr != VMA_NULL && pStr[0] != '\0')
 | 
						|
    {
 | 
						|
        ContinueString(pStr);
 | 
						|
    }
 | 
						|
    m_SB.Add('"');
 | 
						|
    m_InsideString = false;
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::WriteNumber(uint32_t n)
 | 
						|
{
 | 
						|
    VMA_ASSERT(!m_InsideString);
 | 
						|
    BeginValue(false);
 | 
						|
    m_SB.AddNumber(n);
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::WriteNumber(uint64_t n)
 | 
						|
{
 | 
						|
    VMA_ASSERT(!m_InsideString);
 | 
						|
    BeginValue(false);
 | 
						|
    m_SB.AddNumber(n);
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::WriteBool(bool b)
 | 
						|
{
 | 
						|
    VMA_ASSERT(!m_InsideString);
 | 
						|
    BeginValue(false);
 | 
						|
    m_SB.Add(b ? "true" : "false");
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::WriteNull()
 | 
						|
{
 | 
						|
    VMA_ASSERT(!m_InsideString);
 | 
						|
    BeginValue(false);
 | 
						|
    m_SB.Add("null");
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::BeginValue(bool isString)
 | 
						|
{
 | 
						|
    if (!m_Stack.empty())
 | 
						|
    {
 | 
						|
        StackItem& currItem = m_Stack.back();
 | 
						|
        if (currItem.type == COLLECTION_TYPE_OBJECT &&
 | 
						|
            currItem.valueCount % 2 == 0)
 | 
						|
        {
 | 
						|
            VMA_ASSERT(isString);
 | 
						|
        }
 | 
						|
 | 
						|
        if (currItem.type == COLLECTION_TYPE_OBJECT &&
 | 
						|
            currItem.valueCount % 2 != 0)
 | 
						|
        {
 | 
						|
            m_SB.Add(": ");
 | 
						|
        }
 | 
						|
        else if (currItem.valueCount > 0)
 | 
						|
        {
 | 
						|
            m_SB.Add(", ");
 | 
						|
            WriteIndent();
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            WriteIndent();
 | 
						|
        }
 | 
						|
        ++currItem.valueCount;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaJsonWriter::WriteIndent(bool oneLess)
 | 
						|
{
 | 
						|
    if (!m_Stack.empty() && !m_Stack.back().singleLineMode)
 | 
						|
    {
 | 
						|
        m_SB.AddNewLine();
 | 
						|
 | 
						|
        size_t count = m_Stack.size();
 | 
						|
        if (count > 0 && oneLess)
 | 
						|
        {
 | 
						|
            --count;
 | 
						|
        }
 | 
						|
        for (size_t i = 0; i < count; ++i)
 | 
						|
        {
 | 
						|
            m_SB.Add(INDENT);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif // _VMA_JSON_WRITER_FUNCTIONS
 | 
						|
 | 
						|
static void VmaPrintDetailedStatistics(VmaJsonWriter& json, const VmaDetailedStatistics& stat)
 | 
						|
{
 | 
						|
    json.BeginObject();
 | 
						|
 | 
						|
    json.WriteString("BlockCount");
 | 
						|
    json.WriteNumber(stat.statistics.blockCount);
 | 
						|
    json.WriteString("BlockBytes");
 | 
						|
    json.WriteNumber(stat.statistics.blockBytes);
 | 
						|
    json.WriteString("AllocationCount");
 | 
						|
    json.WriteNumber(stat.statistics.allocationCount);
 | 
						|
    json.WriteString("AllocationBytes");
 | 
						|
    json.WriteNumber(stat.statistics.allocationBytes);
 | 
						|
    json.WriteString("UnusedRangeCount");
 | 
						|
    json.WriteNumber(stat.unusedRangeCount);
 | 
						|
 | 
						|
    if (stat.statistics.allocationCount > 1)
 | 
						|
    {
 | 
						|
        json.WriteString("AllocationSizeMin");
 | 
						|
        json.WriteNumber(stat.allocationSizeMin);
 | 
						|
        json.WriteString("AllocationSizeMax");
 | 
						|
        json.WriteNumber(stat.allocationSizeMax);
 | 
						|
    }
 | 
						|
    if (stat.unusedRangeCount > 1)
 | 
						|
    {
 | 
						|
        json.WriteString("UnusedRangeSizeMin");
 | 
						|
        json.WriteNumber(stat.unusedRangeSizeMin);
 | 
						|
        json.WriteString("UnusedRangeSizeMax");
 | 
						|
        json.WriteNumber(stat.unusedRangeSizeMax);
 | 
						|
    }
 | 
						|
    json.EndObject();
 | 
						|
}
 | 
						|
#endif // _VMA_JSON_WRITER
 | 
						|
 | 
						|
#ifndef _VMA_MAPPING_HYSTERESIS
 | 
						|
 | 
						|
class VmaMappingHysteresis
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaMappingHysteresis)
 | 
						|
public:
 | 
						|
    VmaMappingHysteresis() = default;
 | 
						|
 | 
						|
    uint32_t GetExtraMapping() const { return m_ExtraMapping; }
 | 
						|
 | 
						|
    // Call when Map was called.
 | 
						|
    // Returns true if switched to extra +1 mapping reference count.
 | 
						|
    bool PostMap()
 | 
						|
    {
 | 
						|
#if VMA_MAPPING_HYSTERESIS_ENABLED
 | 
						|
        if(m_ExtraMapping == 0)
 | 
						|
        {
 | 
						|
            ++m_MajorCounter;
 | 
						|
            if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING)
 | 
						|
            {
 | 
						|
                m_ExtraMapping = 1;
 | 
						|
                m_MajorCounter = 0;
 | 
						|
                m_MinorCounter = 0;
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else // m_ExtraMapping == 1
 | 
						|
            PostMinorCounter();
 | 
						|
#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Call when Unmap was called.
 | 
						|
    void PostUnmap()
 | 
						|
    {
 | 
						|
#if VMA_MAPPING_HYSTERESIS_ENABLED
 | 
						|
        if(m_ExtraMapping == 0)
 | 
						|
            ++m_MajorCounter;
 | 
						|
        else // m_ExtraMapping == 1
 | 
						|
            PostMinorCounter();
 | 
						|
#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
 | 
						|
    }
 | 
						|
 | 
						|
    // Call when allocation was made from the memory block.
 | 
						|
    void PostAlloc()
 | 
						|
    {
 | 
						|
#if VMA_MAPPING_HYSTERESIS_ENABLED
 | 
						|
        if(m_ExtraMapping == 1)
 | 
						|
            ++m_MajorCounter;
 | 
						|
        else // m_ExtraMapping == 0
 | 
						|
            PostMinorCounter();
 | 
						|
#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
 | 
						|
    }
 | 
						|
 | 
						|
    // Call when allocation was freed from the memory block.
 | 
						|
    // Returns true if switched to extra -1 mapping reference count.
 | 
						|
    bool PostFree()
 | 
						|
    {
 | 
						|
#if VMA_MAPPING_HYSTERESIS_ENABLED
 | 
						|
        if(m_ExtraMapping == 1)
 | 
						|
        {
 | 
						|
            ++m_MajorCounter;
 | 
						|
            if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING &&
 | 
						|
                m_MajorCounter > m_MinorCounter + 1)
 | 
						|
            {
 | 
						|
                m_ExtraMapping = 0;
 | 
						|
                m_MajorCounter = 0;
 | 
						|
                m_MinorCounter = 0;
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else // m_ExtraMapping == 0
 | 
						|
            PostMinorCounter();
 | 
						|
#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
private:
 | 
						|
    static const int32_t COUNTER_MIN_EXTRA_MAPPING = 7;
 | 
						|
 | 
						|
    uint32_t m_MinorCounter = 0;
 | 
						|
    uint32_t m_MajorCounter = 0;
 | 
						|
    uint32_t m_ExtraMapping = 0; // 0 or 1.
 | 
						|
 | 
						|
    void PostMinorCounter()
 | 
						|
    {
 | 
						|
        if(m_MinorCounter < m_MajorCounter)
 | 
						|
        {
 | 
						|
            ++m_MinorCounter;
 | 
						|
        }
 | 
						|
        else if(m_MajorCounter > 0)
 | 
						|
        {
 | 
						|
            --m_MajorCounter;
 | 
						|
            --m_MinorCounter;
 | 
						|
        }
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
#endif // _VMA_MAPPING_HYSTERESIS
 | 
						|
 | 
						|
#if VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
class VmaWin32Handle
 | 
						|
{
 | 
						|
public:
 | 
						|
    VmaWin32Handle() noexcept : m_hHandle(VMA_NULL) { }
 | 
						|
    explicit VmaWin32Handle(HANDLE hHandle) noexcept : m_hHandle(hHandle) { }
 | 
						|
    ~VmaWin32Handle() noexcept { if (m_hHandle != VMA_NULL) { ::CloseHandle(m_hHandle); } }
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaWin32Handle)
 | 
						|
 | 
						|
public:
 | 
						|
    // Strengthened
 | 
						|
    VkResult GetHandle(VkDevice device, VkDeviceMemory memory, PFN_vkGetMemoryWin32HandleKHR pvkGetMemoryWin32HandleKHR, HANDLE hTargetProcess, bool useMutex, HANDLE* pHandle) noexcept
 | 
						|
    {
 | 
						|
        *pHandle = VMA_NULL;
 | 
						|
        // Try to get handle first.
 | 
						|
        if (m_hHandle != VMA_NULL)
 | 
						|
        {
 | 
						|
            *pHandle = Duplicate(hTargetProcess);
 | 
						|
            return VK_SUCCESS;
 | 
						|
        }
 | 
						|
 | 
						|
        VkResult res = VK_SUCCESS;
 | 
						|
        // If failed, try to create it.
 | 
						|
        {
 | 
						|
            VmaMutexLockWrite lock(m_Mutex, useMutex);
 | 
						|
            if (m_hHandle == VMA_NULL)
 | 
						|
            {
 | 
						|
                res = Create(device, memory, pvkGetMemoryWin32HandleKHR, &m_hHandle);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        *pHandle = Duplicate(hTargetProcess);
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    operator bool() const noexcept { return m_hHandle != VMA_NULL; }
 | 
						|
private:
 | 
						|
    // Not atomic
 | 
						|
    static VkResult Create(VkDevice device, VkDeviceMemory memory, PFN_vkGetMemoryWin32HandleKHR pvkGetMemoryWin32HandleKHR, HANDLE* pHandle) noexcept
 | 
						|
    {
 | 
						|
        VkResult res = VK_ERROR_FEATURE_NOT_PRESENT;
 | 
						|
        if (pvkGetMemoryWin32HandleKHR != VMA_NULL)
 | 
						|
        {
 | 
						|
            VkMemoryGetWin32HandleInfoKHR handleInfo{ };
 | 
						|
            handleInfo.sType = VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR;
 | 
						|
            handleInfo.memory = memory;
 | 
						|
            handleInfo.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR;
 | 
						|
            res = pvkGetMemoryWin32HandleKHR(device, &handleInfo, pHandle);
 | 
						|
        }
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
    HANDLE Duplicate(HANDLE hTargetProcess = VMA_NULL) const noexcept
 | 
						|
    {
 | 
						|
        if (!m_hHandle)
 | 
						|
            return m_hHandle;
 | 
						|
 | 
						|
        HANDLE hCurrentProcess = ::GetCurrentProcess();
 | 
						|
        HANDLE hDupHandle = VMA_NULL;
 | 
						|
        if (!::DuplicateHandle(hCurrentProcess, m_hHandle, hTargetProcess ? hTargetProcess : hCurrentProcess, &hDupHandle, 0, FALSE, DUPLICATE_SAME_ACCESS))
 | 
						|
        {
 | 
						|
            VMA_ASSERT(0 && "Failed to duplicate handle.");
 | 
						|
        }
 | 
						|
        return hDupHandle;
 | 
						|
    }
 | 
						|
private:
 | 
						|
    HANDLE m_hHandle;
 | 
						|
    VMA_RW_MUTEX m_Mutex; // Protects access m_Handle
 | 
						|
};
 | 
						|
#else 
 | 
						|
class VmaWin32Handle
 | 
						|
{
 | 
						|
    // ABI compatibility
 | 
						|
    void* placeholder = VMA_NULL;
 | 
						|
    VMA_RW_MUTEX placeholder2;
 | 
						|
};
 | 
						|
#endif // VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
 | 
						|
 | 
						|
#ifndef _VMA_DEVICE_MEMORY_BLOCK
 | 
						|
/*
 | 
						|
Represents a single block of device memory (`VkDeviceMemory`) with all the
 | 
						|
data about its regions (aka suballocations, #VmaAllocation), assigned and free.
 | 
						|
 | 
						|
Thread-safety:
 | 
						|
- Access to m_pMetadata must be externally synchronized.
 | 
						|
- Map, Unmap, Bind* are synchronized internally.
 | 
						|
*/
 | 
						|
class VmaDeviceMemoryBlock
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaDeviceMemoryBlock)
 | 
						|
public:
 | 
						|
    VmaBlockMetadata* m_pMetadata;
 | 
						|
 | 
						|
    VmaDeviceMemoryBlock(VmaAllocator hAllocator);
 | 
						|
    ~VmaDeviceMemoryBlock();
 | 
						|
 | 
						|
    // Always call after construction.
 | 
						|
    void Init(
 | 
						|
        VmaAllocator hAllocator,
 | 
						|
        VmaPool hParentPool,
 | 
						|
        uint32_t newMemoryTypeIndex,
 | 
						|
        VkDeviceMemory newMemory,
 | 
						|
        VkDeviceSize newSize,
 | 
						|
        uint32_t id,
 | 
						|
        uint32_t algorithm,
 | 
						|
        VkDeviceSize bufferImageGranularity);
 | 
						|
    // Always call before destruction.
 | 
						|
    void Destroy(VmaAllocator allocator);
 | 
						|
 | 
						|
    VmaPool GetParentPool() const { return m_hParentPool; }
 | 
						|
    VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }
 | 
						|
    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
 | 
						|
    uint32_t GetId() const { return m_Id; }
 | 
						|
    void* GetMappedData() const { return m_pMappedData; }
 | 
						|
    uint32_t GetMapRefCount() const { return m_MapCount; }
 | 
						|
 | 
						|
    // Call when allocation/free was made from m_pMetadata.
 | 
						|
    // Used for m_MappingHysteresis.
 | 
						|
    void PostAlloc(VmaAllocator hAllocator);
 | 
						|
    void PostFree(VmaAllocator hAllocator);
 | 
						|
 | 
						|
    // Validates all data structures inside this object. If not valid, returns false.
 | 
						|
    bool Validate() const;
 | 
						|
    VkResult CheckCorruption(VmaAllocator hAllocator);
 | 
						|
 | 
						|
    // ppData can be null.
 | 
						|
    VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);
 | 
						|
    void Unmap(VmaAllocator hAllocator, uint32_t count);
 | 
						|
 | 
						|
    VkResult WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
 | 
						|
    VkResult ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
 | 
						|
 | 
						|
    VkResult BindBufferMemory(
 | 
						|
        const VmaAllocator hAllocator,
 | 
						|
        const VmaAllocation hAllocation,
 | 
						|
        VkDeviceSize allocationLocalOffset,
 | 
						|
        VkBuffer hBuffer,
 | 
						|
        const void* pNext);
 | 
						|
    VkResult BindImageMemory(
 | 
						|
        const VmaAllocator hAllocator,
 | 
						|
        const VmaAllocation hAllocation,
 | 
						|
        VkDeviceSize allocationLocalOffset,
 | 
						|
        VkImage hImage,
 | 
						|
        const void* pNext);
 | 
						|
#if VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
    VkResult CreateWin32Handle(
 | 
						|
        const VmaAllocator hAllocator,
 | 
						|
        PFN_vkGetMemoryWin32HandleKHR pvkGetMemoryWin32HandleKHR,
 | 
						|
        HANDLE hTargetProcess,
 | 
						|
        HANDLE* pHandle)noexcept;
 | 
						|
#endif // VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
private:
 | 
						|
    VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
 | 
						|
    uint32_t m_MemoryTypeIndex;
 | 
						|
    uint32_t m_Id;
 | 
						|
    VkDeviceMemory m_hMemory;
 | 
						|
 | 
						|
    /*
 | 
						|
    Protects access to m_hMemory so it is not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.
 | 
						|
    Also protects m_MapCount, m_pMappedData.
 | 
						|
    Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex.
 | 
						|
    */
 | 
						|
    VMA_MUTEX m_MapAndBindMutex;
 | 
						|
    VmaMappingHysteresis m_MappingHysteresis;
 | 
						|
    uint32_t m_MapCount;
 | 
						|
    void* m_pMappedData;
 | 
						|
 | 
						|
    VmaWin32Handle m_Handle;
 | 
						|
};
 | 
						|
#endif // _VMA_DEVICE_MEMORY_BLOCK
 | 
						|
 | 
						|
#ifndef _VMA_ALLOCATION_T
 | 
						|
struct VmaAllocationExtraData
 | 
						|
{
 | 
						|
    void* m_pMappedData = VMA_NULL; // Not null means memory is mapped.
 | 
						|
    VmaWin32Handle m_Handle;
 | 
						|
};
 | 
						|
 | 
						|
struct VmaAllocation_T
 | 
						|
{
 | 
						|
    friend struct VmaDedicatedAllocationListItemTraits;
 | 
						|
 | 
						|
    enum FLAGS
 | 
						|
    {
 | 
						|
        FLAG_PERSISTENT_MAP   = 0x01,
 | 
						|
        FLAG_MAPPING_ALLOWED  = 0x02,
 | 
						|
    };
 | 
						|
 | 
						|
public:
 | 
						|
    enum ALLOCATION_TYPE
 | 
						|
    {
 | 
						|
        ALLOCATION_TYPE_NONE,
 | 
						|
        ALLOCATION_TYPE_BLOCK,
 | 
						|
        ALLOCATION_TYPE_DEDICATED,
 | 
						|
    };
 | 
						|
 | 
						|
    // This struct is allocated using VmaPoolAllocator.
 | 
						|
    VmaAllocation_T(bool mappingAllowed);
 | 
						|
    ~VmaAllocation_T();
 | 
						|
 | 
						|
    void InitBlockAllocation(
 | 
						|
        VmaDeviceMemoryBlock* block,
 | 
						|
        VmaAllocHandle allocHandle,
 | 
						|
        VkDeviceSize alignment,
 | 
						|
        VkDeviceSize size,
 | 
						|
        uint32_t memoryTypeIndex,
 | 
						|
        VmaSuballocationType suballocationType,
 | 
						|
        bool mapped);
 | 
						|
    // pMappedData not null means allocation is created with MAPPED flag.
 | 
						|
    void InitDedicatedAllocation(
 | 
						|
        VmaAllocator allocator,
 | 
						|
        VmaPool hParentPool,
 | 
						|
        uint32_t memoryTypeIndex,
 | 
						|
        VkDeviceMemory hMemory,
 | 
						|
        VmaSuballocationType suballocationType,
 | 
						|
        void* pMappedData,
 | 
						|
        VkDeviceSize size);
 | 
						|
    void Destroy(VmaAllocator allocator);
 | 
						|
 | 
						|
    ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
 | 
						|
    VkDeviceSize GetAlignment() const { return m_Alignment; }
 | 
						|
    VkDeviceSize GetSize() const { return m_Size; }
 | 
						|
    void* GetUserData() const { return m_pUserData; }
 | 
						|
    const char* GetName() const { return m_pName; }
 | 
						|
    VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
 | 
						|
 | 
						|
    VmaDeviceMemoryBlock* GetBlock() const { VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); return m_BlockAllocation.m_Block; }
 | 
						|
    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
 | 
						|
    bool IsPersistentMap() const { return (m_Flags & FLAG_PERSISTENT_MAP) != 0; }
 | 
						|
    bool IsMappingAllowed() const { return (m_Flags & FLAG_MAPPING_ALLOWED) != 0; }
 | 
						|
 | 
						|
    void SetUserData(VmaAllocator hAllocator, void* pUserData) { m_pUserData = pUserData; }
 | 
						|
    void SetName(VmaAllocator hAllocator, const char* pName);
 | 
						|
    void FreeName(VmaAllocator hAllocator);
 | 
						|
    uint8_t SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation);
 | 
						|
    VmaAllocHandle GetAllocHandle() const;
 | 
						|
    VkDeviceSize GetOffset() const;
 | 
						|
    VmaPool GetParentPool() const;
 | 
						|
    VkDeviceMemory GetMemory() const;
 | 
						|
    void* GetMappedData() const;
 | 
						|
 | 
						|
    void BlockAllocMap();
 | 
						|
    void BlockAllocUnmap();
 | 
						|
    VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
 | 
						|
    void DedicatedAllocUnmap(VmaAllocator hAllocator);
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    VmaBufferImageUsage GetBufferImageUsage() const { return m_BufferImageUsage; }
 | 
						|
    void InitBufferUsage(const VkBufferCreateInfo &createInfo, bool useKhrMaintenance5)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(m_BufferImageUsage == VmaBufferImageUsage::UNKNOWN);
 | 
						|
        m_BufferImageUsage = VmaBufferImageUsage(createInfo, useKhrMaintenance5);
 | 
						|
    }
 | 
						|
    void InitImageUsage(const VkImageCreateInfo &createInfo)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(m_BufferImageUsage == VmaBufferImageUsage::UNKNOWN);
 | 
						|
        m_BufferImageUsage = VmaBufferImageUsage(createInfo);
 | 
						|
    }
 | 
						|
    void PrintParameters(class VmaJsonWriter& json) const;
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
    VkResult GetWin32Handle(VmaAllocator hAllocator, HANDLE hTargetProcess, HANDLE* hHandle) noexcept;
 | 
						|
#endif // VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
 | 
						|
private:
 | 
						|
    // Allocation out of VmaDeviceMemoryBlock.
 | 
						|
    struct BlockAllocation
 | 
						|
    {
 | 
						|
        VmaDeviceMemoryBlock* m_Block;
 | 
						|
        VmaAllocHandle m_AllocHandle;
 | 
						|
    };
 | 
						|
    // Allocation for an object that has its own private VkDeviceMemory.
 | 
						|
    struct DedicatedAllocation
 | 
						|
    {
 | 
						|
        VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
 | 
						|
        VkDeviceMemory m_hMemory;
 | 
						|
        VmaAllocationExtraData* m_ExtraData;
 | 
						|
        VmaAllocation_T* m_Prev;
 | 
						|
        VmaAllocation_T* m_Next;
 | 
						|
    };
 | 
						|
    union
 | 
						|
    {
 | 
						|
        // Allocation out of VmaDeviceMemoryBlock.
 | 
						|
        BlockAllocation m_BlockAllocation;
 | 
						|
        // Allocation for an object that has its own private VkDeviceMemory.
 | 
						|
        DedicatedAllocation m_DedicatedAllocation;
 | 
						|
    };
 | 
						|
 | 
						|
    VkDeviceSize m_Alignment;
 | 
						|
    VkDeviceSize m_Size;
 | 
						|
    void* m_pUserData;
 | 
						|
    char* m_pName;
 | 
						|
    uint32_t m_MemoryTypeIndex;
 | 
						|
    uint8_t m_Type; // ALLOCATION_TYPE
 | 
						|
    uint8_t m_SuballocationType; // VmaSuballocationType
 | 
						|
    // Reference counter for vmaMapMemory()/vmaUnmapMemory().
 | 
						|
    uint8_t m_MapCount;
 | 
						|
    uint8_t m_Flags; // enum FLAGS
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    VmaBufferImageUsage m_BufferImageUsage; // 0 if unknown.
 | 
						|
#endif
 | 
						|
 | 
						|
    void EnsureExtraData(VmaAllocator hAllocator);
 | 
						|
};
 | 
						|
#endif // _VMA_ALLOCATION_T
 | 
						|
 | 
						|
#ifndef _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS
 | 
						|
struct VmaDedicatedAllocationListItemTraits
 | 
						|
{
 | 
						|
    typedef VmaAllocation_T ItemType;
 | 
						|
 | 
						|
    static ItemType* GetPrev(const ItemType* item)
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
 | 
						|
        return item->m_DedicatedAllocation.m_Prev;
 | 
						|
    }
 | 
						|
    static ItemType* GetNext(const ItemType* item)
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
 | 
						|
        return item->m_DedicatedAllocation.m_Next;
 | 
						|
    }
 | 
						|
    static ItemType*& AccessPrev(ItemType* item)
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
 | 
						|
        return item->m_DedicatedAllocation.m_Prev;
 | 
						|
    }
 | 
						|
    static ItemType*& AccessNext(ItemType* item)
 | 
						|
    {
 | 
						|
        VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
 | 
						|
        return item->m_DedicatedAllocation.m_Next;
 | 
						|
    }
 | 
						|
};
 | 
						|
#endif // _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS
 | 
						|
 | 
						|
#ifndef _VMA_DEDICATED_ALLOCATION_LIST
 | 
						|
/*
 | 
						|
Stores linked list of VmaAllocation_T objects.
 | 
						|
Thread-safe, synchronized internally.
 | 
						|
*/
 | 
						|
class VmaDedicatedAllocationList
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaDedicatedAllocationList)
 | 
						|
public:
 | 
						|
    VmaDedicatedAllocationList() {}
 | 
						|
    ~VmaDedicatedAllocationList();
 | 
						|
 | 
						|
    void Init(bool useMutex) { m_UseMutex = useMutex; }
 | 
						|
    bool Validate();
 | 
						|
 | 
						|
    void AddDetailedStatistics(VmaDetailedStatistics& inoutStats);
 | 
						|
    void AddStatistics(VmaStatistics& inoutStats);
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    // Writes JSON array with the list of allocations.
 | 
						|
    void BuildStatsString(VmaJsonWriter& json);
 | 
						|
#endif
 | 
						|
 | 
						|
    bool IsEmpty();
 | 
						|
    void Register(VmaAllocation alloc);
 | 
						|
    void Unregister(VmaAllocation alloc);
 | 
						|
 | 
						|
private:
 | 
						|
    typedef VmaIntrusiveLinkedList<VmaDedicatedAllocationListItemTraits> DedicatedAllocationLinkedList;
 | 
						|
 | 
						|
    bool m_UseMutex = true;
 | 
						|
    VMA_RW_MUTEX m_Mutex;
 | 
						|
    DedicatedAllocationLinkedList m_AllocationList;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS
 | 
						|
 | 
						|
VmaDedicatedAllocationList::~VmaDedicatedAllocationList()
 | 
						|
{
 | 
						|
    VMA_HEAVY_ASSERT(Validate());
 | 
						|
 | 
						|
    if (!m_AllocationList.IsEmpty())
 | 
						|
    {
 | 
						|
        VMA_ASSERT_LEAK(false && "Unfreed dedicated allocations found!");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool VmaDedicatedAllocationList::Validate()
 | 
						|
{
 | 
						|
    const size_t declaredCount = m_AllocationList.GetCount();
 | 
						|
    size_t actualCount = 0;
 | 
						|
    VmaMutexLockRead lock(m_Mutex, m_UseMutex);
 | 
						|
    for (VmaAllocation alloc = m_AllocationList.Front();
 | 
						|
        alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc))
 | 
						|
    {
 | 
						|
        ++actualCount;
 | 
						|
    }
 | 
						|
    VMA_VALIDATE(actualCount == declaredCount);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void VmaDedicatedAllocationList::AddDetailedStatistics(VmaDetailedStatistics& inoutStats)
 | 
						|
{
 | 
						|
    for(auto* item = m_AllocationList.Front(); item != VMA_NULL; item = DedicatedAllocationLinkedList::GetNext(item))
 | 
						|
    {
 | 
						|
        const VkDeviceSize size = item->GetSize();
 | 
						|
        inoutStats.statistics.blockCount++;
 | 
						|
        inoutStats.statistics.blockBytes += size;
 | 
						|
        VmaAddDetailedStatisticsAllocation(inoutStats, item->GetSize());
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaDedicatedAllocationList::AddStatistics(VmaStatistics& inoutStats)
 | 
						|
{
 | 
						|
    VmaMutexLockRead lock(m_Mutex, m_UseMutex);
 | 
						|
 | 
						|
    const uint32_t allocCount = (uint32_t)m_AllocationList.GetCount();
 | 
						|
    inoutStats.blockCount += allocCount;
 | 
						|
    inoutStats.allocationCount += allocCount;
 | 
						|
 | 
						|
    for(auto* item = m_AllocationList.Front(); item != VMA_NULL; item = DedicatedAllocationLinkedList::GetNext(item))
 | 
						|
    {
 | 
						|
        const VkDeviceSize size = item->GetSize();
 | 
						|
        inoutStats.blockBytes += size;
 | 
						|
        inoutStats.allocationBytes += size;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
void VmaDedicatedAllocationList::BuildStatsString(VmaJsonWriter& json)
 | 
						|
{
 | 
						|
    VmaMutexLockRead lock(m_Mutex, m_UseMutex);
 | 
						|
    json.BeginArray();
 | 
						|
    for (VmaAllocation alloc = m_AllocationList.Front();
 | 
						|
        alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc))
 | 
						|
    {
 | 
						|
        json.BeginObject(true);
 | 
						|
        alloc->PrintParameters(json);
 | 
						|
        json.EndObject();
 | 
						|
    }
 | 
						|
    json.EndArray();
 | 
						|
}
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
 | 
						|
bool VmaDedicatedAllocationList::IsEmpty()
 | 
						|
{
 | 
						|
    VmaMutexLockRead lock(m_Mutex, m_UseMutex);
 | 
						|
    return m_AllocationList.IsEmpty();
 | 
						|
}
 | 
						|
 | 
						|
void VmaDedicatedAllocationList::Register(VmaAllocation alloc)
 | 
						|
{
 | 
						|
    VmaMutexLockWrite lock(m_Mutex, m_UseMutex);
 | 
						|
    m_AllocationList.PushBack(alloc);
 | 
						|
}
 | 
						|
 | 
						|
void VmaDedicatedAllocationList::Unregister(VmaAllocation alloc)
 | 
						|
{
 | 
						|
    VmaMutexLockWrite lock(m_Mutex, m_UseMutex);
 | 
						|
    m_AllocationList.Remove(alloc);
 | 
						|
}
 | 
						|
#endif // _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS
 | 
						|
#endif // _VMA_DEDICATED_ALLOCATION_LIST
 | 
						|
 | 
						|
#ifndef _VMA_SUBALLOCATION
 | 
						|
/*
 | 
						|
Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
 | 
						|
allocated memory block or free.
 | 
						|
*/
 | 
						|
struct VmaSuballocation
 | 
						|
{
 | 
						|
    VkDeviceSize offset;
 | 
						|
    VkDeviceSize size;
 | 
						|
    void* userData;
 | 
						|
    VmaSuballocationType type;
 | 
						|
};
 | 
						|
 | 
						|
// Comparator for offsets.
 | 
						|
struct VmaSuballocationOffsetLess
 | 
						|
{
 | 
						|
    bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
 | 
						|
    {
 | 
						|
        return lhs.offset < rhs.offset;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct VmaSuballocationOffsetGreater
 | 
						|
{
 | 
						|
    bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
 | 
						|
    {
 | 
						|
        return lhs.offset > rhs.offset;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct VmaSuballocationItemSizeLess
 | 
						|
{
 | 
						|
    bool operator()(const VmaSuballocationList::iterator lhs,
 | 
						|
        const VmaSuballocationList::iterator rhs) const
 | 
						|
    {
 | 
						|
        return lhs->size < rhs->size;
 | 
						|
    }
 | 
						|
 | 
						|
    bool operator()(const VmaSuballocationList::iterator lhs,
 | 
						|
        VkDeviceSize rhsSize) const
 | 
						|
    {
 | 
						|
        return lhs->size < rhsSize;
 | 
						|
    }
 | 
						|
};
 | 
						|
#endif // _VMA_SUBALLOCATION
 | 
						|
 | 
						|
#ifndef _VMA_ALLOCATION_REQUEST
 | 
						|
/*
 | 
						|
Parameters of planned allocation inside a VmaDeviceMemoryBlock.
 | 
						|
item points to a FREE suballocation.
 | 
						|
*/
 | 
						|
struct VmaAllocationRequest
 | 
						|
{
 | 
						|
    VmaAllocHandle allocHandle;
 | 
						|
    VkDeviceSize size;
 | 
						|
    VmaSuballocationList::iterator item;
 | 
						|
    void* customData;
 | 
						|
    uint64_t algorithmData;
 | 
						|
    VmaAllocationRequestType type;
 | 
						|
};
 | 
						|
#endif // _VMA_ALLOCATION_REQUEST
 | 
						|
 | 
						|
#ifndef _VMA_BLOCK_METADATA
 | 
						|
/*
 | 
						|
Data structure used for bookkeeping of allocations and unused ranges of memory
 | 
						|
in a single VkDeviceMemory block.
 | 
						|
*/
 | 
						|
class VmaBlockMetadata
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata)
 | 
						|
public:
 | 
						|
    // pAllocationCallbacks, if not null, must be owned externally - alive and unchanged for the whole lifetime of this object.
 | 
						|
    VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks,
 | 
						|
        VkDeviceSize bufferImageGranularity, bool isVirtual);
 | 
						|
    virtual ~VmaBlockMetadata() = default;
 | 
						|
 | 
						|
    virtual void Init(VkDeviceSize size) { m_Size = size; }
 | 
						|
    bool IsVirtual() const { return m_IsVirtual; }
 | 
						|
    VkDeviceSize GetSize() const { return m_Size; }
 | 
						|
 | 
						|
    // Validates all data structures inside this object. If not valid, returns false.
 | 
						|
    virtual bool Validate() const = 0;
 | 
						|
    virtual size_t GetAllocationCount() const = 0;
 | 
						|
    virtual size_t GetFreeRegionsCount() const = 0;
 | 
						|
    virtual VkDeviceSize GetSumFreeSize() const = 0;
 | 
						|
    // Returns true if this block is empty - contains only single free suballocation.
 | 
						|
    virtual bool IsEmpty() const = 0;
 | 
						|
    virtual void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) = 0;
 | 
						|
    virtual VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const = 0;
 | 
						|
    virtual void* GetAllocationUserData(VmaAllocHandle allocHandle) const = 0;
 | 
						|
 | 
						|
    virtual VmaAllocHandle GetAllocationListBegin() const = 0;
 | 
						|
    virtual VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const = 0;
 | 
						|
    virtual VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const = 0;
 | 
						|
 | 
						|
    // Shouldn't modify blockCount.
 | 
						|
    virtual void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const = 0;
 | 
						|
    virtual void AddStatistics(VmaStatistics& inoutStats) const = 0;
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
    // Tries to find a place for suballocation with given parameters inside this block.
 | 
						|
    // If succeeded, fills pAllocationRequest and returns true.
 | 
						|
    // If failed, returns false.
 | 
						|
    virtual bool CreateAllocationRequest(
 | 
						|
        VkDeviceSize allocSize,
 | 
						|
        VkDeviceSize allocAlignment,
 | 
						|
        bool upperAddress,
 | 
						|
        VmaSuballocationType allocType,
 | 
						|
        // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags.
 | 
						|
        uint32_t strategy,
 | 
						|
        VmaAllocationRequest* pAllocationRequest) = 0;
 | 
						|
 | 
						|
    virtual VkResult CheckCorruption(const void* pBlockData) = 0;
 | 
						|
 | 
						|
    // Makes actual allocation based on request. Request must already be checked and valid.
 | 
						|
    virtual void Alloc(
 | 
						|
        const VmaAllocationRequest& request,
 | 
						|
        VmaSuballocationType type,
 | 
						|
        void* userData) = 0;
 | 
						|
 | 
						|
    // Frees suballocation assigned to given memory region.
 | 
						|
    virtual void Free(VmaAllocHandle allocHandle) = 0;
 | 
						|
 | 
						|
    // Frees all allocations.
 | 
						|
    // Careful! Don't call it if there are VmaAllocation objects owned by userData of cleared allocations!
 | 
						|
    virtual void Clear() = 0;
 | 
						|
 | 
						|
    virtual void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) = 0;
 | 
						|
    virtual void DebugLogAllAllocations() const = 0;
 | 
						|
 | 
						|
protected:
 | 
						|
    const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; }
 | 
						|
    VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
 | 
						|
    VkDeviceSize GetDebugMargin() const { return VkDeviceSize(IsVirtual() ? 0 : VMA_DEBUG_MARGIN); }
 | 
						|
 | 
						|
    void DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const;
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    // mapRefCount == UINT32_MAX means unspecified.
 | 
						|
    void PrintDetailedMap_Begin(class VmaJsonWriter& json,
 | 
						|
        VkDeviceSize unusedBytes,
 | 
						|
        size_t allocationCount,
 | 
						|
        size_t unusedRangeCount) const;
 | 
						|
    void PrintDetailedMap_Allocation(class VmaJsonWriter& json,
 | 
						|
        VkDeviceSize offset, VkDeviceSize size, void* userData) const;
 | 
						|
    void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
 | 
						|
        VkDeviceSize offset,
 | 
						|
        VkDeviceSize size) const;
 | 
						|
    void PrintDetailedMap_End(class VmaJsonWriter& json) const;
 | 
						|
#endif
 | 
						|
 | 
						|
private:
 | 
						|
    VkDeviceSize m_Size;
 | 
						|
    const VkAllocationCallbacks* m_pAllocationCallbacks;
 | 
						|
    const VkDeviceSize m_BufferImageGranularity;
 | 
						|
    const bool m_IsVirtual;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_BLOCK_METADATA_FUNCTIONS
 | 
						|
VmaBlockMetadata::VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks,
 | 
						|
    VkDeviceSize bufferImageGranularity, bool isVirtual)
 | 
						|
    : m_Size(0),
 | 
						|
    m_pAllocationCallbacks(pAllocationCallbacks),
 | 
						|
    m_BufferImageGranularity(bufferImageGranularity),
 | 
						|
    m_IsVirtual(isVirtual) {}
 | 
						|
 | 
						|
void VmaBlockMetadata::DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const
 | 
						|
{
 | 
						|
    if (IsVirtual())
 | 
						|
    {
 | 
						|
        VMA_LEAK_LOG_FORMAT("UNFREED VIRTUAL ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p", offset, size, userData);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_ASSERT(userData != VMA_NULL);
 | 
						|
        VmaAllocation allocation = reinterpret_cast<VmaAllocation>(userData);
 | 
						|
 | 
						|
        userData = allocation->GetUserData();
 | 
						|
        const char* name = allocation->GetName();
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
        VMA_LEAK_LOG_FORMAT("UNFREED ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p; Name: %s; Type: %s; Usage: %" PRIu64,
 | 
						|
            offset, size, userData, name ? name : "vma_empty",
 | 
						|
            VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()],
 | 
						|
            (uint64_t)allocation->GetBufferImageUsage().Value);
 | 
						|
#else
 | 
						|
        VMA_LEAK_LOG_FORMAT("UNFREED ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p; Name: %s; Type: %u",
 | 
						|
            offset, size, userData, name ? name : "vma_empty",
 | 
						|
            (unsigned)allocation->GetSuballocationType());
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json,
 | 
						|
    VkDeviceSize unusedBytes, size_t allocationCount, size_t unusedRangeCount) const
 | 
						|
{
 | 
						|
    json.WriteString("TotalBytes");
 | 
						|
    json.WriteNumber(GetSize());
 | 
						|
 | 
						|
    json.WriteString("UnusedBytes");
 | 
						|
    json.WriteNumber(unusedBytes);
 | 
						|
 | 
						|
    json.WriteString("Allocations");
 | 
						|
    json.WriteNumber((uint64_t)allocationCount);
 | 
						|
 | 
						|
    json.WriteString("UnusedRanges");
 | 
						|
    json.WriteNumber((uint64_t)unusedRangeCount);
 | 
						|
 | 
						|
    json.WriteString("Suballocations");
 | 
						|
    json.BeginArray();
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json,
 | 
						|
    VkDeviceSize offset, VkDeviceSize size, void* userData) const
 | 
						|
{
 | 
						|
    json.BeginObject(true);
 | 
						|
 | 
						|
    json.WriteString("Offset");
 | 
						|
    json.WriteNumber(offset);
 | 
						|
 | 
						|
    if (IsVirtual())
 | 
						|
    {
 | 
						|
        json.WriteString("Size");
 | 
						|
        json.WriteNumber(size);
 | 
						|
        if (userData)
 | 
						|
        {
 | 
						|
            json.WriteString("CustomData");
 | 
						|
            json.BeginString();
 | 
						|
            json.ContinueString_Pointer(userData);
 | 
						|
            json.EndString();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        ((VmaAllocation)userData)->PrintParameters(json);
 | 
						|
    }
 | 
						|
 | 
						|
    json.EndObject();
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
 | 
						|
    VkDeviceSize offset, VkDeviceSize size) const
 | 
						|
{
 | 
						|
    json.BeginObject(true);
 | 
						|
 | 
						|
    json.WriteString("Offset");
 | 
						|
    json.WriteNumber(offset);
 | 
						|
 | 
						|
    json.WriteString("Type");
 | 
						|
    json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]);
 | 
						|
 | 
						|
    json.WriteString("Size");
 | 
						|
    json.WriteNumber(size);
 | 
						|
 | 
						|
    json.EndObject();
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const
 | 
						|
{
 | 
						|
    json.EndArray();
 | 
						|
}
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
#endif // _VMA_BLOCK_METADATA_FUNCTIONS
 | 
						|
#endif // _VMA_BLOCK_METADATA
 | 
						|
 | 
						|
#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY
 | 
						|
// Before deleting object of this class remember to call 'Destroy()'
 | 
						|
class VmaBlockBufferImageGranularity final
 | 
						|
{
 | 
						|
public:
 | 
						|
    struct ValidationContext
 | 
						|
    {
 | 
						|
        const VkAllocationCallbacks* allocCallbacks;
 | 
						|
        uint16_t* pageAllocs;
 | 
						|
    };
 | 
						|
 | 
						|
    VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity);
 | 
						|
    ~VmaBlockBufferImageGranularity();
 | 
						|
 | 
						|
    bool IsEnabled() const { return m_BufferImageGranularity > MAX_LOW_BUFFER_IMAGE_GRANULARITY; }
 | 
						|
 | 
						|
    void Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size);
 | 
						|
    // Before destroying object you must call free it's memory
 | 
						|
    void Destroy(const VkAllocationCallbacks* pAllocationCallbacks);
 | 
						|
 | 
						|
    void RoundupAllocRequest(VmaSuballocationType allocType,
 | 
						|
        VkDeviceSize& inOutAllocSize,
 | 
						|
        VkDeviceSize& inOutAllocAlignment) const;
 | 
						|
 | 
						|
    bool CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset,
 | 
						|
        VkDeviceSize allocSize,
 | 
						|
        VkDeviceSize blockOffset,
 | 
						|
        VkDeviceSize blockSize,
 | 
						|
        VmaSuballocationType allocType) const;
 | 
						|
 | 
						|
    void AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size);
 | 
						|
    void FreePages(VkDeviceSize offset, VkDeviceSize size);
 | 
						|
    void Clear();
 | 
						|
 | 
						|
    ValidationContext StartValidation(const VkAllocationCallbacks* pAllocationCallbacks,
 | 
						|
        bool isVirutal) const;
 | 
						|
    bool Validate(ValidationContext& ctx, VkDeviceSize offset, VkDeviceSize size) const;
 | 
						|
    bool FinishValidation(ValidationContext& ctx) const;
 | 
						|
 | 
						|
private:
 | 
						|
    static const uint16_t MAX_LOW_BUFFER_IMAGE_GRANULARITY = 256;
 | 
						|
 | 
						|
    struct RegionInfo
 | 
						|
    {
 | 
						|
        uint8_t allocType;
 | 
						|
        uint16_t allocCount;
 | 
						|
    };
 | 
						|
 | 
						|
    VkDeviceSize m_BufferImageGranularity;
 | 
						|
    uint32_t m_RegionCount;
 | 
						|
    RegionInfo* m_RegionInfo;
 | 
						|
 | 
						|
    uint32_t GetStartPage(VkDeviceSize offset) const { return OffsetToPageIndex(offset & ~(m_BufferImageGranularity - 1)); }
 | 
						|
    uint32_t GetEndPage(VkDeviceSize offset, VkDeviceSize size) const { return OffsetToPageIndex((offset + size - 1) & ~(m_BufferImageGranularity - 1)); }
 | 
						|
 | 
						|
    uint32_t OffsetToPageIndex(VkDeviceSize offset) const;
 | 
						|
    void AllocPage(RegionInfo& page, uint8_t allocType);
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS
 | 
						|
VmaBlockBufferImageGranularity::VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity)
 | 
						|
    : m_BufferImageGranularity(bufferImageGranularity),
 | 
						|
    m_RegionCount(0),
 | 
						|
    m_RegionInfo(VMA_NULL) {}
 | 
						|
 | 
						|
VmaBlockBufferImageGranularity::~VmaBlockBufferImageGranularity()
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_RegionInfo == VMA_NULL && "Free not called before destroying object!");
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockBufferImageGranularity::Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size)
 | 
						|
{
 | 
						|
    if (IsEnabled())
 | 
						|
    {
 | 
						|
        m_RegionCount = static_cast<uint32_t>(VmaDivideRoundingUp(size, m_BufferImageGranularity));
 | 
						|
        m_RegionInfo = vma_new_array(pAllocationCallbacks, RegionInfo, m_RegionCount);
 | 
						|
        memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockBufferImageGranularity::Destroy(const VkAllocationCallbacks* pAllocationCallbacks)
 | 
						|
{
 | 
						|
    if (m_RegionInfo)
 | 
						|
    {
 | 
						|
        vma_delete_array(pAllocationCallbacks, m_RegionInfo, m_RegionCount);
 | 
						|
        m_RegionInfo = VMA_NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockBufferImageGranularity::RoundupAllocRequest(VmaSuballocationType allocType,
 | 
						|
    VkDeviceSize& inOutAllocSize,
 | 
						|
    VkDeviceSize& inOutAllocAlignment) const
 | 
						|
{
 | 
						|
    if (m_BufferImageGranularity > 1 &&
 | 
						|
        m_BufferImageGranularity <= MAX_LOW_BUFFER_IMAGE_GRANULARITY)
 | 
						|
    {
 | 
						|
        if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
 | 
						|
            allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
 | 
						|
            allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)
 | 
						|
        {
 | 
						|
            inOutAllocAlignment = VMA_MAX(inOutAllocAlignment, m_BufferImageGranularity);
 | 
						|
            inOutAllocSize = VmaAlignUp(inOutAllocSize, m_BufferImageGranularity);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockBufferImageGranularity::CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset,
 | 
						|
    VkDeviceSize allocSize,
 | 
						|
    VkDeviceSize blockOffset,
 | 
						|
    VkDeviceSize blockSize,
 | 
						|
    VmaSuballocationType allocType) const
 | 
						|
{
 | 
						|
    if (IsEnabled())
 | 
						|
    {
 | 
						|
        uint32_t startPage = GetStartPage(inOutAllocOffset);
 | 
						|
        if (m_RegionInfo[startPage].allocCount > 0 &&
 | 
						|
            VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[startPage].allocType), allocType))
 | 
						|
        {
 | 
						|
            inOutAllocOffset = VmaAlignUp(inOutAllocOffset, m_BufferImageGranularity);
 | 
						|
            if (blockSize < allocSize + inOutAllocOffset - blockOffset)
 | 
						|
                return true;
 | 
						|
            ++startPage;
 | 
						|
        }
 | 
						|
        uint32_t endPage = GetEndPage(inOutAllocOffset, allocSize);
 | 
						|
        if (endPage != startPage &&
 | 
						|
            m_RegionInfo[endPage].allocCount > 0 &&
 | 
						|
            VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[endPage].allocType), allocType))
 | 
						|
        {
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockBufferImageGranularity::AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size)
 | 
						|
{
 | 
						|
    if (IsEnabled())
 | 
						|
    {
 | 
						|
        uint32_t startPage = GetStartPage(offset);
 | 
						|
        AllocPage(m_RegionInfo[startPage], allocType);
 | 
						|
 | 
						|
        uint32_t endPage = GetEndPage(offset, size);
 | 
						|
        if (startPage != endPage)
 | 
						|
            AllocPage(m_RegionInfo[endPage], allocType);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockBufferImageGranularity::FreePages(VkDeviceSize offset, VkDeviceSize size)
 | 
						|
{
 | 
						|
    if (IsEnabled())
 | 
						|
    {
 | 
						|
        uint32_t startPage = GetStartPage(offset);
 | 
						|
        --m_RegionInfo[startPage].allocCount;
 | 
						|
        if (m_RegionInfo[startPage].allocCount == 0)
 | 
						|
            m_RegionInfo[startPage].allocType = VMA_SUBALLOCATION_TYPE_FREE;
 | 
						|
        uint32_t endPage = GetEndPage(offset, size);
 | 
						|
        if (startPage != endPage)
 | 
						|
        {
 | 
						|
            --m_RegionInfo[endPage].allocCount;
 | 
						|
            if (m_RegionInfo[endPage].allocCount == 0)
 | 
						|
                m_RegionInfo[endPage].allocType = VMA_SUBALLOCATION_TYPE_FREE;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockBufferImageGranularity::Clear()
 | 
						|
{
 | 
						|
    if (m_RegionInfo)
 | 
						|
        memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo));
 | 
						|
}
 | 
						|
 | 
						|
VmaBlockBufferImageGranularity::ValidationContext VmaBlockBufferImageGranularity::StartValidation(
 | 
						|
    const VkAllocationCallbacks* pAllocationCallbacks, bool isVirutal) const
 | 
						|
{
 | 
						|
    ValidationContext ctx{ pAllocationCallbacks, VMA_NULL };
 | 
						|
    if (!isVirutal && IsEnabled())
 | 
						|
    {
 | 
						|
        ctx.pageAllocs = vma_new_array(pAllocationCallbacks, uint16_t, m_RegionCount);
 | 
						|
        memset(ctx.pageAllocs, 0, m_RegionCount * sizeof(uint16_t));
 | 
						|
    }
 | 
						|
    return ctx;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockBufferImageGranularity::Validate(ValidationContext& ctx,
 | 
						|
    VkDeviceSize offset, VkDeviceSize size) const
 | 
						|
{
 | 
						|
    if (IsEnabled())
 | 
						|
    {
 | 
						|
        uint32_t start = GetStartPage(offset);
 | 
						|
        ++ctx.pageAllocs[start];
 | 
						|
        VMA_VALIDATE(m_RegionInfo[start].allocCount > 0);
 | 
						|
 | 
						|
        uint32_t end = GetEndPage(offset, size);
 | 
						|
        if (start != end)
 | 
						|
        {
 | 
						|
            ++ctx.pageAllocs[end];
 | 
						|
            VMA_VALIDATE(m_RegionInfo[end].allocCount > 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockBufferImageGranularity::FinishValidation(ValidationContext& ctx) const
 | 
						|
{
 | 
						|
    // Check proper page structure
 | 
						|
    if (IsEnabled())
 | 
						|
    {
 | 
						|
        VMA_ASSERT(ctx.pageAllocs != VMA_NULL && "Validation context not initialized!");
 | 
						|
 | 
						|
        for (uint32_t page = 0; page < m_RegionCount; ++page)
 | 
						|
        {
 | 
						|
            VMA_VALIDATE(ctx.pageAllocs[page] == m_RegionInfo[page].allocCount);
 | 
						|
        }
 | 
						|
        vma_delete_array(ctx.allocCallbacks, ctx.pageAllocs, m_RegionCount);
 | 
						|
        ctx.pageAllocs = VMA_NULL;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t VmaBlockBufferImageGranularity::OffsetToPageIndex(VkDeviceSize offset) const
 | 
						|
{
 | 
						|
    return static_cast<uint32_t>(offset >> VMA_BITSCAN_MSB(m_BufferImageGranularity));
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockBufferImageGranularity::AllocPage(RegionInfo& page, uint8_t allocType)
 | 
						|
{
 | 
						|
    // When current alloc type is free then it can be overridden by new type
 | 
						|
    if (page.allocCount == 0 || (page.allocCount > 0 && page.allocType == VMA_SUBALLOCATION_TYPE_FREE))
 | 
						|
        page.allocType = allocType;
 | 
						|
 | 
						|
    ++page.allocCount;
 | 
						|
}
 | 
						|
#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS
 | 
						|
#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY
 | 
						|
 | 
						|
#ifndef _VMA_BLOCK_METADATA_LINEAR
 | 
						|
/*
 | 
						|
Allocations and their references in internal data structure look like this:
 | 
						|
 | 
						|
if(m_2ndVectorMode == SECOND_VECTOR_EMPTY):
 | 
						|
 | 
						|
        0 +-------+
 | 
						|
          |       |
 | 
						|
          |       |
 | 
						|
          |       |
 | 
						|
          +-------+
 | 
						|
          | Alloc |  1st[m_1stNullItemsBeginCount]
 | 
						|
          +-------+
 | 
						|
          | Alloc |  1st[m_1stNullItemsBeginCount + 1]
 | 
						|
          +-------+
 | 
						|
          |  ...  |
 | 
						|
          +-------+
 | 
						|
          | Alloc |  1st[1st.size() - 1]
 | 
						|
          +-------+
 | 
						|
          |       |
 | 
						|
          |       |
 | 
						|
          |       |
 | 
						|
GetSize() +-------+
 | 
						|
 | 
						|
if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER):
 | 
						|
 | 
						|
        0 +-------+
 | 
						|
          | Alloc |  2nd[0]
 | 
						|
          +-------+
 | 
						|
          | Alloc |  2nd[1]
 | 
						|
          +-------+
 | 
						|
          |  ...  |
 | 
						|
          +-------+
 | 
						|
          | Alloc |  2nd[2nd.size() - 1]
 | 
						|
          +-------+
 | 
						|
          |       |
 | 
						|
          |       |
 | 
						|
          |       |
 | 
						|
          +-------+
 | 
						|
          | Alloc |  1st[m_1stNullItemsBeginCount]
 | 
						|
          +-------+
 | 
						|
          | Alloc |  1st[m_1stNullItemsBeginCount + 1]
 | 
						|
          +-------+
 | 
						|
          |  ...  |
 | 
						|
          +-------+
 | 
						|
          | Alloc |  1st[1st.size() - 1]
 | 
						|
          +-------+
 | 
						|
          |       |
 | 
						|
GetSize() +-------+
 | 
						|
 | 
						|
if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK):
 | 
						|
 | 
						|
        0 +-------+
 | 
						|
          |       |
 | 
						|
          |       |
 | 
						|
          |       |
 | 
						|
          +-------+
 | 
						|
          | Alloc |  1st[m_1stNullItemsBeginCount]
 | 
						|
          +-------+
 | 
						|
          | Alloc |  1st[m_1stNullItemsBeginCount + 1]
 | 
						|
          +-------+
 | 
						|
          |  ...  |
 | 
						|
          +-------+
 | 
						|
          | Alloc |  1st[1st.size() - 1]
 | 
						|
          +-------+
 | 
						|
          |       |
 | 
						|
          |       |
 | 
						|
          |       |
 | 
						|
          +-------+
 | 
						|
          | Alloc |  2nd[2nd.size() - 1]
 | 
						|
          +-------+
 | 
						|
          |  ...  |
 | 
						|
          +-------+
 | 
						|
          | Alloc |  2nd[1]
 | 
						|
          +-------+
 | 
						|
          | Alloc |  2nd[0]
 | 
						|
GetSize() +-------+
 | 
						|
 | 
						|
*/
 | 
						|
class VmaBlockMetadata_Linear : public VmaBlockMetadata
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_Linear)
 | 
						|
public:
 | 
						|
    VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks,
 | 
						|
        VkDeviceSize bufferImageGranularity, bool isVirtual);
 | 
						|
    virtual ~VmaBlockMetadata_Linear() = default;
 | 
						|
 | 
						|
    VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; }
 | 
						|
    bool IsEmpty() const override { return GetAllocationCount() == 0; }
 | 
						|
    VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }
 | 
						|
 | 
						|
    void Init(VkDeviceSize size) override;
 | 
						|
    bool Validate() const override;
 | 
						|
    size_t GetAllocationCount() const override;
 | 
						|
    size_t GetFreeRegionsCount() const override;
 | 
						|
 | 
						|
    void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
 | 
						|
    void AddStatistics(VmaStatistics& inoutStats) const override;
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    void PrintDetailedMap(class VmaJsonWriter& json) const override;
 | 
						|
#endif
 | 
						|
 | 
						|
    bool CreateAllocationRequest(
 | 
						|
        VkDeviceSize allocSize,
 | 
						|
        VkDeviceSize allocAlignment,
 | 
						|
        bool upperAddress,
 | 
						|
        VmaSuballocationType allocType,
 | 
						|
        uint32_t strategy,
 | 
						|
        VmaAllocationRequest* pAllocationRequest) override;
 | 
						|
 | 
						|
    VkResult CheckCorruption(const void* pBlockData) override;
 | 
						|
 | 
						|
    void Alloc(
 | 
						|
        const VmaAllocationRequest& request,
 | 
						|
        VmaSuballocationType type,
 | 
						|
        void* userData) override;
 | 
						|
 | 
						|
    void Free(VmaAllocHandle allocHandle) override;
 | 
						|
    void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
 | 
						|
    void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
 | 
						|
    VmaAllocHandle GetAllocationListBegin() const override;
 | 
						|
    VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
 | 
						|
    VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override;
 | 
						|
    void Clear() override;
 | 
						|
    void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
 | 
						|
    void DebugLogAllAllocations() const override;
 | 
						|
 | 
						|
private:
 | 
						|
    /*
 | 
						|
    There are two suballocation vectors, used in ping-pong way.
 | 
						|
    The one with index m_1stVectorIndex is called 1st.
 | 
						|
    The one with index (m_1stVectorIndex ^ 1) is called 2nd.
 | 
						|
    2nd can be non-empty only when 1st is not empty.
 | 
						|
    When 2nd is not empty, m_2ndVectorMode indicates its mode of operation.
 | 
						|
    */
 | 
						|
    typedef VmaVector<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> SuballocationVectorType;
 | 
						|
 | 
						|
    enum SECOND_VECTOR_MODE
 | 
						|
    {
 | 
						|
        SECOND_VECTOR_EMPTY,
 | 
						|
        /*
 | 
						|
        Suballocations in 2nd vector are created later than the ones in 1st, but they
 | 
						|
        all have smaller offset.
 | 
						|
        */
 | 
						|
        SECOND_VECTOR_RING_BUFFER,
 | 
						|
        /*
 | 
						|
        Suballocations in 2nd vector are upper side of double stack.
 | 
						|
        They all have offsets higher than those in 1st vector.
 | 
						|
        Top of this stack means smaller offsets, but higher indices in this vector.
 | 
						|
        */
 | 
						|
        SECOND_VECTOR_DOUBLE_STACK,
 | 
						|
    };
 | 
						|
 | 
						|
    VkDeviceSize m_SumFreeSize;
 | 
						|
    SuballocationVectorType m_Suballocations0, m_Suballocations1;
 | 
						|
    uint32_t m_1stVectorIndex;
 | 
						|
    SECOND_VECTOR_MODE m_2ndVectorMode;
 | 
						|
    // Number of items in 1st vector with hAllocation = null at the beginning.
 | 
						|
    size_t m_1stNullItemsBeginCount;
 | 
						|
    // Number of other items in 1st vector with hAllocation = null somewhere in the middle.
 | 
						|
    size_t m_1stNullItemsMiddleCount;
 | 
						|
    // Number of items in 2nd vector with hAllocation = null.
 | 
						|
    size_t m_2ndNullItemsCount;
 | 
						|
 | 
						|
    SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
 | 
						|
    SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
 | 
						|
    const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
 | 
						|
    const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
 | 
						|
 | 
						|
    VmaSuballocation& FindSuballocation(VkDeviceSize offset) const;
 | 
						|
    bool ShouldCompact1st() const;
 | 
						|
    void CleanupAfterFree();
 | 
						|
 | 
						|
    bool CreateAllocationRequest_LowerAddress(
 | 
						|
        VkDeviceSize allocSize,
 | 
						|
        VkDeviceSize allocAlignment,
 | 
						|
        VmaSuballocationType allocType,
 | 
						|
        uint32_t strategy,
 | 
						|
        VmaAllocationRequest* pAllocationRequest);
 | 
						|
    bool CreateAllocationRequest_UpperAddress(
 | 
						|
        VkDeviceSize allocSize,
 | 
						|
        VkDeviceSize allocAlignment,
 | 
						|
        VmaSuballocationType allocType,
 | 
						|
        uint32_t strategy,
 | 
						|
        VmaAllocationRequest* pAllocationRequest);
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS
 | 
						|
VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks,
 | 
						|
    VkDeviceSize bufferImageGranularity, bool isVirtual)
 | 
						|
    : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
 | 
						|
    m_SumFreeSize(0),
 | 
						|
    m_Suballocations0(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
 | 
						|
    m_Suballocations1(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
 | 
						|
    m_1stVectorIndex(0),
 | 
						|
    m_2ndVectorMode(SECOND_VECTOR_EMPTY),
 | 
						|
    m_1stNullItemsBeginCount(0),
 | 
						|
    m_1stNullItemsMiddleCount(0),
 | 
						|
    m_2ndNullItemsCount(0) {}
 | 
						|
 | 
						|
void VmaBlockMetadata_Linear::Init(VkDeviceSize size)
 | 
						|
{
 | 
						|
    VmaBlockMetadata::Init(size);
 | 
						|
    m_SumFreeSize = size;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockMetadata_Linear::Validate() const
 | 
						|
{
 | 
						|
    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
 | 
						|
    VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY));
 | 
						|
    VMA_VALIDATE(!suballocations1st.empty() ||
 | 
						|
        suballocations2nd.empty() ||
 | 
						|
        m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER);
 | 
						|
 | 
						|
    if (!suballocations1st.empty())
 | 
						|
    {
 | 
						|
        // Null item at the beginning should be accounted into m_1stNullItemsBeginCount.
 | 
						|
        VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].type != VMA_SUBALLOCATION_TYPE_FREE);
 | 
						|
        // Null item at the end should be just pop_back().
 | 
						|
        VMA_VALIDATE(suballocations1st.back().type != VMA_SUBALLOCATION_TYPE_FREE);
 | 
						|
    }
 | 
						|
    if (!suballocations2nd.empty())
 | 
						|
    {
 | 
						|
        // Null item at the end should be just pop_back().
 | 
						|
        VMA_VALIDATE(suballocations2nd.back().type != VMA_SUBALLOCATION_TYPE_FREE);
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size());
 | 
						|
    VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size());
 | 
						|
 | 
						|
    VkDeviceSize sumUsedSize = 0;
 | 
						|
    const size_t suballoc1stCount = suballocations1st.size();
 | 
						|
    const VkDeviceSize debugMargin = GetDebugMargin();
 | 
						|
    VkDeviceSize offset = 0;
 | 
						|
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | 
						|
    {
 | 
						|
        const size_t suballoc2ndCount = suballocations2nd.size();
 | 
						|
        size_t nullItem2ndCount = 0;
 | 
						|
        for (size_t i = 0; i < suballoc2ndCount; ++i)
 | 
						|
        {
 | 
						|
            const VmaSuballocation& suballoc = suballocations2nd[i];
 | 
						|
            const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | 
						|
 | 
						|
            VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
 | 
						|
            if (!IsVirtual())
 | 
						|
            {
 | 
						|
                VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
 | 
						|
            }
 | 
						|
            VMA_VALIDATE(suballoc.offset >= offset);
 | 
						|
 | 
						|
            if (!currFree)
 | 
						|
            {
 | 
						|
                if (!IsVirtual())
 | 
						|
                {
 | 
						|
                    VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
 | 
						|
                    VMA_VALIDATE(alloc->GetSize() == suballoc.size);
 | 
						|
                }
 | 
						|
                sumUsedSize += suballoc.size;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                ++nullItem2ndCount;
 | 
						|
            }
 | 
						|
 | 
						|
            offset = suballoc.offset + suballoc.size + debugMargin;
 | 
						|
        }
 | 
						|
 | 
						|
        VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
 | 
						|
    }
 | 
						|
 | 
						|
    for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i)
 | 
						|
    {
 | 
						|
        const VmaSuballocation& suballoc = suballocations1st[i];
 | 
						|
        VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE &&
 | 
						|
            suballoc.userData == VMA_NULL);
 | 
						|
    }
 | 
						|
 | 
						|
    size_t nullItem1stCount = m_1stNullItemsBeginCount;
 | 
						|
 | 
						|
    for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i)
 | 
						|
    {
 | 
						|
        const VmaSuballocation& suballoc = suballocations1st[i];
 | 
						|
        const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | 
						|
 | 
						|
        VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
 | 
						|
        if (!IsVirtual())
 | 
						|
        {
 | 
						|
            VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
 | 
						|
        }
 | 
						|
        VMA_VALIDATE(suballoc.offset >= offset);
 | 
						|
        VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree);
 | 
						|
 | 
						|
        if (!currFree)
 | 
						|
        {
 | 
						|
            if (!IsVirtual())
 | 
						|
            {
 | 
						|
                VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
 | 
						|
                VMA_VALIDATE(alloc->GetSize() == suballoc.size);
 | 
						|
            }
 | 
						|
            sumUsedSize += suballoc.size;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            ++nullItem1stCount;
 | 
						|
        }
 | 
						|
 | 
						|
        offset = suballoc.offset + suballoc.size + debugMargin;
 | 
						|
    }
 | 
						|
    VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount);
 | 
						|
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | 
						|
    {
 | 
						|
        const size_t suballoc2ndCount = suballocations2nd.size();
 | 
						|
        size_t nullItem2ndCount = 0;
 | 
						|
        for (size_t i = suballoc2ndCount; i--; )
 | 
						|
        {
 | 
						|
            const VmaSuballocation& suballoc = suballocations2nd[i];
 | 
						|
            const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | 
						|
 | 
						|
            VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
 | 
						|
            if (!IsVirtual())
 | 
						|
            {
 | 
						|
                VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
 | 
						|
            }
 | 
						|
            VMA_VALIDATE(suballoc.offset >= offset);
 | 
						|
 | 
						|
            if (!currFree)
 | 
						|
            {
 | 
						|
                if (!IsVirtual())
 | 
						|
                {
 | 
						|
                    VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
 | 
						|
                    VMA_VALIDATE(alloc->GetSize() == suballoc.size);
 | 
						|
                }
 | 
						|
                sumUsedSize += suballoc.size;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                ++nullItem2ndCount;
 | 
						|
            }
 | 
						|
 | 
						|
            offset = suballoc.offset + suballoc.size + debugMargin;
 | 
						|
        }
 | 
						|
 | 
						|
        VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_VALIDATE(offset <= GetSize());
 | 
						|
    VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
size_t VmaBlockMetadata_Linear::GetAllocationCount() const
 | 
						|
{
 | 
						|
    return AccessSuballocations1st().size() - m_1stNullItemsBeginCount - m_1stNullItemsMiddleCount +
 | 
						|
        AccessSuballocations2nd().size() - m_2ndNullItemsCount;
 | 
						|
}
 | 
						|
 | 
						|
size_t VmaBlockMetadata_Linear::GetFreeRegionsCount() const
 | 
						|
{
 | 
						|
    // Function only used for defragmentation, which is disabled for this algorithm
 | 
						|
    VMA_ASSERT(0);
 | 
						|
    return SIZE_MAX;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_Linear::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
 | 
						|
{
 | 
						|
    const VkDeviceSize size = GetSize();
 | 
						|
    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
    const size_t suballoc1stCount = suballocations1st.size();
 | 
						|
    const size_t suballoc2ndCount = suballocations2nd.size();
 | 
						|
 | 
						|
    inoutStats.statistics.blockCount++;
 | 
						|
    inoutStats.statistics.blockBytes += size;
 | 
						|
 | 
						|
    VkDeviceSize lastOffset = 0;
 | 
						|
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | 
						|
    {
 | 
						|
        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | 
						|
        size_t nextAlloc2ndIndex = 0;
 | 
						|
        while (lastOffset < freeSpace2ndTo1stEnd)
 | 
						|
        {
 | 
						|
            // Find next non-null allocation or move nextAllocIndex to the end.
 | 
						|
            while (nextAlloc2ndIndex < suballoc2ndCount &&
 | 
						|
                suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | 
						|
            {
 | 
						|
                ++nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
 | 
						|
            // Found non-null allocation.
 | 
						|
            if (nextAlloc2ndIndex < suballoc2ndCount)
 | 
						|
            {
 | 
						|
                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | 
						|
 | 
						|
                // 1. Process free space before this allocation.
 | 
						|
                if (lastOffset < suballoc.offset)
 | 
						|
                {
 | 
						|
                    // There is free space from lastOffset to suballoc.offset.
 | 
						|
                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | 
						|
                    VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | 
						|
                }
 | 
						|
 | 
						|
                // 2. Process this allocation.
 | 
						|
                // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
                VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
 | 
						|
 | 
						|
                // 3. Prepare for next iteration.
 | 
						|
                lastOffset = suballoc.offset + suballoc.size;
 | 
						|
                ++nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
            // We are at the end.
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // There is free space from lastOffset to freeSpace2ndTo1stEnd.
 | 
						|
                if (lastOffset < freeSpace2ndTo1stEnd)
 | 
						|
                {
 | 
						|
                    const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
 | 
						|
                    VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | 
						|
                }
 | 
						|
 | 
						|
                // End of loop.
 | 
						|
                lastOffset = freeSpace2ndTo1stEnd;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | 
						|
    const VkDeviceSize freeSpace1stTo2ndEnd =
 | 
						|
        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
 | 
						|
    while (lastOffset < freeSpace1stTo2ndEnd)
 | 
						|
    {
 | 
						|
        // Find next non-null allocation or move nextAllocIndex to the end.
 | 
						|
        while (nextAlloc1stIndex < suballoc1stCount &&
 | 
						|
            suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
 | 
						|
        {
 | 
						|
            ++nextAlloc1stIndex;
 | 
						|
        }
 | 
						|
 | 
						|
        // Found non-null allocation.
 | 
						|
        if (nextAlloc1stIndex < suballoc1stCount)
 | 
						|
        {
 | 
						|
            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | 
						|
 | 
						|
            // 1. Process free space before this allocation.
 | 
						|
            if (lastOffset < suballoc.offset)
 | 
						|
            {
 | 
						|
                // There is free space from lastOffset to suballoc.offset.
 | 
						|
                const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | 
						|
                VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | 
						|
            }
 | 
						|
 | 
						|
            // 2. Process this allocation.
 | 
						|
            // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
            VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
 | 
						|
 | 
						|
            // 3. Prepare for next iteration.
 | 
						|
            lastOffset = suballoc.offset + suballoc.size;
 | 
						|
            ++nextAlloc1stIndex;
 | 
						|
        }
 | 
						|
        // We are at the end.
 | 
						|
        else
 | 
						|
        {
 | 
						|
            // There is free space from lastOffset to freeSpace1stTo2ndEnd.
 | 
						|
            if (lastOffset < freeSpace1stTo2ndEnd)
 | 
						|
            {
 | 
						|
                const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
 | 
						|
                VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | 
						|
            }
 | 
						|
 | 
						|
            // End of loop.
 | 
						|
            lastOffset = freeSpace1stTo2ndEnd;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | 
						|
    {
 | 
						|
        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | 
						|
        while (lastOffset < size)
 | 
						|
        {
 | 
						|
            // Find next non-null allocation or move nextAllocIndex to the end.
 | 
						|
            while (nextAlloc2ndIndex != SIZE_MAX &&
 | 
						|
                suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | 
						|
            {
 | 
						|
                --nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
 | 
						|
            // Found non-null allocation.
 | 
						|
            if (nextAlloc2ndIndex != SIZE_MAX)
 | 
						|
            {
 | 
						|
                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | 
						|
 | 
						|
                // 1. Process free space before this allocation.
 | 
						|
                if (lastOffset < suballoc.offset)
 | 
						|
                {
 | 
						|
                    // There is free space from lastOffset to suballoc.offset.
 | 
						|
                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | 
						|
                    VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | 
						|
                }
 | 
						|
 | 
						|
                // 2. Process this allocation.
 | 
						|
                // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
                VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
 | 
						|
 | 
						|
                // 3. Prepare for next iteration.
 | 
						|
                lastOffset = suballoc.offset + suballoc.size;
 | 
						|
                --nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
            // We are at the end.
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // There is free space from lastOffset to size.
 | 
						|
                if (lastOffset < size)
 | 
						|
                {
 | 
						|
                    const VkDeviceSize unusedRangeSize = size - lastOffset;
 | 
						|
                    VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | 
						|
                }
 | 
						|
 | 
						|
                // End of loop.
 | 
						|
                lastOffset = size;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_Linear::AddStatistics(VmaStatistics& inoutStats) const
 | 
						|
{
 | 
						|
    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
    const VkDeviceSize size = GetSize();
 | 
						|
    const size_t suballoc1stCount = suballocations1st.size();
 | 
						|
    const size_t suballoc2ndCount = suballocations2nd.size();
 | 
						|
 | 
						|
    inoutStats.blockCount++;
 | 
						|
    inoutStats.blockBytes += size;
 | 
						|
    inoutStats.allocationBytes += size - m_SumFreeSize;
 | 
						|
 | 
						|
    VkDeviceSize lastOffset = 0;
 | 
						|
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | 
						|
    {
 | 
						|
        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | 
						|
        size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount;
 | 
						|
        while (lastOffset < freeSpace2ndTo1stEnd)
 | 
						|
        {
 | 
						|
            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | 
						|
            while (nextAlloc2ndIndex < suballoc2ndCount &&
 | 
						|
                suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | 
						|
            {
 | 
						|
                ++nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
 | 
						|
            // Found non-null allocation.
 | 
						|
            if (nextAlloc2ndIndex < suballoc2ndCount)
 | 
						|
            {
 | 
						|
                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | 
						|
 | 
						|
                // Process this allocation.
 | 
						|
                // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
                ++inoutStats.allocationCount;
 | 
						|
 | 
						|
                // Prepare for next iteration.
 | 
						|
                lastOffset = suballoc.offset + suballoc.size;
 | 
						|
                ++nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
            // We are at the end.
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // End of loop.
 | 
						|
                lastOffset = freeSpace2ndTo1stEnd;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | 
						|
    const VkDeviceSize freeSpace1stTo2ndEnd =
 | 
						|
        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
 | 
						|
    while (lastOffset < freeSpace1stTo2ndEnd)
 | 
						|
    {
 | 
						|
        // Find next non-null allocation or move nextAllocIndex to the end.
 | 
						|
        while (nextAlloc1stIndex < suballoc1stCount &&
 | 
						|
            suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
 | 
						|
        {
 | 
						|
            ++nextAlloc1stIndex;
 | 
						|
        }
 | 
						|
 | 
						|
        // Found non-null allocation.
 | 
						|
        if (nextAlloc1stIndex < suballoc1stCount)
 | 
						|
        {
 | 
						|
            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | 
						|
 | 
						|
            // Process this allocation.
 | 
						|
            // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
            ++inoutStats.allocationCount;
 | 
						|
 | 
						|
            // Prepare for next iteration.
 | 
						|
            lastOffset = suballoc.offset + suballoc.size;
 | 
						|
            ++nextAlloc1stIndex;
 | 
						|
        }
 | 
						|
        // We are at the end.
 | 
						|
        else
 | 
						|
        {
 | 
						|
            // End of loop.
 | 
						|
            lastOffset = freeSpace1stTo2ndEnd;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | 
						|
    {
 | 
						|
        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | 
						|
        while (lastOffset < size)
 | 
						|
        {
 | 
						|
            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | 
						|
            while (nextAlloc2ndIndex != SIZE_MAX &&
 | 
						|
                suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | 
						|
            {
 | 
						|
                --nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
 | 
						|
            // Found non-null allocation.
 | 
						|
            if (nextAlloc2ndIndex != SIZE_MAX)
 | 
						|
            {
 | 
						|
                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | 
						|
 | 
						|
                // Process this allocation.
 | 
						|
                // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
                ++inoutStats.allocationCount;
 | 
						|
 | 
						|
                // Prepare for next iteration.
 | 
						|
                lastOffset = suballoc.offset + suballoc.size;
 | 
						|
                --nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
            // We are at the end.
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // End of loop.
 | 
						|
                lastOffset = size;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const
 | 
						|
{
 | 
						|
    const VkDeviceSize size = GetSize();
 | 
						|
    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
    const size_t suballoc1stCount = suballocations1st.size();
 | 
						|
    const size_t suballoc2ndCount = suballocations2nd.size();
 | 
						|
 | 
						|
    // FIRST PASS
 | 
						|
 | 
						|
    size_t unusedRangeCount = 0;
 | 
						|
    VkDeviceSize usedBytes = 0;
 | 
						|
 | 
						|
    VkDeviceSize lastOffset = 0;
 | 
						|
 | 
						|
    size_t alloc2ndCount = 0;
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | 
						|
    {
 | 
						|
        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | 
						|
        size_t nextAlloc2ndIndex = 0;
 | 
						|
        while (lastOffset < freeSpace2ndTo1stEnd)
 | 
						|
        {
 | 
						|
            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | 
						|
            while (nextAlloc2ndIndex < suballoc2ndCount &&
 | 
						|
                suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | 
						|
            {
 | 
						|
                ++nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
 | 
						|
            // Found non-null allocation.
 | 
						|
            if (nextAlloc2ndIndex < suballoc2ndCount)
 | 
						|
            {
 | 
						|
                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | 
						|
 | 
						|
                // 1. Process free space before this allocation.
 | 
						|
                if (lastOffset < suballoc.offset)
 | 
						|
                {
 | 
						|
                    // There is free space from lastOffset to suballoc.offset.
 | 
						|
                    ++unusedRangeCount;
 | 
						|
                }
 | 
						|
 | 
						|
                // 2. Process this allocation.
 | 
						|
                // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
                ++alloc2ndCount;
 | 
						|
                usedBytes += suballoc.size;
 | 
						|
 | 
						|
                // 3. Prepare for next iteration.
 | 
						|
                lastOffset = suballoc.offset + suballoc.size;
 | 
						|
                ++nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
            // We are at the end.
 | 
						|
            else
 | 
						|
            {
 | 
						|
                if (lastOffset < freeSpace2ndTo1stEnd)
 | 
						|
                {
 | 
						|
                    // There is free space from lastOffset to freeSpace2ndTo1stEnd.
 | 
						|
                    ++unusedRangeCount;
 | 
						|
                }
 | 
						|
 | 
						|
                // End of loop.
 | 
						|
                lastOffset = freeSpace2ndTo1stEnd;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | 
						|
    size_t alloc1stCount = 0;
 | 
						|
    const VkDeviceSize freeSpace1stTo2ndEnd =
 | 
						|
        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
 | 
						|
    while (lastOffset < freeSpace1stTo2ndEnd)
 | 
						|
    {
 | 
						|
        // Find next non-null allocation or move nextAllocIndex to the end.
 | 
						|
        while (nextAlloc1stIndex < suballoc1stCount &&
 | 
						|
            suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
 | 
						|
        {
 | 
						|
            ++nextAlloc1stIndex;
 | 
						|
        }
 | 
						|
 | 
						|
        // Found non-null allocation.
 | 
						|
        if (nextAlloc1stIndex < suballoc1stCount)
 | 
						|
        {
 | 
						|
            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | 
						|
 | 
						|
            // 1. Process free space before this allocation.
 | 
						|
            if (lastOffset < suballoc.offset)
 | 
						|
            {
 | 
						|
                // There is free space from lastOffset to suballoc.offset.
 | 
						|
                ++unusedRangeCount;
 | 
						|
            }
 | 
						|
 | 
						|
            // 2. Process this allocation.
 | 
						|
            // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
            ++alloc1stCount;
 | 
						|
            usedBytes += suballoc.size;
 | 
						|
 | 
						|
            // 3. Prepare for next iteration.
 | 
						|
            lastOffset = suballoc.offset + suballoc.size;
 | 
						|
            ++nextAlloc1stIndex;
 | 
						|
        }
 | 
						|
        // We are at the end.
 | 
						|
        else
 | 
						|
        {
 | 
						|
            if (lastOffset < freeSpace1stTo2ndEnd)
 | 
						|
            {
 | 
						|
                // There is free space from lastOffset to freeSpace1stTo2ndEnd.
 | 
						|
                ++unusedRangeCount;
 | 
						|
            }
 | 
						|
 | 
						|
            // End of loop.
 | 
						|
            lastOffset = freeSpace1stTo2ndEnd;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | 
						|
    {
 | 
						|
        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | 
						|
        while (lastOffset < size)
 | 
						|
        {
 | 
						|
            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | 
						|
            while (nextAlloc2ndIndex != SIZE_MAX &&
 | 
						|
                suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | 
						|
            {
 | 
						|
                --nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
 | 
						|
            // Found non-null allocation.
 | 
						|
            if (nextAlloc2ndIndex != SIZE_MAX)
 | 
						|
            {
 | 
						|
                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | 
						|
 | 
						|
                // 1. Process free space before this allocation.
 | 
						|
                if (lastOffset < suballoc.offset)
 | 
						|
                {
 | 
						|
                    // There is free space from lastOffset to suballoc.offset.
 | 
						|
                    ++unusedRangeCount;
 | 
						|
                }
 | 
						|
 | 
						|
                // 2. Process this allocation.
 | 
						|
                // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
                ++alloc2ndCount;
 | 
						|
                usedBytes += suballoc.size;
 | 
						|
 | 
						|
                // 3. Prepare for next iteration.
 | 
						|
                lastOffset = suballoc.offset + suballoc.size;
 | 
						|
                --nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
            // We are at the end.
 | 
						|
            else
 | 
						|
            {
 | 
						|
                if (lastOffset < size)
 | 
						|
                {
 | 
						|
                    // There is free space from lastOffset to size.
 | 
						|
                    ++unusedRangeCount;
 | 
						|
                }
 | 
						|
 | 
						|
                // End of loop.
 | 
						|
                lastOffset = size;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    const VkDeviceSize unusedBytes = size - usedBytes;
 | 
						|
    PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount);
 | 
						|
 | 
						|
    // SECOND PASS
 | 
						|
    lastOffset = 0;
 | 
						|
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | 
						|
    {
 | 
						|
        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | 
						|
        size_t nextAlloc2ndIndex = 0;
 | 
						|
        while (lastOffset < freeSpace2ndTo1stEnd)
 | 
						|
        {
 | 
						|
            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | 
						|
            while (nextAlloc2ndIndex < suballoc2ndCount &&
 | 
						|
                suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | 
						|
            {
 | 
						|
                ++nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
 | 
						|
            // Found non-null allocation.
 | 
						|
            if (nextAlloc2ndIndex < suballoc2ndCount)
 | 
						|
            {
 | 
						|
                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | 
						|
 | 
						|
                // 1. Process free space before this allocation.
 | 
						|
                if (lastOffset < suballoc.offset)
 | 
						|
                {
 | 
						|
                    // There is free space from lastOffset to suballoc.offset.
 | 
						|
                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | 
						|
                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | 
						|
                }
 | 
						|
 | 
						|
                // 2. Process this allocation.
 | 
						|
                // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
                PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
 | 
						|
 | 
						|
                // 3. Prepare for next iteration.
 | 
						|
                lastOffset = suballoc.offset + suballoc.size;
 | 
						|
                ++nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
            // We are at the end.
 | 
						|
            else
 | 
						|
            {
 | 
						|
                if (lastOffset < freeSpace2ndTo1stEnd)
 | 
						|
                {
 | 
						|
                    // There is free space from lastOffset to freeSpace2ndTo1stEnd.
 | 
						|
                    const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
 | 
						|
                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | 
						|
                }
 | 
						|
 | 
						|
                // End of loop.
 | 
						|
                lastOffset = freeSpace2ndTo1stEnd;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | 
						|
    while (lastOffset < freeSpace1stTo2ndEnd)
 | 
						|
    {
 | 
						|
        // Find next non-null allocation or move nextAllocIndex to the end.
 | 
						|
        while (nextAlloc1stIndex < suballoc1stCount &&
 | 
						|
            suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
 | 
						|
        {
 | 
						|
            ++nextAlloc1stIndex;
 | 
						|
        }
 | 
						|
 | 
						|
        // Found non-null allocation.
 | 
						|
        if (nextAlloc1stIndex < suballoc1stCount)
 | 
						|
        {
 | 
						|
            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | 
						|
 | 
						|
            // 1. Process free space before this allocation.
 | 
						|
            if (lastOffset < suballoc.offset)
 | 
						|
            {
 | 
						|
                // There is free space from lastOffset to suballoc.offset.
 | 
						|
                const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | 
						|
                PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | 
						|
            }
 | 
						|
 | 
						|
            // 2. Process this allocation.
 | 
						|
            // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
            PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
 | 
						|
 | 
						|
            // 3. Prepare for next iteration.
 | 
						|
            lastOffset = suballoc.offset + suballoc.size;
 | 
						|
            ++nextAlloc1stIndex;
 | 
						|
        }
 | 
						|
        // We are at the end.
 | 
						|
        else
 | 
						|
        {
 | 
						|
            if (lastOffset < freeSpace1stTo2ndEnd)
 | 
						|
            {
 | 
						|
                // There is free space from lastOffset to freeSpace1stTo2ndEnd.
 | 
						|
                const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
 | 
						|
                PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | 
						|
            }
 | 
						|
 | 
						|
            // End of loop.
 | 
						|
            lastOffset = freeSpace1stTo2ndEnd;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | 
						|
    {
 | 
						|
        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | 
						|
        while (lastOffset < size)
 | 
						|
        {
 | 
						|
            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | 
						|
            while (nextAlloc2ndIndex != SIZE_MAX &&
 | 
						|
                suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | 
						|
            {
 | 
						|
                --nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
 | 
						|
            // Found non-null allocation.
 | 
						|
            if (nextAlloc2ndIndex != SIZE_MAX)
 | 
						|
            {
 | 
						|
                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | 
						|
 | 
						|
                // 1. Process free space before this allocation.
 | 
						|
                if (lastOffset < suballoc.offset)
 | 
						|
                {
 | 
						|
                    // There is free space from lastOffset to suballoc.offset.
 | 
						|
                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | 
						|
                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | 
						|
                }
 | 
						|
 | 
						|
                // 2. Process this allocation.
 | 
						|
                // There is allocation with suballoc.offset, suballoc.size.
 | 
						|
                PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
 | 
						|
 | 
						|
                // 3. Prepare for next iteration.
 | 
						|
                lastOffset = suballoc.offset + suballoc.size;
 | 
						|
                --nextAlloc2ndIndex;
 | 
						|
            }
 | 
						|
            // We are at the end.
 | 
						|
            else
 | 
						|
            {
 | 
						|
                if (lastOffset < size)
 | 
						|
                {
 | 
						|
                    // There is free space from lastOffset to size.
 | 
						|
                    const VkDeviceSize unusedRangeSize = size - lastOffset;
 | 
						|
                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | 
						|
                }
 | 
						|
 | 
						|
                // End of loop.
 | 
						|
                lastOffset = size;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    PrintDetailedMap_End(json);
 | 
						|
}
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
 | 
						|
bool VmaBlockMetadata_Linear::CreateAllocationRequest(
 | 
						|
    VkDeviceSize allocSize,
 | 
						|
    VkDeviceSize allocAlignment,
 | 
						|
    bool upperAddress,
 | 
						|
    VmaSuballocationType allocType,
 | 
						|
    uint32_t strategy,
 | 
						|
    VmaAllocationRequest* pAllocationRequest)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocSize > 0);
 | 
						|
    VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
 | 
						|
    VMA_ASSERT(pAllocationRequest != VMA_NULL);
 | 
						|
    VMA_HEAVY_ASSERT(Validate());
 | 
						|
 | 
						|
    if(allocSize > GetSize())
 | 
						|
        return false;
 | 
						|
 | 
						|
    pAllocationRequest->size = allocSize;
 | 
						|
    return upperAddress ?
 | 
						|
        CreateAllocationRequest_UpperAddress(
 | 
						|
            allocSize, allocAlignment, allocType, strategy, pAllocationRequest) :
 | 
						|
        CreateAllocationRequest_LowerAddress(
 | 
						|
            allocSize, allocAlignment, allocType, strategy, pAllocationRequest);
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData)
 | 
						|
{
 | 
						|
    VMA_ASSERT(!IsVirtual());
 | 
						|
    SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
    for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
 | 
						|
    {
 | 
						|
        const VmaSuballocation& suballoc = suballocations1st[i];
 | 
						|
        if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | 
						|
        {
 | 
						|
            if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
 | 
						|
            {
 | 
						|
                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
 | 
						|
                return VK_ERROR_UNKNOWN_COPY;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
    for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
 | 
						|
    {
 | 
						|
        const VmaSuballocation& suballoc = suballocations2nd[i];
 | 
						|
        if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | 
						|
        {
 | 
						|
            if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
 | 
						|
            {
 | 
						|
                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
 | 
						|
                return VK_ERROR_UNKNOWN_COPY;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_Linear::Alloc(
 | 
						|
    const VmaAllocationRequest& request,
 | 
						|
    VmaSuballocationType type,
 | 
						|
    void* userData)
 | 
						|
{
 | 
						|
    const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1;
 | 
						|
    const VmaSuballocation newSuballoc = { offset, request.size, userData, type };
 | 
						|
 | 
						|
    switch (request.type)
 | 
						|
    {
 | 
						|
    case VmaAllocationRequestType::UpperAddress:
 | 
						|
    {
 | 
						|
        VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER &&
 | 
						|
            "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer.");
 | 
						|
        SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
        suballocations2nd.push_back(newSuballoc);
 | 
						|
        m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
    case VmaAllocationRequestType::EndOf1st:
 | 
						|
    {
 | 
						|
        SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
 | 
						|
        VMA_ASSERT(suballocations1st.empty() ||
 | 
						|
            offset >= suballocations1st.back().offset + suballocations1st.back().size);
 | 
						|
        // Check if it fits before the end of the block.
 | 
						|
        VMA_ASSERT(offset + request.size <= GetSize());
 | 
						|
 | 
						|
        suballocations1st.push_back(newSuballoc);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
    case VmaAllocationRequestType::EndOf2nd:
 | 
						|
    {
 | 
						|
        SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
        // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector.
 | 
						|
        VMA_ASSERT(!suballocations1st.empty() &&
 | 
						|
            offset + request.size <= suballocations1st[m_1stNullItemsBeginCount].offset);
 | 
						|
        SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
 | 
						|
        switch (m_2ndVectorMode)
 | 
						|
        {
 | 
						|
        case SECOND_VECTOR_EMPTY:
 | 
						|
            // First allocation from second part ring buffer.
 | 
						|
            VMA_ASSERT(suballocations2nd.empty());
 | 
						|
            m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER;
 | 
						|
            break;
 | 
						|
        case SECOND_VECTOR_RING_BUFFER:
 | 
						|
            // 2-part ring buffer is already started.
 | 
						|
            VMA_ASSERT(!suballocations2nd.empty());
 | 
						|
            break;
 | 
						|
        case SECOND_VECTOR_DOUBLE_STACK:
 | 
						|
            VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack.");
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            VMA_ASSERT(0);
 | 
						|
        }
 | 
						|
 | 
						|
        suballocations2nd.push_back(newSuballoc);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR.");
 | 
						|
    }
 | 
						|
 | 
						|
    m_SumFreeSize -= newSuballoc.size;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_Linear::Free(VmaAllocHandle allocHandle)
 | 
						|
{
 | 
						|
    SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
    VkDeviceSize offset = (VkDeviceSize)allocHandle - 1;
 | 
						|
 | 
						|
    if (!suballocations1st.empty())
 | 
						|
    {
 | 
						|
        // First allocation: Mark it as next empty at the beginning.
 | 
						|
        VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
 | 
						|
        if (firstSuballoc.offset == offset)
 | 
						|
        {
 | 
						|
            firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | 
						|
            firstSuballoc.userData = VMA_NULL;
 | 
						|
            m_SumFreeSize += firstSuballoc.size;
 | 
						|
            ++m_1stNullItemsBeginCount;
 | 
						|
            CleanupAfterFree();
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Last allocation in 2-part ring buffer or top of upper stack (same logic).
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ||
 | 
						|
        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | 
						|
    {
 | 
						|
        VmaSuballocation& lastSuballoc = suballocations2nd.back();
 | 
						|
        if (lastSuballoc.offset == offset)
 | 
						|
        {
 | 
						|
            m_SumFreeSize += lastSuballoc.size;
 | 
						|
            suballocations2nd.pop_back();
 | 
						|
            CleanupAfterFree();
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // Last allocation in 1st vector.
 | 
						|
    else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY)
 | 
						|
    {
 | 
						|
        VmaSuballocation& lastSuballoc = suballocations1st.back();
 | 
						|
        if (lastSuballoc.offset == offset)
 | 
						|
        {
 | 
						|
            m_SumFreeSize += lastSuballoc.size;
 | 
						|
            suballocations1st.pop_back();
 | 
						|
            CleanupAfterFree();
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    VmaSuballocation refSuballoc;
 | 
						|
    refSuballoc.offset = offset;
 | 
						|
    // Rest of members stays uninitialized intentionally for better performance.
 | 
						|
 | 
						|
    // Item from the middle of 1st vector.
 | 
						|
    {
 | 
						|
        const SuballocationVectorType::iterator it = VmaBinaryFindSorted(
 | 
						|
            suballocations1st.begin() + m_1stNullItemsBeginCount,
 | 
						|
            suballocations1st.end(),
 | 
						|
            refSuballoc,
 | 
						|
            VmaSuballocationOffsetLess());
 | 
						|
        if (it != suballocations1st.end())
 | 
						|
        {
 | 
						|
            it->type = VMA_SUBALLOCATION_TYPE_FREE;
 | 
						|
            it->userData = VMA_NULL;
 | 
						|
            ++m_1stNullItemsMiddleCount;
 | 
						|
            m_SumFreeSize += it->size;
 | 
						|
            CleanupAfterFree();
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (m_2ndVectorMode != SECOND_VECTOR_EMPTY)
 | 
						|
    {
 | 
						|
        // Item from the middle of 2nd vector.
 | 
						|
        const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
 | 
						|
            VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
 | 
						|
            VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
 | 
						|
        if (it != suballocations2nd.end())
 | 
						|
        {
 | 
						|
            it->type = VMA_SUBALLOCATION_TYPE_FREE;
 | 
						|
            it->userData = VMA_NULL;
 | 
						|
            ++m_2ndNullItemsCount;
 | 
						|
            m_SumFreeSize += it->size;
 | 
						|
            CleanupAfterFree();
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_ASSERT(0 && "Allocation to free not found in linear allocator!");
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_Linear::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
 | 
						|
{
 | 
						|
    outInfo.offset = (VkDeviceSize)allocHandle - 1;
 | 
						|
    VmaSuballocation& suballoc = FindSuballocation(outInfo.offset);
 | 
						|
    outInfo.size = suballoc.size;
 | 
						|
    outInfo.pUserData = suballoc.userData;
 | 
						|
}
 | 
						|
 | 
						|
void* VmaBlockMetadata_Linear::GetAllocationUserData(VmaAllocHandle allocHandle) const
 | 
						|
{
 | 
						|
    return FindSuballocation((VkDeviceSize)allocHandle - 1).userData;
 | 
						|
}
 | 
						|
 | 
						|
VmaAllocHandle VmaBlockMetadata_Linear::GetAllocationListBegin() const
 | 
						|
{
 | 
						|
    // Function only used for defragmentation, which is disabled for this algorithm
 | 
						|
    VMA_ASSERT(0);
 | 
						|
    return VK_NULL_HANDLE;
 | 
						|
}
 | 
						|
 | 
						|
VmaAllocHandle VmaBlockMetadata_Linear::GetNextAllocation(VmaAllocHandle prevAlloc) const
 | 
						|
{
 | 
						|
    // Function only used for defragmentation, which is disabled for this algorithm
 | 
						|
    VMA_ASSERT(0);
 | 
						|
    return VK_NULL_HANDLE;
 | 
						|
}
 | 
						|
 | 
						|
VkDeviceSize VmaBlockMetadata_Linear::GetNextFreeRegionSize(VmaAllocHandle alloc) const
 | 
						|
{
 | 
						|
    // Function only used for defragmentation, which is disabled for this algorithm
 | 
						|
    VMA_ASSERT(0);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_Linear::Clear()
 | 
						|
{
 | 
						|
    m_SumFreeSize = GetSize();
 | 
						|
    m_Suballocations0.clear();
 | 
						|
    m_Suballocations1.clear();
 | 
						|
    // Leaving m_1stVectorIndex unchanged - it doesn't matter.
 | 
						|
    m_2ndVectorMode = SECOND_VECTOR_EMPTY;
 | 
						|
    m_1stNullItemsBeginCount = 0;
 | 
						|
    m_1stNullItemsMiddleCount = 0;
 | 
						|
    m_2ndNullItemsCount = 0;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_Linear::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
 | 
						|
{
 | 
						|
    VmaSuballocation& suballoc = FindSuballocation((VkDeviceSize)allocHandle - 1);
 | 
						|
    suballoc.userData = userData;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_Linear::DebugLogAllAllocations() const
 | 
						|
{
 | 
						|
    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
    for (auto it = suballocations1st.begin() + m_1stNullItemsBeginCount; it != suballocations1st.end(); ++it)
 | 
						|
        if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
 | 
						|
            DebugLogAllocation(it->offset, it->size, it->userData);
 | 
						|
 | 
						|
    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
    for (auto it = suballocations2nd.begin(); it != suballocations2nd.end(); ++it)
 | 
						|
        if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
 | 
						|
            DebugLogAllocation(it->offset, it->size, it->userData);
 | 
						|
}
 | 
						|
 | 
						|
VmaSuballocation& VmaBlockMetadata_Linear::FindSuballocation(VkDeviceSize offset) const
 | 
						|
{
 | 
						|
    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
 | 
						|
    VmaSuballocation refSuballoc;
 | 
						|
    refSuballoc.offset = offset;
 | 
						|
    // Rest of members stays uninitialized intentionally for better performance.
 | 
						|
 | 
						|
    // Item from the 1st vector.
 | 
						|
    {
 | 
						|
        SuballocationVectorType::const_iterator it = VmaBinaryFindSorted(
 | 
						|
            suballocations1st.begin() + m_1stNullItemsBeginCount,
 | 
						|
            suballocations1st.end(),
 | 
						|
            refSuballoc,
 | 
						|
            VmaSuballocationOffsetLess());
 | 
						|
        if (it != suballocations1st.end())
 | 
						|
        {
 | 
						|
            return const_cast<VmaSuballocation&>(*it);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (m_2ndVectorMode != SECOND_VECTOR_EMPTY)
 | 
						|
    {
 | 
						|
        // Rest of members stays uninitialized intentionally for better performance.
 | 
						|
        SuballocationVectorType::const_iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
 | 
						|
            VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
 | 
						|
            VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
 | 
						|
        if (it != suballocations2nd.end())
 | 
						|
        {
 | 
						|
            return const_cast<VmaSuballocation&>(*it);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_ASSERT(0 && "Allocation not found in linear allocator!");
 | 
						|
    return const_cast<VmaSuballocation&>(suballocations1st.back()); // Should never occur.
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockMetadata_Linear::ShouldCompact1st() const
 | 
						|
{
 | 
						|
    const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
 | 
						|
    const size_t suballocCount = AccessSuballocations1st().size();
 | 
						|
    return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_Linear::CleanupAfterFree()
 | 
						|
{
 | 
						|
    SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
 | 
						|
    if (IsEmpty())
 | 
						|
    {
 | 
						|
        suballocations1st.clear();
 | 
						|
        suballocations2nd.clear();
 | 
						|
        m_1stNullItemsBeginCount = 0;
 | 
						|
        m_1stNullItemsMiddleCount = 0;
 | 
						|
        m_2ndNullItemsCount = 0;
 | 
						|
        m_2ndVectorMode = SECOND_VECTOR_EMPTY;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        const size_t suballoc1stCount = suballocations1st.size();
 | 
						|
        const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
 | 
						|
        VMA_ASSERT(nullItem1stCount <= suballoc1stCount);
 | 
						|
 | 
						|
        // Find more null items at the beginning of 1st vector.
 | 
						|
        while (m_1stNullItemsBeginCount < suballoc1stCount &&
 | 
						|
            suballocations1st[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
 | 
						|
        {
 | 
						|
            ++m_1stNullItemsBeginCount;
 | 
						|
            --m_1stNullItemsMiddleCount;
 | 
						|
        }
 | 
						|
 | 
						|
        // Find more null items at the end of 1st vector.
 | 
						|
        while (m_1stNullItemsMiddleCount > 0 &&
 | 
						|
            suballocations1st.back().type == VMA_SUBALLOCATION_TYPE_FREE)
 | 
						|
        {
 | 
						|
            --m_1stNullItemsMiddleCount;
 | 
						|
            suballocations1st.pop_back();
 | 
						|
        }
 | 
						|
 | 
						|
        // Find more null items at the end of 2nd vector.
 | 
						|
        while (m_2ndNullItemsCount > 0 &&
 | 
						|
            suballocations2nd.back().type == VMA_SUBALLOCATION_TYPE_FREE)
 | 
						|
        {
 | 
						|
            --m_2ndNullItemsCount;
 | 
						|
            suballocations2nd.pop_back();
 | 
						|
        }
 | 
						|
 | 
						|
        // Find more null items at the beginning of 2nd vector.
 | 
						|
        while (m_2ndNullItemsCount > 0 &&
 | 
						|
            suballocations2nd[0].type == VMA_SUBALLOCATION_TYPE_FREE)
 | 
						|
        {
 | 
						|
            --m_2ndNullItemsCount;
 | 
						|
            VmaVectorRemove(suballocations2nd, 0);
 | 
						|
        }
 | 
						|
 | 
						|
        if (ShouldCompact1st())
 | 
						|
        {
 | 
						|
            const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount;
 | 
						|
            size_t srcIndex = m_1stNullItemsBeginCount;
 | 
						|
            for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex)
 | 
						|
            {
 | 
						|
                while (suballocations1st[srcIndex].type == VMA_SUBALLOCATION_TYPE_FREE)
 | 
						|
                {
 | 
						|
                    ++srcIndex;
 | 
						|
                }
 | 
						|
                if (dstIndex != srcIndex)
 | 
						|
                {
 | 
						|
                    suballocations1st[dstIndex] = suballocations1st[srcIndex];
 | 
						|
                }
 | 
						|
                ++srcIndex;
 | 
						|
            }
 | 
						|
            suballocations1st.resize(nonNullItemCount);
 | 
						|
            m_1stNullItemsBeginCount = 0;
 | 
						|
            m_1stNullItemsMiddleCount = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        // 2nd vector became empty.
 | 
						|
        if (suballocations2nd.empty())
 | 
						|
        {
 | 
						|
            m_2ndVectorMode = SECOND_VECTOR_EMPTY;
 | 
						|
        }
 | 
						|
 | 
						|
        // 1st vector became empty.
 | 
						|
        if (suballocations1st.size() - m_1stNullItemsBeginCount == 0)
 | 
						|
        {
 | 
						|
            suballocations1st.clear();
 | 
						|
            m_1stNullItemsBeginCount = 0;
 | 
						|
 | 
						|
            if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | 
						|
            {
 | 
						|
                // Swap 1st with 2nd. Now 2nd is empty.
 | 
						|
                m_2ndVectorMode = SECOND_VECTOR_EMPTY;
 | 
						|
                m_1stNullItemsMiddleCount = m_2ndNullItemsCount;
 | 
						|
                while (m_1stNullItemsBeginCount < suballocations2nd.size() &&
 | 
						|
                    suballocations2nd[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
 | 
						|
                {
 | 
						|
                    ++m_1stNullItemsBeginCount;
 | 
						|
                    --m_1stNullItemsMiddleCount;
 | 
						|
                }
 | 
						|
                m_2ndNullItemsCount = 0;
 | 
						|
                m_1stVectorIndex ^= 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_HEAVY_ASSERT(Validate());
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress(
 | 
						|
    VkDeviceSize allocSize,
 | 
						|
    VkDeviceSize allocAlignment,
 | 
						|
    VmaSuballocationType allocType,
 | 
						|
    uint32_t strategy,
 | 
						|
    VmaAllocationRequest* pAllocationRequest)
 | 
						|
{
 | 
						|
    const VkDeviceSize blockSize = GetSize();
 | 
						|
    const VkDeviceSize debugMargin = GetDebugMargin();
 | 
						|
    const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
 | 
						|
    SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | 
						|
    {
 | 
						|
        // Try to allocate at the end of 1st vector.
 | 
						|
 | 
						|
        VkDeviceSize resultBaseOffset = 0;
 | 
						|
        if (!suballocations1st.empty())
 | 
						|
        {
 | 
						|
            const VmaSuballocation& lastSuballoc = suballocations1st.back();
 | 
						|
            resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin;
 | 
						|
        }
 | 
						|
 | 
						|
        // Start from offset equal to beginning of free space.
 | 
						|
        VkDeviceSize resultOffset = resultBaseOffset;
 | 
						|
 | 
						|
        // Apply alignment.
 | 
						|
        resultOffset = VmaAlignUp(resultOffset, allocAlignment);
 | 
						|
 | 
						|
        // Check previous suballocations for BufferImageGranularity conflicts.
 | 
						|
        // Make bigger alignment if necessary.
 | 
						|
        if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty())
 | 
						|
        {
 | 
						|
            bool bufferImageGranularityConflict = false;
 | 
						|
            for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
 | 
						|
            {
 | 
						|
                const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
 | 
						|
                if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
 | 
						|
                {
 | 
						|
                    if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
 | 
						|
                    {
 | 
						|
                        bufferImageGranularityConflict = true;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                else
 | 
						|
                    // Already on previous page.
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            if (bufferImageGranularityConflict)
 | 
						|
            {
 | 
						|
                resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ?
 | 
						|
            suballocations2nd.back().offset : blockSize;
 | 
						|
 | 
						|
        // There is enough free space at the end after alignment.
 | 
						|
        if (resultOffset + allocSize + debugMargin <= freeSpaceEnd)
 | 
						|
        {
 | 
						|
            // Check next suballocations for BufferImageGranularity conflicts.
 | 
						|
            // If conflict exists, allocation cannot be made here.
 | 
						|
            if ((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | 
						|
            {
 | 
						|
                for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
 | 
						|
                {
 | 
						|
                    const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
 | 
						|
                    if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | 
						|
                    {
 | 
						|
                        if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
 | 
						|
                        {
 | 
						|
                            return false;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        // Already on previous page.
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // All tests passed: Success.
 | 
						|
            pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
 | 
						|
            // pAllocationRequest->item, customData unused.
 | 
						|
            pAllocationRequest->type = VmaAllocationRequestType::EndOf1st;
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Wrap-around to end of 2nd vector. Try to allocate there, watching for the
 | 
						|
    // beginning of 1st vector as the end of free space.
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(!suballocations1st.empty());
 | 
						|
 | 
						|
        VkDeviceSize resultBaseOffset = 0;
 | 
						|
        if (!suballocations2nd.empty())
 | 
						|
        {
 | 
						|
            const VmaSuballocation& lastSuballoc = suballocations2nd.back();
 | 
						|
            resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin;
 | 
						|
        }
 | 
						|
 | 
						|
        // Start from offset equal to beginning of free space.
 | 
						|
        VkDeviceSize resultOffset = resultBaseOffset;
 | 
						|
 | 
						|
        // Apply alignment.
 | 
						|
        resultOffset = VmaAlignUp(resultOffset, allocAlignment);
 | 
						|
 | 
						|
        // Check previous suballocations for BufferImageGranularity conflicts.
 | 
						|
        // Make bigger alignment if necessary.
 | 
						|
        if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
 | 
						|
        {
 | 
						|
            bool bufferImageGranularityConflict = false;
 | 
						|
            for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; )
 | 
						|
            {
 | 
						|
                const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex];
 | 
						|
                if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
 | 
						|
                {
 | 
						|
                    if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
 | 
						|
                    {
 | 
						|
                        bufferImageGranularityConflict = true;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                else
 | 
						|
                    // Already on previous page.
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            if (bufferImageGranularityConflict)
 | 
						|
            {
 | 
						|
                resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        size_t index1st = m_1stNullItemsBeginCount;
 | 
						|
 | 
						|
        // There is enough free space at the end after alignment.
 | 
						|
        if ((index1st == suballocations1st.size() && resultOffset + allocSize + debugMargin <= blockSize) ||
 | 
						|
            (index1st < suballocations1st.size() && resultOffset + allocSize + debugMargin <= suballocations1st[index1st].offset))
 | 
						|
        {
 | 
						|
            // Check next suballocations for BufferImageGranularity conflicts.
 | 
						|
            // If conflict exists, allocation cannot be made here.
 | 
						|
            if (allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity)
 | 
						|
            {
 | 
						|
                for (size_t nextSuballocIndex = index1st;
 | 
						|
                    nextSuballocIndex < suballocations1st.size();
 | 
						|
                    nextSuballocIndex++)
 | 
						|
                {
 | 
						|
                    const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex];
 | 
						|
                    if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | 
						|
                    {
 | 
						|
                        if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
 | 
						|
                        {
 | 
						|
                            return false;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        // Already on next page.
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // All tests passed: Success.
 | 
						|
            pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
 | 
						|
            pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd;
 | 
						|
            // pAllocationRequest->item, customData unused.
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress(
 | 
						|
    VkDeviceSize allocSize,
 | 
						|
    VkDeviceSize allocAlignment,
 | 
						|
    VmaSuballocationType allocType,
 | 
						|
    uint32_t strategy,
 | 
						|
    VmaAllocationRequest* pAllocationRequest)
 | 
						|
{
 | 
						|
    const VkDeviceSize blockSize = GetSize();
 | 
						|
    const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
 | 
						|
    SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | 
						|
    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | 
						|
 | 
						|
    if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer.");
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to allocate before 2nd.back(), or end of block if 2nd.empty().
 | 
						|
    if (allocSize > blockSize)
 | 
						|
    {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    VkDeviceSize resultBaseOffset = blockSize - allocSize;
 | 
						|
    if (!suballocations2nd.empty())
 | 
						|
    {
 | 
						|
        const VmaSuballocation& lastSuballoc = suballocations2nd.back();
 | 
						|
        resultBaseOffset = lastSuballoc.offset - allocSize;
 | 
						|
        if (allocSize > lastSuballoc.offset)
 | 
						|
        {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Start from offset equal to end of free space.
 | 
						|
    VkDeviceSize resultOffset = resultBaseOffset;
 | 
						|
 | 
						|
    const VkDeviceSize debugMargin = GetDebugMargin();
 | 
						|
 | 
						|
    // Apply debugMargin at the end.
 | 
						|
    if (debugMargin > 0)
 | 
						|
    {
 | 
						|
        if (resultOffset < debugMargin)
 | 
						|
        {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        resultOffset -= debugMargin;
 | 
						|
    }
 | 
						|
 | 
						|
    // Apply alignment.
 | 
						|
    resultOffset = VmaAlignDown(resultOffset, allocAlignment);
 | 
						|
 | 
						|
    // Check next suballocations from 2nd for BufferImageGranularity conflicts.
 | 
						|
    // Make bigger alignment if necessary.
 | 
						|
    if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
 | 
						|
    {
 | 
						|
        bool bufferImageGranularityConflict = false;
 | 
						|
        for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
 | 
						|
        {
 | 
						|
            const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
 | 
						|
            if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | 
						|
            {
 | 
						|
                if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType))
 | 
						|
                {
 | 
						|
                    bufferImageGranularityConflict = true;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
                // Already on previous page.
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        if (bufferImageGranularityConflict)
 | 
						|
        {
 | 
						|
            resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // There is enough free space.
 | 
						|
    const VkDeviceSize endOf1st = !suballocations1st.empty() ?
 | 
						|
        suballocations1st.back().offset + suballocations1st.back().size :
 | 
						|
        0;
 | 
						|
    if (endOf1st + debugMargin <= resultOffset)
 | 
						|
    {
 | 
						|
        // Check previous suballocations for BufferImageGranularity conflicts.
 | 
						|
        // If conflict exists, allocation cannot be made here.
 | 
						|
        if (bufferImageGranularity > 1)
 | 
						|
        {
 | 
						|
            for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
 | 
						|
            {
 | 
						|
                const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
 | 
						|
                if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
 | 
						|
                {
 | 
						|
                    if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type))
 | 
						|
                    {
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    // Already on next page.
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // All tests passed: Success.
 | 
						|
        pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
 | 
						|
        // pAllocationRequest->item unused.
 | 
						|
        pAllocationRequest->type = VmaAllocationRequestType::UpperAddress;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
#endif // _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS
 | 
						|
#endif // _VMA_BLOCK_METADATA_LINEAR
 | 
						|
 | 
						|
#ifndef _VMA_BLOCK_METADATA_TLSF
 | 
						|
// To not search current larger region if first allocation won't succeed and skip to smaller range
 | 
						|
// use with VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT as strategy in CreateAllocationRequest().
 | 
						|
// When fragmentation and reusal of previous blocks doesn't matter then use with
 | 
						|
// VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT for fastest alloc time possible.
 | 
						|
class VmaBlockMetadata_TLSF : public VmaBlockMetadata
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_TLSF)
 | 
						|
public:
 | 
						|
    VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks,
 | 
						|
        VkDeviceSize bufferImageGranularity, bool isVirtual);
 | 
						|
    virtual ~VmaBlockMetadata_TLSF();
 | 
						|
 | 
						|
    size_t GetAllocationCount() const override { return m_AllocCount; }
 | 
						|
    size_t GetFreeRegionsCount() const override { return m_BlocksFreeCount + 1; }
 | 
						|
    VkDeviceSize GetSumFreeSize() const override { return m_BlocksFreeSize + m_NullBlock->size; }
 | 
						|
    bool IsEmpty() const override { return m_NullBlock->offset == 0; }
 | 
						|
    VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return ((Block*)allocHandle)->offset; }
 | 
						|
 | 
						|
    void Init(VkDeviceSize size) override;
 | 
						|
    bool Validate() const override;
 | 
						|
 | 
						|
    void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
 | 
						|
    void AddStatistics(VmaStatistics& inoutStats) const override;
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    void PrintDetailedMap(class VmaJsonWriter& json) const override;
 | 
						|
#endif
 | 
						|
 | 
						|
    bool CreateAllocationRequest(
 | 
						|
        VkDeviceSize allocSize,
 | 
						|
        VkDeviceSize allocAlignment,
 | 
						|
        bool upperAddress,
 | 
						|
        VmaSuballocationType allocType,
 | 
						|
        uint32_t strategy,
 | 
						|
        VmaAllocationRequest* pAllocationRequest) override;
 | 
						|
 | 
						|
    VkResult CheckCorruption(const void* pBlockData) override;
 | 
						|
    void Alloc(
 | 
						|
        const VmaAllocationRequest& request,
 | 
						|
        VmaSuballocationType type,
 | 
						|
        void* userData) override;
 | 
						|
 | 
						|
    void Free(VmaAllocHandle allocHandle) override;
 | 
						|
    void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
 | 
						|
    void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
 | 
						|
    VmaAllocHandle GetAllocationListBegin() const override;
 | 
						|
    VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
 | 
						|
    VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override;
 | 
						|
    void Clear() override;
 | 
						|
    void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
 | 
						|
    void DebugLogAllAllocations() const override;
 | 
						|
 | 
						|
private:
 | 
						|
    // According to original paper it should be preferable 4 or 5:
 | 
						|
    // M. Masmano, I. Ripoll, A. Crespo, and J. Real "TLSF: a New Dynamic Memory Allocator for Real-Time Systems"
 | 
						|
    // http://www.gii.upv.es/tlsf/files/ecrts04_tlsf.pdf
 | 
						|
    static const uint8_t SECOND_LEVEL_INDEX = 5;
 | 
						|
    static const uint16_t SMALL_BUFFER_SIZE = 256;
 | 
						|
    static const uint32_t INITIAL_BLOCK_ALLOC_COUNT = 16;
 | 
						|
    static const uint8_t MEMORY_CLASS_SHIFT = 7;
 | 
						|
    static const uint8_t MAX_MEMORY_CLASSES = 65 - MEMORY_CLASS_SHIFT;
 | 
						|
 | 
						|
    class Block
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        VkDeviceSize offset;
 | 
						|
        VkDeviceSize size;
 | 
						|
        Block* prevPhysical;
 | 
						|
        Block* nextPhysical;
 | 
						|
 | 
						|
        void MarkFree() { prevFree = VMA_NULL; }
 | 
						|
        void MarkTaken() { prevFree = this; }
 | 
						|
        bool IsFree() const { return prevFree != this; }
 | 
						|
        void*& UserData() { VMA_HEAVY_ASSERT(!IsFree()); return userData; }
 | 
						|
        Block*& PrevFree() { return prevFree; }
 | 
						|
        Block*& NextFree() { VMA_HEAVY_ASSERT(IsFree()); return nextFree; }
 | 
						|
 | 
						|
    private:
 | 
						|
        Block* prevFree; // Address of the same block here indicates that block is taken
 | 
						|
        union
 | 
						|
        {
 | 
						|
            Block* nextFree;
 | 
						|
            void* userData;
 | 
						|
        };
 | 
						|
    };
 | 
						|
 | 
						|
    size_t m_AllocCount;
 | 
						|
    // Total number of free blocks besides null block
 | 
						|
    size_t m_BlocksFreeCount;
 | 
						|
    // Total size of free blocks excluding null block
 | 
						|
    VkDeviceSize m_BlocksFreeSize;
 | 
						|
    uint32_t m_IsFreeBitmap;
 | 
						|
    uint8_t m_MemoryClasses;
 | 
						|
    uint32_t m_InnerIsFreeBitmap[MAX_MEMORY_CLASSES];
 | 
						|
    uint32_t m_ListsCount;
 | 
						|
    /*
 | 
						|
    * 0: 0-3 lists for small buffers
 | 
						|
    * 1+: 0-(2^SLI-1) lists for normal buffers
 | 
						|
    */
 | 
						|
    Block** m_FreeList;
 | 
						|
    VmaPoolAllocator<Block> m_BlockAllocator;
 | 
						|
    Block* m_NullBlock;
 | 
						|
    VmaBlockBufferImageGranularity m_GranularityHandler;
 | 
						|
 | 
						|
    uint8_t SizeToMemoryClass(VkDeviceSize size) const;
 | 
						|
    uint16_t SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const;
 | 
						|
    uint32_t GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const;
 | 
						|
    uint32_t GetListIndex(VkDeviceSize size) const;
 | 
						|
 | 
						|
    void RemoveFreeBlock(Block* block);
 | 
						|
    void InsertFreeBlock(Block* block);
 | 
						|
    void MergeBlock(Block* block, Block* prev);
 | 
						|
 | 
						|
    Block* FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const;
 | 
						|
    bool CheckBlock(
 | 
						|
        Block& block,
 | 
						|
        uint32_t listIndex,
 | 
						|
        VkDeviceSize allocSize,
 | 
						|
        VkDeviceSize allocAlignment,
 | 
						|
        VmaSuballocationType allocType,
 | 
						|
        VmaAllocationRequest* pAllocationRequest);
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_BLOCK_METADATA_TLSF_FUNCTIONS
 | 
						|
VmaBlockMetadata_TLSF::VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks,
 | 
						|
    VkDeviceSize bufferImageGranularity, bool isVirtual)
 | 
						|
    : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
 | 
						|
    m_AllocCount(0),
 | 
						|
    m_BlocksFreeCount(0),
 | 
						|
    m_BlocksFreeSize(0),
 | 
						|
    m_IsFreeBitmap(0),
 | 
						|
    m_MemoryClasses(0),
 | 
						|
    m_ListsCount(0),
 | 
						|
    m_FreeList(VMA_NULL),
 | 
						|
    m_BlockAllocator(pAllocationCallbacks, INITIAL_BLOCK_ALLOC_COUNT),
 | 
						|
    m_NullBlock(VMA_NULL),
 | 
						|
    m_GranularityHandler(bufferImageGranularity) {}
 | 
						|
 | 
						|
VmaBlockMetadata_TLSF::~VmaBlockMetadata_TLSF()
 | 
						|
{
 | 
						|
    if (m_FreeList)
 | 
						|
        vma_delete_array(GetAllocationCallbacks(), m_FreeList, m_ListsCount);
 | 
						|
    m_GranularityHandler.Destroy(GetAllocationCallbacks());
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::Init(VkDeviceSize size)
 | 
						|
{
 | 
						|
    VmaBlockMetadata::Init(size);
 | 
						|
 | 
						|
    if (!IsVirtual())
 | 
						|
        m_GranularityHandler.Init(GetAllocationCallbacks(), size);
 | 
						|
 | 
						|
    m_NullBlock = m_BlockAllocator.Alloc();
 | 
						|
    m_NullBlock->size = size;
 | 
						|
    m_NullBlock->offset = 0;
 | 
						|
    m_NullBlock->prevPhysical = VMA_NULL;
 | 
						|
    m_NullBlock->nextPhysical = VMA_NULL;
 | 
						|
    m_NullBlock->MarkFree();
 | 
						|
    m_NullBlock->NextFree() = VMA_NULL;
 | 
						|
    m_NullBlock->PrevFree() = VMA_NULL;
 | 
						|
    uint8_t memoryClass = SizeToMemoryClass(size);
 | 
						|
    uint16_t sli = SizeToSecondIndex(size, memoryClass);
 | 
						|
    m_ListsCount = (memoryClass == 0 ? 0 : (memoryClass - 1) * (1UL << SECOND_LEVEL_INDEX) + sli) + 1;
 | 
						|
    if (IsVirtual())
 | 
						|
        m_ListsCount += 1UL << SECOND_LEVEL_INDEX;
 | 
						|
    else
 | 
						|
        m_ListsCount += 4;
 | 
						|
 | 
						|
    m_MemoryClasses = memoryClass + uint8_t(2);
 | 
						|
    memset(m_InnerIsFreeBitmap, 0, MAX_MEMORY_CLASSES * sizeof(uint32_t));
 | 
						|
 | 
						|
    m_FreeList = vma_new_array(GetAllocationCallbacks(), Block*, m_ListsCount);
 | 
						|
    memset(m_FreeList, 0, m_ListsCount * sizeof(Block*));
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockMetadata_TLSF::Validate() const
 | 
						|
{
 | 
						|
    VMA_VALIDATE(GetSumFreeSize() <= GetSize());
 | 
						|
 | 
						|
    VkDeviceSize calculatedSize = m_NullBlock->size;
 | 
						|
    VkDeviceSize calculatedFreeSize = m_NullBlock->size;
 | 
						|
    size_t allocCount = 0;
 | 
						|
    size_t freeCount = 0;
 | 
						|
 | 
						|
    // Check integrity of free lists
 | 
						|
    for (uint32_t list = 0; list < m_ListsCount; ++list)
 | 
						|
    {
 | 
						|
        Block* block = m_FreeList[list];
 | 
						|
        if (block != VMA_NULL)
 | 
						|
        {
 | 
						|
            VMA_VALIDATE(block->IsFree());
 | 
						|
            VMA_VALIDATE(block->PrevFree() == VMA_NULL);
 | 
						|
            while (block->NextFree())
 | 
						|
            {
 | 
						|
                VMA_VALIDATE(block->NextFree()->IsFree());
 | 
						|
                VMA_VALIDATE(block->NextFree()->PrevFree() == block);
 | 
						|
                block = block->NextFree();
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    VkDeviceSize nextOffset = m_NullBlock->offset;
 | 
						|
    auto validateCtx = m_GranularityHandler.StartValidation(GetAllocationCallbacks(), IsVirtual());
 | 
						|
 | 
						|
    VMA_VALIDATE(m_NullBlock->nextPhysical == VMA_NULL);
 | 
						|
    if (m_NullBlock->prevPhysical)
 | 
						|
    {
 | 
						|
        VMA_VALIDATE(m_NullBlock->prevPhysical->nextPhysical == m_NullBlock);
 | 
						|
    }
 | 
						|
    // Check all blocks
 | 
						|
    for (Block* prev = m_NullBlock->prevPhysical; prev != VMA_NULL; prev = prev->prevPhysical)
 | 
						|
    {
 | 
						|
        VMA_VALIDATE(prev->offset + prev->size == nextOffset);
 | 
						|
        nextOffset = prev->offset;
 | 
						|
        calculatedSize += prev->size;
 | 
						|
 | 
						|
        uint32_t listIndex = GetListIndex(prev->size);
 | 
						|
        if (prev->IsFree())
 | 
						|
        {
 | 
						|
            ++freeCount;
 | 
						|
            // Check if free block belongs to free list
 | 
						|
            Block* freeBlock = m_FreeList[listIndex];
 | 
						|
            VMA_VALIDATE(freeBlock != VMA_NULL);
 | 
						|
 | 
						|
            bool found = false;
 | 
						|
            do
 | 
						|
            {
 | 
						|
                if (freeBlock == prev)
 | 
						|
                    found = true;
 | 
						|
 | 
						|
                freeBlock = freeBlock->NextFree();
 | 
						|
            } while (!found && freeBlock != VMA_NULL);
 | 
						|
 | 
						|
            VMA_VALIDATE(found);
 | 
						|
            calculatedFreeSize += prev->size;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            ++allocCount;
 | 
						|
            // Check if taken block is not on a free list
 | 
						|
            Block* freeBlock = m_FreeList[listIndex];
 | 
						|
            while (freeBlock)
 | 
						|
            {
 | 
						|
                VMA_VALIDATE(freeBlock != prev);
 | 
						|
                freeBlock = freeBlock->NextFree();
 | 
						|
            }
 | 
						|
 | 
						|
            if (!IsVirtual())
 | 
						|
            {
 | 
						|
                VMA_VALIDATE(m_GranularityHandler.Validate(validateCtx, prev->offset, prev->size));
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (prev->prevPhysical)
 | 
						|
        {
 | 
						|
            VMA_VALIDATE(prev->prevPhysical->nextPhysical == prev);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!IsVirtual())
 | 
						|
    {
 | 
						|
        VMA_VALIDATE(m_GranularityHandler.FinishValidation(validateCtx));
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_VALIDATE(nextOffset == 0);
 | 
						|
    VMA_VALIDATE(calculatedSize == GetSize());
 | 
						|
    VMA_VALIDATE(calculatedFreeSize == GetSumFreeSize());
 | 
						|
    VMA_VALIDATE(allocCount == m_AllocCount);
 | 
						|
    VMA_VALIDATE(freeCount == m_BlocksFreeCount);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
 | 
						|
{
 | 
						|
    inoutStats.statistics.blockCount++;
 | 
						|
    inoutStats.statistics.blockBytes += GetSize();
 | 
						|
    if (m_NullBlock->size > 0)
 | 
						|
        VmaAddDetailedStatisticsUnusedRange(inoutStats, m_NullBlock->size);
 | 
						|
 | 
						|
    for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
 | 
						|
    {
 | 
						|
        if (block->IsFree())
 | 
						|
            VmaAddDetailedStatisticsUnusedRange(inoutStats, block->size);
 | 
						|
        else
 | 
						|
            VmaAddDetailedStatisticsAllocation(inoutStats, block->size);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::AddStatistics(VmaStatistics& inoutStats) const
 | 
						|
{
 | 
						|
    inoutStats.blockCount++;
 | 
						|
    inoutStats.allocationCount += (uint32_t)m_AllocCount;
 | 
						|
    inoutStats.blockBytes += GetSize();
 | 
						|
    inoutStats.allocationBytes += GetSize() - GetSumFreeSize();
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
void VmaBlockMetadata_TLSF::PrintDetailedMap(class VmaJsonWriter& json) const
 | 
						|
{
 | 
						|
    size_t blockCount = m_AllocCount + m_BlocksFreeCount;
 | 
						|
    VmaStlAllocator<Block*> allocator(GetAllocationCallbacks());
 | 
						|
    VmaVector<Block*, VmaStlAllocator<Block*>> blockList(blockCount, allocator);
 | 
						|
 | 
						|
    size_t i = blockCount;
 | 
						|
    for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
 | 
						|
    {
 | 
						|
        blockList[--i] = block;
 | 
						|
    }
 | 
						|
    VMA_ASSERT(i == 0);
 | 
						|
 | 
						|
    VmaDetailedStatistics stats;
 | 
						|
    VmaClearDetailedStatistics(stats);
 | 
						|
    AddDetailedStatistics(stats);
 | 
						|
 | 
						|
    PrintDetailedMap_Begin(json,
 | 
						|
        stats.statistics.blockBytes - stats.statistics.allocationBytes,
 | 
						|
        stats.statistics.allocationCount,
 | 
						|
        stats.unusedRangeCount);
 | 
						|
 | 
						|
    for (; i < blockCount; ++i)
 | 
						|
    {
 | 
						|
        Block* block = blockList[i];
 | 
						|
        if (block->IsFree())
 | 
						|
            PrintDetailedMap_UnusedRange(json, block->offset, block->size);
 | 
						|
        else
 | 
						|
            PrintDetailedMap_Allocation(json, block->offset, block->size, block->UserData());
 | 
						|
    }
 | 
						|
    if (m_NullBlock->size > 0)
 | 
						|
        PrintDetailedMap_UnusedRange(json, m_NullBlock->offset, m_NullBlock->size);
 | 
						|
 | 
						|
    PrintDetailedMap_End(json);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
bool VmaBlockMetadata_TLSF::CreateAllocationRequest(
 | 
						|
    VkDeviceSize allocSize,
 | 
						|
    VkDeviceSize allocAlignment,
 | 
						|
    bool upperAddress,
 | 
						|
    VmaSuballocationType allocType,
 | 
						|
    uint32_t strategy,
 | 
						|
    VmaAllocationRequest* pAllocationRequest)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocSize > 0 && "Cannot allocate empty block!");
 | 
						|
    VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
 | 
						|
 | 
						|
    // For small granularity round up
 | 
						|
    if (!IsVirtual())
 | 
						|
        m_GranularityHandler.RoundupAllocRequest(allocType, allocSize, allocAlignment);
 | 
						|
 | 
						|
    allocSize += GetDebugMargin();
 | 
						|
    // Quick check for too small pool
 | 
						|
    if (allocSize > GetSumFreeSize())
 | 
						|
        return false;
 | 
						|
 | 
						|
    // If no free blocks in pool then check only null block
 | 
						|
    if (m_BlocksFreeCount == 0)
 | 
						|
        return CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest);
 | 
						|
 | 
						|
    // Round up to the next block
 | 
						|
    VkDeviceSize sizeForNextList = allocSize;
 | 
						|
    VkDeviceSize smallSizeStep = VkDeviceSize(SMALL_BUFFER_SIZE / (IsVirtual() ? 1 << SECOND_LEVEL_INDEX : 4));
 | 
						|
    if (allocSize > SMALL_BUFFER_SIZE)
 | 
						|
    {
 | 
						|
        sizeForNextList += (1ULL << (VMA_BITSCAN_MSB(allocSize) - SECOND_LEVEL_INDEX));
 | 
						|
    }
 | 
						|
    else if (allocSize > SMALL_BUFFER_SIZE - smallSizeStep)
 | 
						|
        sizeForNextList = SMALL_BUFFER_SIZE + 1;
 | 
						|
    else
 | 
						|
        sizeForNextList += smallSizeStep;
 | 
						|
 | 
						|
    uint32_t nextListIndex = m_ListsCount;
 | 
						|
    uint32_t prevListIndex = m_ListsCount;
 | 
						|
    Block* nextListBlock = VMA_NULL;
 | 
						|
    Block* prevListBlock = VMA_NULL;
 | 
						|
 | 
						|
    // Check blocks according to strategies
 | 
						|
    if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT)
 | 
						|
    {
 | 
						|
        // Quick check for larger block first
 | 
						|
        nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
 | 
						|
        if (nextListBlock != VMA_NULL && CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
            return true;
 | 
						|
 | 
						|
        // If not fitted then null block
 | 
						|
        if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
            return true;
 | 
						|
 | 
						|
        // Null block failed, search larger bucket
 | 
						|
        while (nextListBlock)
 | 
						|
        {
 | 
						|
            if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
                return true;
 | 
						|
            nextListBlock = nextListBlock->NextFree();
 | 
						|
        }
 | 
						|
 | 
						|
        // Failed again, check best fit bucket
 | 
						|
        prevListBlock = FindFreeBlock(allocSize, prevListIndex);
 | 
						|
        while (prevListBlock)
 | 
						|
        {
 | 
						|
            if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
                return true;
 | 
						|
            prevListBlock = prevListBlock->NextFree();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT)
 | 
						|
    {
 | 
						|
        // Check best fit bucket
 | 
						|
        prevListBlock = FindFreeBlock(allocSize, prevListIndex);
 | 
						|
        while (prevListBlock)
 | 
						|
        {
 | 
						|
            if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
                return true;
 | 
						|
            prevListBlock = prevListBlock->NextFree();
 | 
						|
        }
 | 
						|
 | 
						|
        // If failed check null block
 | 
						|
        if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
            return true;
 | 
						|
 | 
						|
        // Check larger bucket
 | 
						|
        nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
 | 
						|
        while (nextListBlock)
 | 
						|
        {
 | 
						|
            if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
                return true;
 | 
						|
            nextListBlock = nextListBlock->NextFree();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT )
 | 
						|
    {
 | 
						|
        // Perform search from the start
 | 
						|
        VmaStlAllocator<Block*> allocator(GetAllocationCallbacks());
 | 
						|
        VmaVector<Block*, VmaStlAllocator<Block*>> blockList(m_BlocksFreeCount, allocator);
 | 
						|
 | 
						|
        size_t i = m_BlocksFreeCount;
 | 
						|
        for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
 | 
						|
        {
 | 
						|
            if (block->IsFree() && block->size >= allocSize)
 | 
						|
                blockList[--i] = block;
 | 
						|
        }
 | 
						|
 | 
						|
        for (; i < m_BlocksFreeCount; ++i)
 | 
						|
        {
 | 
						|
            Block& block = *blockList[i];
 | 
						|
            if (CheckBlock(block, GetListIndex(block.size), allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
                return true;
 | 
						|
        }
 | 
						|
 | 
						|
        // If failed check null block
 | 
						|
        if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
            return true;
 | 
						|
 | 
						|
        // Whole range searched, no more memory
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        // Check larger bucket
 | 
						|
        nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
 | 
						|
        while (nextListBlock)
 | 
						|
        {
 | 
						|
            if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
                return true;
 | 
						|
            nextListBlock = nextListBlock->NextFree();
 | 
						|
        }
 | 
						|
 | 
						|
        // If failed check null block
 | 
						|
        if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
            return true;
 | 
						|
 | 
						|
        // Check best fit bucket
 | 
						|
        prevListBlock = FindFreeBlock(allocSize, prevListIndex);
 | 
						|
        while (prevListBlock)
 | 
						|
        {
 | 
						|
            if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
                return true;
 | 
						|
            prevListBlock = prevListBlock->NextFree();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Worst case, full search has to be done
 | 
						|
    while (++nextListIndex < m_ListsCount)
 | 
						|
    {
 | 
						|
        nextListBlock = m_FreeList[nextListIndex];
 | 
						|
        while (nextListBlock)
 | 
						|
        {
 | 
						|
            if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | 
						|
                return true;
 | 
						|
            nextListBlock = nextListBlock->NextFree();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // No more memory sadly
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaBlockMetadata_TLSF::CheckCorruption(const void* pBlockData)
 | 
						|
{
 | 
						|
    for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
 | 
						|
    {
 | 
						|
        if (!block->IsFree())
 | 
						|
        {
 | 
						|
            if (!VmaValidateMagicValue(pBlockData, block->offset + block->size))
 | 
						|
            {
 | 
						|
                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
 | 
						|
                return VK_ERROR_UNKNOWN_COPY;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::Alloc(
 | 
						|
    const VmaAllocationRequest& request,
 | 
						|
    VmaSuballocationType type,
 | 
						|
    void* userData)
 | 
						|
{
 | 
						|
    VMA_ASSERT(request.type == VmaAllocationRequestType::TLSF);
 | 
						|
 | 
						|
    // Get block and pop it from the free list
 | 
						|
    Block* currentBlock = (Block*)request.allocHandle;
 | 
						|
    VkDeviceSize offset = request.algorithmData;
 | 
						|
    VMA_ASSERT(currentBlock != VMA_NULL);
 | 
						|
    VMA_ASSERT(currentBlock->offset <= offset);
 | 
						|
 | 
						|
    if (currentBlock != m_NullBlock)
 | 
						|
        RemoveFreeBlock(currentBlock);
 | 
						|
 | 
						|
    VkDeviceSize debugMargin = GetDebugMargin();
 | 
						|
    VkDeviceSize missingAlignment = offset - currentBlock->offset;
 | 
						|
 | 
						|
    // Append missing alignment to prev block or create new one
 | 
						|
    if (missingAlignment)
 | 
						|
    {
 | 
						|
        Block* prevBlock = currentBlock->prevPhysical;
 | 
						|
        VMA_ASSERT(prevBlock != VMA_NULL && "There should be no missing alignment at offset 0!");
 | 
						|
 | 
						|
        if (prevBlock->IsFree() && prevBlock->size != debugMargin)
 | 
						|
        {
 | 
						|
            uint32_t oldList = GetListIndex(prevBlock->size);
 | 
						|
            prevBlock->size += missingAlignment;
 | 
						|
            // Check if new size crosses list bucket
 | 
						|
            if (oldList != GetListIndex(prevBlock->size))
 | 
						|
            {
 | 
						|
                prevBlock->size -= missingAlignment;
 | 
						|
                RemoveFreeBlock(prevBlock);
 | 
						|
                prevBlock->size += missingAlignment;
 | 
						|
                InsertFreeBlock(prevBlock);
 | 
						|
            }
 | 
						|
            else
 | 
						|
                m_BlocksFreeSize += missingAlignment;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            Block* newBlock = m_BlockAllocator.Alloc();
 | 
						|
            currentBlock->prevPhysical = newBlock;
 | 
						|
            prevBlock->nextPhysical = newBlock;
 | 
						|
            newBlock->prevPhysical = prevBlock;
 | 
						|
            newBlock->nextPhysical = currentBlock;
 | 
						|
            newBlock->size = missingAlignment;
 | 
						|
            newBlock->offset = currentBlock->offset;
 | 
						|
            newBlock->MarkTaken();
 | 
						|
 | 
						|
            InsertFreeBlock(newBlock);
 | 
						|
        }
 | 
						|
 | 
						|
        currentBlock->size -= missingAlignment;
 | 
						|
        currentBlock->offset += missingAlignment;
 | 
						|
    }
 | 
						|
 | 
						|
    VkDeviceSize size = request.size + debugMargin;
 | 
						|
    if (currentBlock->size == size)
 | 
						|
    {
 | 
						|
        if (currentBlock == m_NullBlock)
 | 
						|
        {
 | 
						|
            // Setup new null block
 | 
						|
            m_NullBlock = m_BlockAllocator.Alloc();
 | 
						|
            m_NullBlock->size = 0;
 | 
						|
            m_NullBlock->offset = currentBlock->offset + size;
 | 
						|
            m_NullBlock->prevPhysical = currentBlock;
 | 
						|
            m_NullBlock->nextPhysical = VMA_NULL;
 | 
						|
            m_NullBlock->MarkFree();
 | 
						|
            m_NullBlock->PrevFree() = VMA_NULL;
 | 
						|
            m_NullBlock->NextFree() = VMA_NULL;
 | 
						|
            currentBlock->nextPhysical = m_NullBlock;
 | 
						|
            currentBlock->MarkTaken();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_ASSERT(currentBlock->size > size && "Proper block already found, shouldn't find smaller one!");
 | 
						|
 | 
						|
        // Create new free block
 | 
						|
        Block* newBlock = m_BlockAllocator.Alloc();
 | 
						|
        newBlock->size = currentBlock->size - size;
 | 
						|
        newBlock->offset = currentBlock->offset + size;
 | 
						|
        newBlock->prevPhysical = currentBlock;
 | 
						|
        newBlock->nextPhysical = currentBlock->nextPhysical;
 | 
						|
        currentBlock->nextPhysical = newBlock;
 | 
						|
        currentBlock->size = size;
 | 
						|
 | 
						|
        if (currentBlock == m_NullBlock)
 | 
						|
        {
 | 
						|
            m_NullBlock = newBlock;
 | 
						|
            m_NullBlock->MarkFree();
 | 
						|
            m_NullBlock->NextFree() = VMA_NULL;
 | 
						|
            m_NullBlock->PrevFree() = VMA_NULL;
 | 
						|
            currentBlock->MarkTaken();
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            newBlock->nextPhysical->prevPhysical = newBlock;
 | 
						|
            newBlock->MarkTaken();
 | 
						|
            InsertFreeBlock(newBlock);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    currentBlock->UserData() = userData;
 | 
						|
 | 
						|
    if (debugMargin > 0)
 | 
						|
    {
 | 
						|
        currentBlock->size -= debugMargin;
 | 
						|
        Block* newBlock = m_BlockAllocator.Alloc();
 | 
						|
        newBlock->size = debugMargin;
 | 
						|
        newBlock->offset = currentBlock->offset + currentBlock->size;
 | 
						|
        newBlock->prevPhysical = currentBlock;
 | 
						|
        newBlock->nextPhysical = currentBlock->nextPhysical;
 | 
						|
        newBlock->MarkTaken();
 | 
						|
        currentBlock->nextPhysical->prevPhysical = newBlock;
 | 
						|
        currentBlock->nextPhysical = newBlock;
 | 
						|
        InsertFreeBlock(newBlock);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!IsVirtual())
 | 
						|
        m_GranularityHandler.AllocPages((uint8_t)(uintptr_t)request.customData,
 | 
						|
            currentBlock->offset, currentBlock->size);
 | 
						|
    ++m_AllocCount;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::Free(VmaAllocHandle allocHandle)
 | 
						|
{
 | 
						|
    Block* block = (Block*)allocHandle;
 | 
						|
    Block* next = block->nextPhysical;
 | 
						|
    VMA_ASSERT(!block->IsFree() && "Block is already free!");
 | 
						|
 | 
						|
    if (!IsVirtual())
 | 
						|
        m_GranularityHandler.FreePages(block->offset, block->size);
 | 
						|
    --m_AllocCount;
 | 
						|
 | 
						|
    VkDeviceSize debugMargin = GetDebugMargin();
 | 
						|
    if (debugMargin > 0)
 | 
						|
    {
 | 
						|
        RemoveFreeBlock(next);
 | 
						|
        MergeBlock(next, block);
 | 
						|
        block = next;
 | 
						|
        next = next->nextPhysical;
 | 
						|
    }
 | 
						|
 | 
						|
    // Try merging
 | 
						|
    Block* prev = block->prevPhysical;
 | 
						|
    if (prev != VMA_NULL && prev->IsFree() && prev->size != debugMargin)
 | 
						|
    {
 | 
						|
        RemoveFreeBlock(prev);
 | 
						|
        MergeBlock(block, prev);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!next->IsFree())
 | 
						|
        InsertFreeBlock(block);
 | 
						|
    else if (next == m_NullBlock)
 | 
						|
        MergeBlock(m_NullBlock, block);
 | 
						|
    else
 | 
						|
    {
 | 
						|
        RemoveFreeBlock(next);
 | 
						|
        MergeBlock(next, block);
 | 
						|
        InsertFreeBlock(next);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
 | 
						|
{
 | 
						|
    Block* block = (Block*)allocHandle;
 | 
						|
    VMA_ASSERT(!block->IsFree() && "Cannot get allocation info for free block!");
 | 
						|
    outInfo.offset = block->offset;
 | 
						|
    outInfo.size = block->size;
 | 
						|
    outInfo.pUserData = block->UserData();
 | 
						|
}
 | 
						|
 | 
						|
void* VmaBlockMetadata_TLSF::GetAllocationUserData(VmaAllocHandle allocHandle) const
 | 
						|
{
 | 
						|
    Block* block = (Block*)allocHandle;
 | 
						|
    VMA_ASSERT(!block->IsFree() && "Cannot get user data for free block!");
 | 
						|
    return block->UserData();
 | 
						|
}
 | 
						|
 | 
						|
VmaAllocHandle VmaBlockMetadata_TLSF::GetAllocationListBegin() const
 | 
						|
{
 | 
						|
    if (m_AllocCount == 0)
 | 
						|
        return VK_NULL_HANDLE;
 | 
						|
 | 
						|
    for (Block* block = m_NullBlock->prevPhysical; block; block = block->prevPhysical)
 | 
						|
    {
 | 
						|
        if (!block->IsFree())
 | 
						|
            return (VmaAllocHandle)block;
 | 
						|
    }
 | 
						|
    VMA_ASSERT(false && "If m_AllocCount > 0 then should find any allocation!");
 | 
						|
    return VK_NULL_HANDLE;
 | 
						|
}
 | 
						|
 | 
						|
VmaAllocHandle VmaBlockMetadata_TLSF::GetNextAllocation(VmaAllocHandle prevAlloc) const
 | 
						|
{
 | 
						|
    Block* startBlock = (Block*)prevAlloc;
 | 
						|
    VMA_ASSERT(!startBlock->IsFree() && "Incorrect block!");
 | 
						|
 | 
						|
    for (Block* block = startBlock->prevPhysical; block; block = block->prevPhysical)
 | 
						|
    {
 | 
						|
        if (!block->IsFree())
 | 
						|
            return (VmaAllocHandle)block;
 | 
						|
    }
 | 
						|
    return VK_NULL_HANDLE;
 | 
						|
}
 | 
						|
 | 
						|
VkDeviceSize VmaBlockMetadata_TLSF::GetNextFreeRegionSize(VmaAllocHandle alloc) const
 | 
						|
{
 | 
						|
    Block* block = (Block*)alloc;
 | 
						|
    VMA_ASSERT(!block->IsFree() && "Incorrect block!");
 | 
						|
 | 
						|
    if (block->prevPhysical)
 | 
						|
        return block->prevPhysical->IsFree() ? block->prevPhysical->size : 0;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::Clear()
 | 
						|
{
 | 
						|
    m_AllocCount = 0;
 | 
						|
    m_BlocksFreeCount = 0;
 | 
						|
    m_BlocksFreeSize = 0;
 | 
						|
    m_IsFreeBitmap = 0;
 | 
						|
    m_NullBlock->offset = 0;
 | 
						|
    m_NullBlock->size = GetSize();
 | 
						|
    Block* block = m_NullBlock->prevPhysical;
 | 
						|
    m_NullBlock->prevPhysical = VMA_NULL;
 | 
						|
    while (block)
 | 
						|
    {
 | 
						|
        Block* prev = block->prevPhysical;
 | 
						|
        m_BlockAllocator.Free(block);
 | 
						|
        block = prev;
 | 
						|
    }
 | 
						|
    memset(m_FreeList, 0, m_ListsCount * sizeof(Block*));
 | 
						|
    memset(m_InnerIsFreeBitmap, 0, m_MemoryClasses * sizeof(uint32_t));
 | 
						|
    m_GranularityHandler.Clear();
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
 | 
						|
{
 | 
						|
    Block* block = (Block*)allocHandle;
 | 
						|
    VMA_ASSERT(!block->IsFree() && "Trying to set user data for not allocated block!");
 | 
						|
    block->UserData() = userData;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::DebugLogAllAllocations() const
 | 
						|
{
 | 
						|
    for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
 | 
						|
        if (!block->IsFree())
 | 
						|
            DebugLogAllocation(block->offset, block->size, block->UserData());
 | 
						|
}
 | 
						|
 | 
						|
uint8_t VmaBlockMetadata_TLSF::SizeToMemoryClass(VkDeviceSize size) const
 | 
						|
{
 | 
						|
    if (size > SMALL_BUFFER_SIZE)
 | 
						|
        return uint8_t(VMA_BITSCAN_MSB(size) - MEMORY_CLASS_SHIFT);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
uint16_t VmaBlockMetadata_TLSF::SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const
 | 
						|
{
 | 
						|
    if (memoryClass == 0)
 | 
						|
    {
 | 
						|
        if (IsVirtual())
 | 
						|
            return static_cast<uint16_t>((size - 1) / 8);
 | 
						|
        else
 | 
						|
            return static_cast<uint16_t>((size - 1) / 64);
 | 
						|
    }
 | 
						|
    return static_cast<uint16_t>((size >> (memoryClass + MEMORY_CLASS_SHIFT - SECOND_LEVEL_INDEX)) ^ (1U << SECOND_LEVEL_INDEX));
 | 
						|
}
 | 
						|
 | 
						|
uint32_t VmaBlockMetadata_TLSF::GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const
 | 
						|
{
 | 
						|
    if (memoryClass == 0)
 | 
						|
        return secondIndex;
 | 
						|
 | 
						|
    const uint32_t index = static_cast<uint32_t>(memoryClass - 1) * (1 << SECOND_LEVEL_INDEX) + secondIndex;
 | 
						|
    if (IsVirtual())
 | 
						|
        return index + (1 << SECOND_LEVEL_INDEX);
 | 
						|
    else
 | 
						|
        return index + 4;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t VmaBlockMetadata_TLSF::GetListIndex(VkDeviceSize size) const
 | 
						|
{
 | 
						|
    uint8_t memoryClass = SizeToMemoryClass(size);
 | 
						|
    return GetListIndex(memoryClass, SizeToSecondIndex(size, memoryClass));
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::RemoveFreeBlock(Block* block)
 | 
						|
{
 | 
						|
    VMA_ASSERT(block != m_NullBlock);
 | 
						|
    VMA_ASSERT(block->IsFree());
 | 
						|
 | 
						|
    if (block->NextFree() != VMA_NULL)
 | 
						|
        block->NextFree()->PrevFree() = block->PrevFree();
 | 
						|
    if (block->PrevFree() != VMA_NULL)
 | 
						|
        block->PrevFree()->NextFree() = block->NextFree();
 | 
						|
    else
 | 
						|
    {
 | 
						|
        uint8_t memClass = SizeToMemoryClass(block->size);
 | 
						|
        uint16_t secondIndex = SizeToSecondIndex(block->size, memClass);
 | 
						|
        uint32_t index = GetListIndex(memClass, secondIndex);
 | 
						|
        VMA_ASSERT(m_FreeList[index] == block);
 | 
						|
        m_FreeList[index] = block->NextFree();
 | 
						|
        if (block->NextFree() == VMA_NULL)
 | 
						|
        {
 | 
						|
            m_InnerIsFreeBitmap[memClass] &= ~(1U << secondIndex);
 | 
						|
            if (m_InnerIsFreeBitmap[memClass] == 0)
 | 
						|
                m_IsFreeBitmap &= ~(1UL << memClass);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    block->MarkTaken();
 | 
						|
    block->UserData() = VMA_NULL;
 | 
						|
    --m_BlocksFreeCount;
 | 
						|
    m_BlocksFreeSize -= block->size;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::InsertFreeBlock(Block* block)
 | 
						|
{
 | 
						|
    VMA_ASSERT(block != m_NullBlock);
 | 
						|
    VMA_ASSERT(!block->IsFree() && "Cannot insert block twice!");
 | 
						|
 | 
						|
    uint8_t memClass = SizeToMemoryClass(block->size);
 | 
						|
    uint16_t secondIndex = SizeToSecondIndex(block->size, memClass);
 | 
						|
    uint32_t index = GetListIndex(memClass, secondIndex);
 | 
						|
    VMA_ASSERT(index < m_ListsCount);
 | 
						|
    block->PrevFree() = VMA_NULL;
 | 
						|
    block->NextFree() = m_FreeList[index];
 | 
						|
    m_FreeList[index] = block;
 | 
						|
    if (block->NextFree() != VMA_NULL)
 | 
						|
        block->NextFree()->PrevFree() = block;
 | 
						|
    else
 | 
						|
    {
 | 
						|
        m_InnerIsFreeBitmap[memClass] |= 1U << secondIndex;
 | 
						|
        m_IsFreeBitmap |= 1UL << memClass;
 | 
						|
    }
 | 
						|
    ++m_BlocksFreeCount;
 | 
						|
    m_BlocksFreeSize += block->size;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockMetadata_TLSF::MergeBlock(Block* block, Block* prev)
 | 
						|
{
 | 
						|
    VMA_ASSERT(block->prevPhysical == prev && "Cannot merge separate physical regions!");
 | 
						|
    VMA_ASSERT(!prev->IsFree() && "Cannot merge block that belongs to free list!");
 | 
						|
 | 
						|
    block->offset = prev->offset;
 | 
						|
    block->size += prev->size;
 | 
						|
    block->prevPhysical = prev->prevPhysical;
 | 
						|
    if (block->prevPhysical)
 | 
						|
        block->prevPhysical->nextPhysical = block;
 | 
						|
    m_BlockAllocator.Free(prev);
 | 
						|
}
 | 
						|
 | 
						|
VmaBlockMetadata_TLSF::Block* VmaBlockMetadata_TLSF::FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const
 | 
						|
{
 | 
						|
    uint8_t memoryClass = SizeToMemoryClass(size);
 | 
						|
    uint32_t innerFreeMap = m_InnerIsFreeBitmap[memoryClass] & (~0U << SizeToSecondIndex(size, memoryClass));
 | 
						|
    if (!innerFreeMap)
 | 
						|
    {
 | 
						|
        // Check higher levels for available blocks
 | 
						|
        uint32_t freeMap = m_IsFreeBitmap & (~0UL << (memoryClass + 1));
 | 
						|
        if (!freeMap)
 | 
						|
            return VMA_NULL; // No more memory available
 | 
						|
 | 
						|
        // Find lowest free region
 | 
						|
        memoryClass = VMA_BITSCAN_LSB(freeMap);
 | 
						|
        innerFreeMap = m_InnerIsFreeBitmap[memoryClass];
 | 
						|
        VMA_ASSERT(innerFreeMap != 0);
 | 
						|
    }
 | 
						|
    // Find lowest free subregion
 | 
						|
    listIndex = GetListIndex(memoryClass, VMA_BITSCAN_LSB(innerFreeMap));
 | 
						|
    VMA_ASSERT(m_FreeList[listIndex]);
 | 
						|
    return m_FreeList[listIndex];
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockMetadata_TLSF::CheckBlock(
 | 
						|
    Block& block,
 | 
						|
    uint32_t listIndex,
 | 
						|
    VkDeviceSize allocSize,
 | 
						|
    VkDeviceSize allocAlignment,
 | 
						|
    VmaSuballocationType allocType,
 | 
						|
    VmaAllocationRequest* pAllocationRequest)
 | 
						|
{
 | 
						|
    VMA_ASSERT(block.IsFree() && "Block is already taken!");
 | 
						|
 | 
						|
    VkDeviceSize alignedOffset = VmaAlignUp(block.offset, allocAlignment);
 | 
						|
    if (block.size < allocSize + alignedOffset - block.offset)
 | 
						|
        return false;
 | 
						|
 | 
						|
    // Check for granularity conflicts
 | 
						|
    if (!IsVirtual() &&
 | 
						|
        m_GranularityHandler.CheckConflictAndAlignUp(alignedOffset, allocSize, block.offset, block.size, allocType))
 | 
						|
        return false;
 | 
						|
 | 
						|
    // Alloc successful
 | 
						|
    pAllocationRequest->type = VmaAllocationRequestType::TLSF;
 | 
						|
    pAllocationRequest->allocHandle = (VmaAllocHandle)█
 | 
						|
    pAllocationRequest->size = allocSize - GetDebugMargin();
 | 
						|
    pAllocationRequest->customData = (void*)allocType;
 | 
						|
    pAllocationRequest->algorithmData = alignedOffset;
 | 
						|
 | 
						|
    // Place block at the start of list if it's normal block
 | 
						|
    if (listIndex != m_ListsCount && block.PrevFree())
 | 
						|
    {
 | 
						|
        block.PrevFree()->NextFree() = block.NextFree();
 | 
						|
        if (block.NextFree())
 | 
						|
            block.NextFree()->PrevFree() = block.PrevFree();
 | 
						|
        block.PrevFree() = VMA_NULL;
 | 
						|
        block.NextFree() = m_FreeList[listIndex];
 | 
						|
        m_FreeList[listIndex] = █
 | 
						|
        if (block.NextFree())
 | 
						|
            block.NextFree()->PrevFree() = █
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
#endif // _VMA_BLOCK_METADATA_TLSF_FUNCTIONS
 | 
						|
#endif // _VMA_BLOCK_METADATA_TLSF
 | 
						|
 | 
						|
#ifndef _VMA_BLOCK_VECTOR
 | 
						|
/*
 | 
						|
Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
 | 
						|
Vulkan memory type.
 | 
						|
 | 
						|
Synchronized internally with a mutex.
 | 
						|
*/
 | 
						|
class VmaBlockVector
 | 
						|
{
 | 
						|
    friend struct VmaDefragmentationContext_T;
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockVector)
 | 
						|
public:
 | 
						|
    VmaBlockVector(
 | 
						|
        VmaAllocator hAllocator,
 | 
						|
        VmaPool hParentPool,
 | 
						|
        uint32_t memoryTypeIndex,
 | 
						|
        VkDeviceSize preferredBlockSize,
 | 
						|
        size_t minBlockCount,
 | 
						|
        size_t maxBlockCount,
 | 
						|
        VkDeviceSize bufferImageGranularity,
 | 
						|
        bool explicitBlockSize,
 | 
						|
        uint32_t algorithm,
 | 
						|
        float priority,
 | 
						|
        VkDeviceSize minAllocationAlignment,
 | 
						|
        void* pMemoryAllocateNext);
 | 
						|
    ~VmaBlockVector();
 | 
						|
 | 
						|
    VmaAllocator GetAllocator() const { return m_hAllocator; }
 | 
						|
    VmaPool GetParentPool() const { return m_hParentPool; }
 | 
						|
    bool IsCustomPool() const { return m_hParentPool != VMA_NULL; }
 | 
						|
    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
 | 
						|
    VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
 | 
						|
    VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
 | 
						|
    uint32_t GetAlgorithm() const { return m_Algorithm; }
 | 
						|
    bool HasExplicitBlockSize() const { return m_ExplicitBlockSize; }
 | 
						|
    float GetPriority() const { return m_Priority; }
 | 
						|
    const void* GetAllocationNextPtr() const { return m_pMemoryAllocateNext; }
 | 
						|
    // To be used only while the m_Mutex is locked. Used during defragmentation.
 | 
						|
    size_t GetBlockCount() const { return m_Blocks.size(); }
 | 
						|
    // To be used only while the m_Mutex is locked. Used during defragmentation.
 | 
						|
    VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; }
 | 
						|
    VMA_RW_MUTEX &GetMutex() { return m_Mutex; }
 | 
						|
 | 
						|
    VkResult CreateMinBlocks();
 | 
						|
    void AddStatistics(VmaStatistics& inoutStats);
 | 
						|
    void AddDetailedStatistics(VmaDetailedStatistics& inoutStats);
 | 
						|
    bool IsEmpty();
 | 
						|
    bool IsCorruptionDetectionEnabled() const;
 | 
						|
 | 
						|
    VkResult Allocate(
 | 
						|
        VkDeviceSize size,
 | 
						|
        VkDeviceSize alignment,
 | 
						|
        const VmaAllocationCreateInfo& createInfo,
 | 
						|
        VmaSuballocationType suballocType,
 | 
						|
        size_t allocationCount,
 | 
						|
        VmaAllocation* pAllocations);
 | 
						|
 | 
						|
    void Free(const VmaAllocation hAllocation);
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    void PrintDetailedMap(class VmaJsonWriter& json);
 | 
						|
#endif
 | 
						|
 | 
						|
    VkResult CheckCorruption();
 | 
						|
 | 
						|
private:
 | 
						|
    const VmaAllocator m_hAllocator;
 | 
						|
    const VmaPool m_hParentPool;
 | 
						|
    const uint32_t m_MemoryTypeIndex;
 | 
						|
    const VkDeviceSize m_PreferredBlockSize;
 | 
						|
    const size_t m_MinBlockCount;
 | 
						|
    const size_t m_MaxBlockCount;
 | 
						|
    const VkDeviceSize m_BufferImageGranularity;
 | 
						|
    const bool m_ExplicitBlockSize;
 | 
						|
    const uint32_t m_Algorithm;
 | 
						|
    const float m_Priority;
 | 
						|
    const VkDeviceSize m_MinAllocationAlignment;
 | 
						|
 | 
						|
    void* const m_pMemoryAllocateNext;
 | 
						|
    VMA_RW_MUTEX m_Mutex;
 | 
						|
    // Incrementally sorted by sumFreeSize, ascending.
 | 
						|
    VmaVector<VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*>> m_Blocks;
 | 
						|
    uint32_t m_NextBlockId;
 | 
						|
    bool m_IncrementalSort = true;
 | 
						|
 | 
						|
    void SetIncrementalSort(bool val) { m_IncrementalSort = val; }
 | 
						|
 | 
						|
    VkDeviceSize CalcMaxBlockSize() const;
 | 
						|
    // Finds and removes given block from vector.
 | 
						|
    void Remove(VmaDeviceMemoryBlock* pBlock);
 | 
						|
    // Performs single step in sorting m_Blocks. They may not be fully sorted
 | 
						|
    // after this call.
 | 
						|
    void IncrementallySortBlocks();
 | 
						|
    void SortByFreeSize();
 | 
						|
 | 
						|
    VkResult AllocatePage(
 | 
						|
        VkDeviceSize size,
 | 
						|
        VkDeviceSize alignment,
 | 
						|
        const VmaAllocationCreateInfo& createInfo,
 | 
						|
        VmaSuballocationType suballocType,
 | 
						|
        VmaAllocation* pAllocation);
 | 
						|
 | 
						|
    VkResult AllocateFromBlock(
 | 
						|
        VmaDeviceMemoryBlock* pBlock,
 | 
						|
        VkDeviceSize size,
 | 
						|
        VkDeviceSize alignment,
 | 
						|
        VmaAllocationCreateFlags allocFlags,
 | 
						|
        void* pUserData,
 | 
						|
        VmaSuballocationType suballocType,
 | 
						|
        uint32_t strategy,
 | 
						|
        VmaAllocation* pAllocation);
 | 
						|
 | 
						|
    VkResult CommitAllocationRequest(
 | 
						|
        VmaAllocationRequest& allocRequest,
 | 
						|
        VmaDeviceMemoryBlock* pBlock,
 | 
						|
        VkDeviceSize alignment,
 | 
						|
        VmaAllocationCreateFlags allocFlags,
 | 
						|
        void* pUserData,
 | 
						|
        VmaSuballocationType suballocType,
 | 
						|
        VmaAllocation* pAllocation);
 | 
						|
 | 
						|
    VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
 | 
						|
    bool HasEmptyBlock();
 | 
						|
};
 | 
						|
#endif // _VMA_BLOCK_VECTOR
 | 
						|
 | 
						|
#ifndef _VMA_DEFRAGMENTATION_CONTEXT
 | 
						|
struct VmaDefragmentationContext_T
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaDefragmentationContext_T)
 | 
						|
public:
 | 
						|
    VmaDefragmentationContext_T(
 | 
						|
        VmaAllocator hAllocator,
 | 
						|
        const VmaDefragmentationInfo& info);
 | 
						|
    ~VmaDefragmentationContext_T();
 | 
						|
 | 
						|
    void GetStats(VmaDefragmentationStats& outStats) { outStats = m_GlobalStats; }
 | 
						|
 | 
						|
    VkResult DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo);
 | 
						|
    VkResult DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo);
 | 
						|
 | 
						|
private:
 | 
						|
    // Max number of allocations to ignore due to size constraints before ending single pass
 | 
						|
    static const uint8_t MAX_ALLOCS_TO_IGNORE = 16;
 | 
						|
    enum class CounterStatus { Pass, Ignore, End };
 | 
						|
 | 
						|
    struct FragmentedBlock
 | 
						|
    {
 | 
						|
        uint32_t data;
 | 
						|
        VmaDeviceMemoryBlock* block;
 | 
						|
    };
 | 
						|
    struct StateBalanced
 | 
						|
    {
 | 
						|
        VkDeviceSize avgFreeSize = 0;
 | 
						|
        VkDeviceSize avgAllocSize = UINT64_MAX;
 | 
						|
    };
 | 
						|
    struct StateExtensive
 | 
						|
    {
 | 
						|
        enum class Operation : uint8_t
 | 
						|
        {
 | 
						|
            FindFreeBlockBuffer, FindFreeBlockTexture, FindFreeBlockAll,
 | 
						|
            MoveBuffers, MoveTextures, MoveAll,
 | 
						|
            Cleanup, Done
 | 
						|
        };
 | 
						|
 | 
						|
        Operation operation = Operation::FindFreeBlockTexture;
 | 
						|
        size_t firstFreeBlock = SIZE_MAX;
 | 
						|
    };
 | 
						|
    struct MoveAllocationData
 | 
						|
    {
 | 
						|
        VkDeviceSize size;
 | 
						|
        VkDeviceSize alignment;
 | 
						|
        VmaSuballocationType type;
 | 
						|
        VmaAllocationCreateFlags flags;
 | 
						|
        VmaDefragmentationMove move = {};
 | 
						|
    };
 | 
						|
 | 
						|
    const VkDeviceSize m_MaxPassBytes;
 | 
						|
    const uint32_t m_MaxPassAllocations;
 | 
						|
    const PFN_vmaCheckDefragmentationBreakFunction m_BreakCallback;
 | 
						|
    void* m_BreakCallbackUserData;
 | 
						|
 | 
						|
    VmaStlAllocator<VmaDefragmentationMove> m_MoveAllocator;
 | 
						|
    VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove>> m_Moves;
 | 
						|
 | 
						|
    uint8_t m_IgnoredAllocs = 0;
 | 
						|
    uint32_t m_Algorithm;
 | 
						|
    uint32_t m_BlockVectorCount;
 | 
						|
    VmaBlockVector* m_PoolBlockVector;
 | 
						|
    VmaBlockVector** m_pBlockVectors;
 | 
						|
    size_t m_ImmovableBlockCount = 0;
 | 
						|
    VmaDefragmentationStats m_GlobalStats = { 0 };
 | 
						|
    VmaDefragmentationStats m_PassStats = { 0 };
 | 
						|
    void* m_AlgorithmState = VMA_NULL;
 | 
						|
 | 
						|
    static MoveAllocationData GetMoveData(VmaAllocHandle handle, VmaBlockMetadata* metadata);
 | 
						|
    CounterStatus CheckCounters(VkDeviceSize bytes);
 | 
						|
    bool IncrementCounters(VkDeviceSize bytes);
 | 
						|
    bool ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block);
 | 
						|
    bool AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector);
 | 
						|
 | 
						|
    bool ComputeDefragmentation(VmaBlockVector& vector, size_t index);
 | 
						|
    bool ComputeDefragmentation_Fast(VmaBlockVector& vector);
 | 
						|
    bool ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update);
 | 
						|
    bool ComputeDefragmentation_Full(VmaBlockVector& vector);
 | 
						|
    bool ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index);
 | 
						|
 | 
						|
    void UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state);
 | 
						|
    bool MoveDataToFreeBlocks(VmaSuballocationType currentType,
 | 
						|
        VmaBlockVector& vector, size_t firstFreeBlock,
 | 
						|
        bool& texturePresent, bool& bufferPresent, bool& otherPresent);
 | 
						|
};
 | 
						|
#endif // _VMA_DEFRAGMENTATION_CONTEXT
 | 
						|
 | 
						|
#ifndef _VMA_POOL_T
 | 
						|
struct VmaPool_T
 | 
						|
{
 | 
						|
    friend struct VmaPoolListItemTraits;
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaPool_T)
 | 
						|
public:
 | 
						|
    VmaBlockVector m_BlockVector;
 | 
						|
    VmaDedicatedAllocationList m_DedicatedAllocations;
 | 
						|
 | 
						|
    VmaPool_T(
 | 
						|
        VmaAllocator hAllocator,
 | 
						|
        const VmaPoolCreateInfo& createInfo,
 | 
						|
        VkDeviceSize preferredBlockSize);
 | 
						|
    ~VmaPool_T();
 | 
						|
 | 
						|
    uint32_t GetId() const { return m_Id; }
 | 
						|
    void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; }
 | 
						|
 | 
						|
    const char* GetName() const { return m_Name; }
 | 
						|
    void SetName(const char* pName);
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    //void PrintDetailedMap(class VmaStringBuilder& sb);
 | 
						|
#endif
 | 
						|
 | 
						|
private:
 | 
						|
    uint32_t m_Id;
 | 
						|
    char* m_Name;
 | 
						|
    VmaPool_T* m_PrevPool = VMA_NULL;
 | 
						|
    VmaPool_T* m_NextPool = VMA_NULL;
 | 
						|
};
 | 
						|
 | 
						|
struct VmaPoolListItemTraits
 | 
						|
{
 | 
						|
    typedef VmaPool_T ItemType;
 | 
						|
 | 
						|
    static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; }
 | 
						|
    static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; }
 | 
						|
    static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; }
 | 
						|
    static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; }
 | 
						|
};
 | 
						|
#endif // _VMA_POOL_T
 | 
						|
 | 
						|
#ifndef _VMA_CURRENT_BUDGET_DATA
 | 
						|
struct VmaCurrentBudgetData
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaCurrentBudgetData)
 | 
						|
public:
 | 
						|
 | 
						|
    VMA_ATOMIC_UINT32 m_BlockCount[VK_MAX_MEMORY_HEAPS];
 | 
						|
    VMA_ATOMIC_UINT32 m_AllocationCount[VK_MAX_MEMORY_HEAPS];
 | 
						|
    VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS];
 | 
						|
    VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS];
 | 
						|
 | 
						|
#if VMA_MEMORY_BUDGET
 | 
						|
    VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch;
 | 
						|
    VMA_RW_MUTEX m_BudgetMutex;
 | 
						|
    uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS];
 | 
						|
    uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS];
 | 
						|
    uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS];
 | 
						|
#endif // VMA_MEMORY_BUDGET
 | 
						|
 | 
						|
    VmaCurrentBudgetData();
 | 
						|
 | 
						|
    void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize);
 | 
						|
    void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize);
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_CURRENT_BUDGET_DATA_FUNCTIONS
 | 
						|
VmaCurrentBudgetData::VmaCurrentBudgetData()
 | 
						|
{
 | 
						|
    for (uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex)
 | 
						|
    {
 | 
						|
        m_BlockCount[heapIndex] = 0;
 | 
						|
        m_AllocationCount[heapIndex] = 0;
 | 
						|
        m_BlockBytes[heapIndex] = 0;
 | 
						|
        m_AllocationBytes[heapIndex] = 0;
 | 
						|
#if VMA_MEMORY_BUDGET
 | 
						|
        m_VulkanUsage[heapIndex] = 0;
 | 
						|
        m_VulkanBudget[heapIndex] = 0;
 | 
						|
        m_BlockBytesAtBudgetFetch[heapIndex] = 0;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
#if VMA_MEMORY_BUDGET
 | 
						|
    m_OperationsSinceBudgetFetch = 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void VmaCurrentBudgetData::AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
 | 
						|
{
 | 
						|
    m_AllocationBytes[heapIndex] += allocationSize;
 | 
						|
    ++m_AllocationCount[heapIndex];
 | 
						|
#if VMA_MEMORY_BUDGET
 | 
						|
    ++m_OperationsSinceBudgetFetch;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void VmaCurrentBudgetData::RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize);
 | 
						|
    m_AllocationBytes[heapIndex] -= allocationSize;
 | 
						|
    VMA_ASSERT(m_AllocationCount[heapIndex] > 0);
 | 
						|
    --m_AllocationCount[heapIndex];
 | 
						|
#if VMA_MEMORY_BUDGET
 | 
						|
    ++m_OperationsSinceBudgetFetch;
 | 
						|
#endif
 | 
						|
}
 | 
						|
#endif // _VMA_CURRENT_BUDGET_DATA_FUNCTIONS
 | 
						|
#endif // _VMA_CURRENT_BUDGET_DATA
 | 
						|
 | 
						|
#ifndef _VMA_ALLOCATION_OBJECT_ALLOCATOR
 | 
						|
/*
 | 
						|
Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects.
 | 
						|
*/
 | 
						|
class VmaAllocationObjectAllocator
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocationObjectAllocator)
 | 
						|
public:
 | 
						|
    VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks)
 | 
						|
        : m_Allocator(pAllocationCallbacks, 1024) {}
 | 
						|
 | 
						|
    template<typename... Types> VmaAllocation Allocate(Types&&... args);
 | 
						|
    void Free(VmaAllocation hAlloc);
 | 
						|
 | 
						|
private:
 | 
						|
    VMA_MUTEX m_Mutex;
 | 
						|
    VmaPoolAllocator<VmaAllocation_T> m_Allocator;
 | 
						|
};
 | 
						|
 | 
						|
template<typename... Types>
 | 
						|
VmaAllocation VmaAllocationObjectAllocator::Allocate(Types&&... args)
 | 
						|
{
 | 
						|
    VmaMutexLock mutexLock(m_Mutex);
 | 
						|
    return m_Allocator.Alloc<Types...>(std::forward<Types>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc)
 | 
						|
{
 | 
						|
    VmaMutexLock mutexLock(m_Mutex);
 | 
						|
    m_Allocator.Free(hAlloc);
 | 
						|
}
 | 
						|
#endif // _VMA_ALLOCATION_OBJECT_ALLOCATOR
 | 
						|
 | 
						|
#ifndef _VMA_VIRTUAL_BLOCK_T
 | 
						|
struct VmaVirtualBlock_T
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaVirtualBlock_T)
 | 
						|
public:
 | 
						|
    const bool m_AllocationCallbacksSpecified;
 | 
						|
    const VkAllocationCallbacks m_AllocationCallbacks;
 | 
						|
 | 
						|
    VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo);
 | 
						|
    ~VmaVirtualBlock_T();
 | 
						|
 | 
						|
    VkResult Init() { return VK_SUCCESS; }
 | 
						|
    bool IsEmpty() const { return m_Metadata->IsEmpty(); }
 | 
						|
    void Free(VmaVirtualAllocation allocation) { m_Metadata->Free((VmaAllocHandle)allocation); }
 | 
						|
    void SetAllocationUserData(VmaVirtualAllocation allocation, void* userData) { m_Metadata->SetAllocationUserData((VmaAllocHandle)allocation, userData); }
 | 
						|
    void Clear() { m_Metadata->Clear(); }
 | 
						|
 | 
						|
    const VkAllocationCallbacks* GetAllocationCallbacks() const;
 | 
						|
    void GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo);
 | 
						|
    VkResult Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation,
 | 
						|
        VkDeviceSize* outOffset);
 | 
						|
    void GetStatistics(VmaStatistics& outStats) const;
 | 
						|
    void CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const;
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    void BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const;
 | 
						|
#endif
 | 
						|
 | 
						|
private:
 | 
						|
    VmaBlockMetadata* m_Metadata;
 | 
						|
};
 | 
						|
 | 
						|
#ifndef _VMA_VIRTUAL_BLOCK_T_FUNCTIONS
 | 
						|
VmaVirtualBlock_T::VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo)
 | 
						|
    : m_AllocationCallbacksSpecified(createInfo.pAllocationCallbacks != VMA_NULL),
 | 
						|
    m_AllocationCallbacks(createInfo.pAllocationCallbacks != VMA_NULL ? *createInfo.pAllocationCallbacks : VmaEmptyAllocationCallbacks)
 | 
						|
{
 | 
						|
    const uint32_t algorithm = createInfo.flags & VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK;
 | 
						|
    switch (algorithm)
 | 
						|
    {
 | 
						|
    case 0:
 | 
						|
        m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true);
 | 
						|
        break;
 | 
						|
    case VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT:
 | 
						|
        m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Linear)(VK_NULL_HANDLE, 1, true);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
        m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true);
 | 
						|
    }
 | 
						|
 | 
						|
    m_Metadata->Init(createInfo.size);
 | 
						|
}
 | 
						|
 | 
						|
VmaVirtualBlock_T::~VmaVirtualBlock_T()
 | 
						|
{
 | 
						|
    // Define macro VMA_DEBUG_LOG_FORMAT or more specialized VMA_LEAK_LOG_FORMAT
 | 
						|
    // to receive the list of the unfreed allocations.
 | 
						|
    if (!m_Metadata->IsEmpty())
 | 
						|
        m_Metadata->DebugLogAllAllocations();
 | 
						|
    // This is the most important assert in the entire library.
 | 
						|
    // Hitting it means you have some memory leak - unreleased virtual allocations.
 | 
						|
    VMA_ASSERT_LEAK(m_Metadata->IsEmpty() && "Some virtual allocations were not freed before destruction of this virtual block!");
 | 
						|
 | 
						|
    vma_delete(GetAllocationCallbacks(), m_Metadata);
 | 
						|
}
 | 
						|
 | 
						|
const VkAllocationCallbacks* VmaVirtualBlock_T::GetAllocationCallbacks() const
 | 
						|
{
 | 
						|
    return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
 | 
						|
}
 | 
						|
 | 
						|
void VmaVirtualBlock_T::GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo)
 | 
						|
{
 | 
						|
    m_Metadata->GetAllocationInfo((VmaAllocHandle)allocation, outInfo);
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaVirtualBlock_T::Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation,
 | 
						|
    VkDeviceSize* outOffset)
 | 
						|
{
 | 
						|
    VmaAllocationRequest request = {};
 | 
						|
    if (m_Metadata->CreateAllocationRequest(
 | 
						|
        createInfo.size, // allocSize
 | 
						|
        VMA_MAX(createInfo.alignment, (VkDeviceSize)1), // allocAlignment
 | 
						|
        (createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, // upperAddress
 | 
						|
        VMA_SUBALLOCATION_TYPE_UNKNOWN, // allocType - unimportant
 | 
						|
        createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK, // strategy
 | 
						|
        &request))
 | 
						|
    {
 | 
						|
        m_Metadata->Alloc(request,
 | 
						|
            VMA_SUBALLOCATION_TYPE_UNKNOWN, // type - unimportant
 | 
						|
            createInfo.pUserData);
 | 
						|
        outAllocation = (VmaVirtualAllocation)request.allocHandle;
 | 
						|
        if(outOffset)
 | 
						|
            *outOffset = m_Metadata->GetAllocationOffset(request.allocHandle);
 | 
						|
        return VK_SUCCESS;
 | 
						|
    }
 | 
						|
    outAllocation = (VmaVirtualAllocation)VK_NULL_HANDLE;
 | 
						|
    if (outOffset)
 | 
						|
        *outOffset = UINT64_MAX;
 | 
						|
    return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | 
						|
}
 | 
						|
 | 
						|
void VmaVirtualBlock_T::GetStatistics(VmaStatistics& outStats) const
 | 
						|
{
 | 
						|
    VmaClearStatistics(outStats);
 | 
						|
    m_Metadata->AddStatistics(outStats);
 | 
						|
}
 | 
						|
 | 
						|
void VmaVirtualBlock_T::CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const
 | 
						|
{
 | 
						|
    VmaClearDetailedStatistics(outStats);
 | 
						|
    m_Metadata->AddDetailedStatistics(outStats);
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
void VmaVirtualBlock_T::BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const
 | 
						|
{
 | 
						|
    VmaJsonWriter json(GetAllocationCallbacks(), sb);
 | 
						|
    json.BeginObject();
 | 
						|
 | 
						|
    VmaDetailedStatistics stats;
 | 
						|
    CalculateDetailedStatistics(stats);
 | 
						|
 | 
						|
    json.WriteString("Stats");
 | 
						|
    VmaPrintDetailedStatistics(json, stats);
 | 
						|
 | 
						|
    if (detailedMap)
 | 
						|
    {
 | 
						|
        json.WriteString("Details");
 | 
						|
        json.BeginObject();
 | 
						|
        m_Metadata->PrintDetailedMap(json);
 | 
						|
        json.EndObject();
 | 
						|
    }
 | 
						|
 | 
						|
    json.EndObject();
 | 
						|
}
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
#endif // _VMA_VIRTUAL_BLOCK_T_FUNCTIONS
 | 
						|
#endif // _VMA_VIRTUAL_BLOCK_T
 | 
						|
 | 
						|
 | 
						|
// Main allocator object.
 | 
						|
struct VmaAllocator_T
 | 
						|
{
 | 
						|
    VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocator_T)
 | 
						|
public:
 | 
						|
    const bool m_UseMutex;
 | 
						|
    const uint32_t m_VulkanApiVersion;
 | 
						|
    bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
 | 
						|
    bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
 | 
						|
    bool m_UseExtMemoryBudget;
 | 
						|
    bool m_UseAmdDeviceCoherentMemory;
 | 
						|
    bool m_UseKhrBufferDeviceAddress;
 | 
						|
    bool m_UseExtMemoryPriority;
 | 
						|
    bool m_UseKhrMaintenance4;
 | 
						|
    bool m_UseKhrMaintenance5;
 | 
						|
    bool m_UseKhrExternalMemoryWin32;
 | 
						|
    const VkDevice m_hDevice;
 | 
						|
    const VkInstance m_hInstance;
 | 
						|
    const bool m_AllocationCallbacksSpecified;
 | 
						|
    const VkAllocationCallbacks m_AllocationCallbacks;
 | 
						|
    VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
 | 
						|
    VmaAllocationObjectAllocator m_AllocationObjectAllocator;
 | 
						|
 | 
						|
    // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size.
 | 
						|
    uint32_t m_HeapSizeLimitMask;
 | 
						|
 | 
						|
    VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
 | 
						|
    VkPhysicalDeviceMemoryProperties m_MemProps;
 | 
						|
 | 
						|
    // Default pools.
 | 
						|
    VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
 | 
						|
    VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES];
 | 
						|
 | 
						|
    VmaCurrentBudgetData m_Budget;
 | 
						|
    VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects.
 | 
						|
 | 
						|
    VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
 | 
						|
    VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo);
 | 
						|
    ~VmaAllocator_T();
 | 
						|
 | 
						|
    const VkAllocationCallbacks* GetAllocationCallbacks() const
 | 
						|
    {
 | 
						|
        return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
 | 
						|
    }
 | 
						|
    const VmaVulkanFunctions& GetVulkanFunctions() const
 | 
						|
    {
 | 
						|
        return m_VulkanFunctions;
 | 
						|
    }
 | 
						|
 | 
						|
    VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; }
 | 
						|
 | 
						|
    VkDeviceSize GetBufferImageGranularity() const
 | 
						|
    {
 | 
						|
        return VMA_MAX(
 | 
						|
            static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
 | 
						|
            m_PhysicalDeviceProperties.limits.bufferImageGranularity);
 | 
						|
    }
 | 
						|
 | 
						|
    uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
 | 
						|
    uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
 | 
						|
 | 
						|
    uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
 | 
						|
    {
 | 
						|
        VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
 | 
						|
        return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
 | 
						|
    }
 | 
						|
    // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT.
 | 
						|
    bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const
 | 
						|
    {
 | 
						|
        return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) ==
 | 
						|
            VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | 
						|
    }
 | 
						|
    // Minimum alignment for all allocations in specific memory type.
 | 
						|
    VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const
 | 
						|
    {
 | 
						|
        return IsMemoryTypeNonCoherent(memTypeIndex) ?
 | 
						|
            VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) :
 | 
						|
            (VkDeviceSize)VMA_MIN_ALIGNMENT;
 | 
						|
    }
 | 
						|
 | 
						|
    bool IsIntegratedGpu() const
 | 
						|
    {
 | 
						|
        return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
 | 
						|
    }
 | 
						|
 | 
						|
    uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; }
 | 
						|
 | 
						|
    void GetBufferMemoryRequirements(
 | 
						|
        VkBuffer hBuffer,
 | 
						|
        VkMemoryRequirements& memReq,
 | 
						|
        bool& requiresDedicatedAllocation,
 | 
						|
        bool& prefersDedicatedAllocation) const;
 | 
						|
    void GetImageMemoryRequirements(
 | 
						|
        VkImage hImage,
 | 
						|
        VkMemoryRequirements& memReq,
 | 
						|
        bool& requiresDedicatedAllocation,
 | 
						|
        bool& prefersDedicatedAllocation) const;
 | 
						|
    VkResult FindMemoryTypeIndex(
 | 
						|
        uint32_t memoryTypeBits,
 | 
						|
        const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | 
						|
        VmaBufferImageUsage bufImgUsage,
 | 
						|
        uint32_t* pMemoryTypeIndex) const;
 | 
						|
 | 
						|
    // Main allocation function.
 | 
						|
    VkResult AllocateMemory(
 | 
						|
        const VkMemoryRequirements& vkMemReq,
 | 
						|
        bool requiresDedicatedAllocation,
 | 
						|
        bool prefersDedicatedAllocation,
 | 
						|
        VkBuffer dedicatedBuffer,
 | 
						|
        VkImage dedicatedImage,
 | 
						|
        VmaBufferImageUsage dedicatedBufferImageUsage,
 | 
						|
        const VmaAllocationCreateInfo& createInfo,
 | 
						|
        VmaSuballocationType suballocType,
 | 
						|
        size_t allocationCount,
 | 
						|
        VmaAllocation* pAllocations);
 | 
						|
 | 
						|
    // Main deallocation function.
 | 
						|
    void FreeMemory(
 | 
						|
        size_t allocationCount,
 | 
						|
        const VmaAllocation* pAllocations);
 | 
						|
 | 
						|
    void CalculateStatistics(VmaTotalStatistics* pStats);
 | 
						|
 | 
						|
    void GetHeapBudgets(
 | 
						|
        VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount);
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    void PrintDetailedMap(class VmaJsonWriter& json);
 | 
						|
#endif
 | 
						|
 | 
						|
    void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
 | 
						|
    void GetAllocationInfo2(VmaAllocation hAllocation, VmaAllocationInfo2* pAllocationInfo);
 | 
						|
 | 
						|
    VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
 | 
						|
    void DestroyPool(VmaPool pool);
 | 
						|
    void GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats);
 | 
						|
    void CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats);
 | 
						|
 | 
						|
    void SetCurrentFrameIndex(uint32_t frameIndex);
 | 
						|
    uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); }
 | 
						|
 | 
						|
    VkResult CheckPoolCorruption(VmaPool hPool);
 | 
						|
    VkResult CheckCorruption(uint32_t memoryTypeBits);
 | 
						|
 | 
						|
    // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping.
 | 
						|
    VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
 | 
						|
    // Call to Vulkan function vkFreeMemory with accompanying bookkeeping.
 | 
						|
    void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
 | 
						|
    // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR.
 | 
						|
    VkResult BindVulkanBuffer(
 | 
						|
        VkDeviceMemory memory,
 | 
						|
        VkDeviceSize memoryOffset,
 | 
						|
        VkBuffer buffer,
 | 
						|
        const void* pNext);
 | 
						|
    // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR.
 | 
						|
    VkResult BindVulkanImage(
 | 
						|
        VkDeviceMemory memory,
 | 
						|
        VkDeviceSize memoryOffset,
 | 
						|
        VkImage image,
 | 
						|
        const void* pNext);
 | 
						|
 | 
						|
    VkResult Map(VmaAllocation hAllocation, void** ppData);
 | 
						|
    void Unmap(VmaAllocation hAllocation);
 | 
						|
 | 
						|
    VkResult BindBufferMemory(
 | 
						|
        VmaAllocation hAllocation,
 | 
						|
        VkDeviceSize allocationLocalOffset,
 | 
						|
        VkBuffer hBuffer,
 | 
						|
        const void* pNext);
 | 
						|
    VkResult BindImageMemory(
 | 
						|
        VmaAllocation hAllocation,
 | 
						|
        VkDeviceSize allocationLocalOffset,
 | 
						|
        VkImage hImage,
 | 
						|
        const void* pNext);
 | 
						|
 | 
						|
    VkResult FlushOrInvalidateAllocation(
 | 
						|
        VmaAllocation hAllocation,
 | 
						|
        VkDeviceSize offset, VkDeviceSize size,
 | 
						|
        VMA_CACHE_OPERATION op);
 | 
						|
    VkResult FlushOrInvalidateAllocations(
 | 
						|
        uint32_t allocationCount,
 | 
						|
        const VmaAllocation* allocations,
 | 
						|
        const VkDeviceSize* offsets, const VkDeviceSize* sizes,
 | 
						|
        VMA_CACHE_OPERATION op);
 | 
						|
 | 
						|
    VkResult CopyMemoryToAllocation(
 | 
						|
        const void* pSrcHostPointer,
 | 
						|
        VmaAllocation dstAllocation,
 | 
						|
        VkDeviceSize dstAllocationLocalOffset,
 | 
						|
        VkDeviceSize size);
 | 
						|
    VkResult CopyAllocationToMemory(
 | 
						|
        VmaAllocation srcAllocation,
 | 
						|
        VkDeviceSize srcAllocationLocalOffset,
 | 
						|
        void* pDstHostPointer,
 | 
						|
        VkDeviceSize size);
 | 
						|
 | 
						|
    void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern);
 | 
						|
 | 
						|
    /*
 | 
						|
    Returns bit mask of memory types that can support defragmentation on GPU as
 | 
						|
    they support creation of required buffer for copy operations.
 | 
						|
    */
 | 
						|
    uint32_t GetGpuDefragmentationMemoryTypeBits();
 | 
						|
 | 
						|
#if VMA_EXTERNAL_MEMORY
 | 
						|
    VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const
 | 
						|
    {
 | 
						|
        return m_TypeExternalMemoryHandleTypes[memTypeIndex];
 | 
						|
    }
 | 
						|
#endif // #if VMA_EXTERNAL_MEMORY
 | 
						|
 | 
						|
private:
 | 
						|
    VkDeviceSize m_PreferredLargeHeapBlockSize;
 | 
						|
 | 
						|
    VkPhysicalDevice m_PhysicalDevice;
 | 
						|
    VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
 | 
						|
    VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized.
 | 
						|
#if VMA_EXTERNAL_MEMORY
 | 
						|
    VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES];
 | 
						|
#endif // #if VMA_EXTERNAL_MEMORY
 | 
						|
 | 
						|
    VMA_RW_MUTEX m_PoolsMutex;
 | 
						|
    typedef VmaIntrusiveLinkedList<VmaPoolListItemTraits> PoolList;
 | 
						|
    // Protected by m_PoolsMutex.
 | 
						|
    PoolList m_Pools;
 | 
						|
    uint32_t m_NextPoolId;
 | 
						|
 | 
						|
    VmaVulkanFunctions m_VulkanFunctions;
 | 
						|
 | 
						|
    // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types.
 | 
						|
    uint32_t m_GlobalMemoryTypeBits;
 | 
						|
 | 
						|
    void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
 | 
						|
 | 
						|
#if VMA_STATIC_VULKAN_FUNCTIONS == 1
 | 
						|
    void ImportVulkanFunctions_Static();
 | 
						|
#endif
 | 
						|
 | 
						|
    void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions);
 | 
						|
 | 
						|
#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
 | 
						|
    void ImportVulkanFunctions_Dynamic();
 | 
						|
#endif
 | 
						|
 | 
						|
    void ValidateVulkanFunctions();
 | 
						|
 | 
						|
    VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
 | 
						|
 | 
						|
    VkResult AllocateMemoryOfType(
 | 
						|
        VmaPool pool,
 | 
						|
        VkDeviceSize size,
 | 
						|
        VkDeviceSize alignment,
 | 
						|
        bool dedicatedPreferred,
 | 
						|
        VkBuffer dedicatedBuffer,
 | 
						|
        VkImage dedicatedImage,
 | 
						|
        VmaBufferImageUsage dedicatedBufferImageUsage,
 | 
						|
        const VmaAllocationCreateInfo& createInfo,
 | 
						|
        uint32_t memTypeIndex,
 | 
						|
        VmaSuballocationType suballocType,
 | 
						|
        VmaDedicatedAllocationList& dedicatedAllocations,
 | 
						|
        VmaBlockVector& blockVector,
 | 
						|
        size_t allocationCount,
 | 
						|
        VmaAllocation* pAllocations);
 | 
						|
 | 
						|
    // Helper function only to be used inside AllocateDedicatedMemory.
 | 
						|
    VkResult AllocateDedicatedMemoryPage(
 | 
						|
        VmaPool pool,
 | 
						|
        VkDeviceSize size,
 | 
						|
        VmaSuballocationType suballocType,
 | 
						|
        uint32_t memTypeIndex,
 | 
						|
        const VkMemoryAllocateInfo& allocInfo,
 | 
						|
        bool map,
 | 
						|
        bool isUserDataString,
 | 
						|
        bool isMappingAllowed,
 | 
						|
        void* pUserData,
 | 
						|
        VmaAllocation* pAllocation);
 | 
						|
 | 
						|
    // Allocates and registers new VkDeviceMemory specifically for dedicated allocations.
 | 
						|
    VkResult AllocateDedicatedMemory(
 | 
						|
        VmaPool pool,
 | 
						|
        VkDeviceSize size,
 | 
						|
        VmaSuballocationType suballocType,
 | 
						|
        VmaDedicatedAllocationList& dedicatedAllocations,
 | 
						|
        uint32_t memTypeIndex,
 | 
						|
        bool map,
 | 
						|
        bool isUserDataString,
 | 
						|
        bool isMappingAllowed,
 | 
						|
        bool canAliasMemory,
 | 
						|
        void* pUserData,
 | 
						|
        float priority,
 | 
						|
        VkBuffer dedicatedBuffer,
 | 
						|
        VkImage dedicatedImage,
 | 
						|
        VmaBufferImageUsage dedicatedBufferImageUsage,
 | 
						|
        size_t allocationCount,
 | 
						|
        VmaAllocation* pAllocations,
 | 
						|
        const void* pNextChain = VMA_NULL);
 | 
						|
 | 
						|
    void FreeDedicatedMemory(const VmaAllocation allocation);
 | 
						|
 | 
						|
    VkResult CalcMemTypeParams(
 | 
						|
        VmaAllocationCreateInfo& outCreateInfo,
 | 
						|
        uint32_t memTypeIndex,
 | 
						|
        VkDeviceSize size,
 | 
						|
        size_t allocationCount);
 | 
						|
    VkResult CalcAllocationParams(
 | 
						|
        VmaAllocationCreateInfo& outCreateInfo,
 | 
						|
        bool dedicatedRequired,
 | 
						|
        bool dedicatedPreferred);
 | 
						|
 | 
						|
    /*
 | 
						|
    Calculates and returns bit mask of memory types that can support defragmentation
 | 
						|
    on GPU as they support creation of required buffer for copy operations.
 | 
						|
    */
 | 
						|
    uint32_t CalculateGpuDefragmentationMemoryTypeBits() const;
 | 
						|
    uint32_t CalculateGlobalMemoryTypeBits() const;
 | 
						|
 | 
						|
    bool GetFlushOrInvalidateRange(
 | 
						|
        VmaAllocation allocation,
 | 
						|
        VkDeviceSize offset, VkDeviceSize size,
 | 
						|
        VkMappedMemoryRange& outRange) const;
 | 
						|
 | 
						|
#if VMA_MEMORY_BUDGET
 | 
						|
    void UpdateVulkanBudget();
 | 
						|
#endif // #if VMA_MEMORY_BUDGET
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
#ifndef _VMA_MEMORY_FUNCTIONS
 | 
						|
static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
 | 
						|
{
 | 
						|
    return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
 | 
						|
}
 | 
						|
 | 
						|
static void VmaFree(VmaAllocator hAllocator, void* ptr)
 | 
						|
{
 | 
						|
    VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static T* VmaAllocate(VmaAllocator hAllocator)
 | 
						|
{
 | 
						|
    return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
 | 
						|
{
 | 
						|
    return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static void vma_delete(VmaAllocator hAllocator, T* ptr)
 | 
						|
{
 | 
						|
    if(ptr != VMA_NULL)
 | 
						|
    {
 | 
						|
        ptr->~T();
 | 
						|
        VmaFree(hAllocator, ptr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
 | 
						|
{
 | 
						|
    if(ptr != VMA_NULL)
 | 
						|
    {
 | 
						|
        for(size_t i = count; i--; )
 | 
						|
            ptr[i].~T();
 | 
						|
        VmaFree(hAllocator, ptr);
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif // _VMA_MEMORY_FUNCTIONS
 | 
						|
 | 
						|
#ifndef _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS
 | 
						|
VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator)
 | 
						|
    : m_pMetadata(VMA_NULL),
 | 
						|
    m_MemoryTypeIndex(UINT32_MAX),
 | 
						|
    m_Id(0),
 | 
						|
    m_hMemory(VK_NULL_HANDLE),
 | 
						|
    m_MapCount(0),
 | 
						|
    m_pMappedData(VMA_NULL){}
 | 
						|
 | 
						|
VmaDeviceMemoryBlock::~VmaDeviceMemoryBlock()
 | 
						|
{
 | 
						|
    VMA_ASSERT_LEAK(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
 | 
						|
    VMA_ASSERT_LEAK(m_hMemory == VK_NULL_HANDLE);
 | 
						|
}
 | 
						|
 | 
						|
void VmaDeviceMemoryBlock::Init(
 | 
						|
    VmaAllocator hAllocator,
 | 
						|
    VmaPool hParentPool,
 | 
						|
    uint32_t newMemoryTypeIndex,
 | 
						|
    VkDeviceMemory newMemory,
 | 
						|
    VkDeviceSize newSize,
 | 
						|
    uint32_t id,
 | 
						|
    uint32_t algorithm,
 | 
						|
    VkDeviceSize bufferImageGranularity)
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
 | 
						|
 | 
						|
    m_hParentPool = hParentPool;
 | 
						|
    m_MemoryTypeIndex = newMemoryTypeIndex;
 | 
						|
    m_Id = id;
 | 
						|
    m_hMemory = newMemory;
 | 
						|
 | 
						|
    switch (algorithm)
 | 
						|
    {
 | 
						|
    case 0:
 | 
						|
        m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(),
 | 
						|
            bufferImageGranularity, false); // isVirtual
 | 
						|
        break;
 | 
						|
    case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
 | 
						|
        m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator->GetAllocationCallbacks(),
 | 
						|
            bufferImageGranularity, false); // isVirtual
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
        m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(),
 | 
						|
            bufferImageGranularity, false); // isVirtual
 | 
						|
    }
 | 
						|
    m_pMetadata->Init(newSize);
 | 
						|
}
 | 
						|
 | 
						|
void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
 | 
						|
{
 | 
						|
    // Define macro VMA_DEBUG_LOG_FORMAT or more specialized VMA_LEAK_LOG_FORMAT
 | 
						|
    // to receive the list of the unfreed allocations.
 | 
						|
    if (!m_pMetadata->IsEmpty())
 | 
						|
        m_pMetadata->DebugLogAllAllocations();
 | 
						|
    // This is the most important assert in the entire library.
 | 
						|
    // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
 | 
						|
    VMA_ASSERT_LEAK(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
 | 
						|
 | 
						|
    VMA_ASSERT_LEAK(m_hMemory != VK_NULL_HANDLE);
 | 
						|
    allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory);
 | 
						|
    m_hMemory = VK_NULL_HANDLE;
 | 
						|
 | 
						|
    vma_delete(allocator, m_pMetadata);
 | 
						|
    m_pMetadata = VMA_NULL;
 | 
						|
}
 | 
						|
 | 
						|
void VmaDeviceMemoryBlock::PostAlloc(VmaAllocator hAllocator)
 | 
						|
{
 | 
						|
    VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | 
						|
    m_MappingHysteresis.PostAlloc();
 | 
						|
}
 | 
						|
 | 
						|
void VmaDeviceMemoryBlock::PostFree(VmaAllocator hAllocator)
 | 
						|
{
 | 
						|
    VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | 
						|
    if(m_MappingHysteresis.PostFree())
 | 
						|
    {
 | 
						|
        VMA_ASSERT(m_MappingHysteresis.GetExtraMapping() == 0);
 | 
						|
        if (m_MapCount == 0)
 | 
						|
        {
 | 
						|
            m_pMappedData = VMA_NULL;
 | 
						|
            (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool VmaDeviceMemoryBlock::Validate() const
 | 
						|
{
 | 
						|
    VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) &&
 | 
						|
        (m_pMetadata->GetSize() != 0));
 | 
						|
 | 
						|
    return m_pMetadata->Validate();
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator)
 | 
						|
{
 | 
						|
    void* pData = VMA_NULL;
 | 
						|
    VkResult res = Map(hAllocator, 1, &pData);
 | 
						|
    if (res != VK_SUCCESS)
 | 
						|
    {
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    res = m_pMetadata->CheckCorruption(pData);
 | 
						|
 | 
						|
    Unmap(hAllocator, 1);
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)
 | 
						|
{
 | 
						|
    if (count == 0)
 | 
						|
    {
 | 
						|
        return VK_SUCCESS;
 | 
						|
    }
 | 
						|
 | 
						|
    VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | 
						|
    const uint32_t oldTotalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping();
 | 
						|
    if (oldTotalMapCount != 0)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(m_pMappedData != VMA_NULL);
 | 
						|
        m_MappingHysteresis.PostMap();
 | 
						|
        m_MapCount += count;
 | 
						|
        if (ppData != VMA_NULL)
 | 
						|
        {
 | 
						|
            *ppData = m_pMappedData;
 | 
						|
        }
 | 
						|
        return VK_SUCCESS;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
 | 
						|
            hAllocator->m_hDevice,
 | 
						|
            m_hMemory,
 | 
						|
            0, // offset
 | 
						|
            VK_WHOLE_SIZE,
 | 
						|
            0, // flags
 | 
						|
            &m_pMappedData);
 | 
						|
        if (result == VK_SUCCESS)
 | 
						|
        {
 | 
						|
            VMA_ASSERT(m_pMappedData != VMA_NULL);
 | 
						|
            m_MappingHysteresis.PostMap();
 | 
						|
            m_MapCount = count;
 | 
						|
            if (ppData != VMA_NULL)
 | 
						|
            {
 | 
						|
                *ppData = m_pMappedData;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)
 | 
						|
{
 | 
						|
    if (count == 0)
 | 
						|
    {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | 
						|
    if (m_MapCount >= count)
 | 
						|
    {
 | 
						|
        m_MapCount -= count;
 | 
						|
        const uint32_t totalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping();
 | 
						|
        if (totalMapCount == 0)
 | 
						|
        {
 | 
						|
            m_pMappedData = VMA_NULL;
 | 
						|
            (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
 | 
						|
        }
 | 
						|
        m_MappingHysteresis.PostUnmap();
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaDeviceMemoryBlock::WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
 | 
						|
{
 | 
						|
    VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
 | 
						|
 | 
						|
    void* pData;
 | 
						|
    VkResult res = Map(hAllocator, 1, &pData);
 | 
						|
    if (res != VK_SUCCESS)
 | 
						|
    {
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    VmaWriteMagicValue(pData, allocOffset + allocSize);
 | 
						|
 | 
						|
    Unmap(hAllocator, 1);
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaDeviceMemoryBlock::ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
 | 
						|
{
 | 
						|
    VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
 | 
						|
 | 
						|
    void* pData;
 | 
						|
    VkResult res = Map(hAllocator, 1, &pData);
 | 
						|
    if (res != VK_SUCCESS)
 | 
						|
    {
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!VmaValidateMagicValue(pData, allocOffset + allocSize))
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!");
 | 
						|
    }
 | 
						|
 | 
						|
    Unmap(hAllocator, 1);
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaDeviceMemoryBlock::BindBufferMemory(
 | 
						|
    const VmaAllocator hAllocator,
 | 
						|
    const VmaAllocation hAllocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    VkBuffer hBuffer,
 | 
						|
    const void* pNext)
 | 
						|
{
 | 
						|
    VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
 | 
						|
        hAllocation->GetBlock() == this);
 | 
						|
    VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
 | 
						|
        "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
 | 
						|
    const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
 | 
						|
    // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
 | 
						|
    VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | 
						|
    return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext);
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaDeviceMemoryBlock::BindImageMemory(
 | 
						|
    const VmaAllocator hAllocator,
 | 
						|
    const VmaAllocation hAllocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    VkImage hImage,
 | 
						|
    const void* pNext)
 | 
						|
{
 | 
						|
    VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
 | 
						|
        hAllocation->GetBlock() == this);
 | 
						|
    VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
 | 
						|
        "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
 | 
						|
    const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
 | 
						|
    // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
 | 
						|
    VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | 
						|
    return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext);
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
VkResult VmaDeviceMemoryBlock::CreateWin32Handle(const VmaAllocator hAllocator, PFN_vkGetMemoryWin32HandleKHR pvkGetMemoryWin32HandleKHR, HANDLE hTargetProcess, HANDLE* pHandle) noexcept
 | 
						|
{
 | 
						|
    VMA_ASSERT(pHandle);
 | 
						|
    return m_Handle.GetHandle(hAllocator->m_hDevice, m_hMemory, pvkGetMemoryWin32HandleKHR, hTargetProcess, hAllocator->m_UseMutex, pHandle);
 | 
						|
}
 | 
						|
#endif // VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
#endif // _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS
 | 
						|
 | 
						|
#ifndef _VMA_ALLOCATION_T_FUNCTIONS
 | 
						|
VmaAllocation_T::VmaAllocation_T(bool mappingAllowed)
 | 
						|
    : m_Alignment{ 1 },
 | 
						|
    m_Size{ 0 },
 | 
						|
    m_pUserData{ VMA_NULL },
 | 
						|
    m_pName{ VMA_NULL },
 | 
						|
    m_MemoryTypeIndex{ 0 },
 | 
						|
    m_Type{ (uint8_t)ALLOCATION_TYPE_NONE },
 | 
						|
    m_SuballocationType{ (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN },
 | 
						|
    m_MapCount{ 0 },
 | 
						|
    m_Flags{ 0 }
 | 
						|
{
 | 
						|
    if(mappingAllowed)
 | 
						|
        m_Flags |= (uint8_t)FLAG_MAPPING_ALLOWED;
 | 
						|
}
 | 
						|
 | 
						|
VmaAllocation_T::~VmaAllocation_T()
 | 
						|
{
 | 
						|
    VMA_ASSERT_LEAK(m_MapCount == 0 && "Allocation was not unmapped before destruction.");
 | 
						|
 | 
						|
    // Check if owned string was freed.
 | 
						|
    VMA_ASSERT(m_pName == VMA_NULL);
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocation_T::InitBlockAllocation(
 | 
						|
    VmaDeviceMemoryBlock* block,
 | 
						|
    VmaAllocHandle allocHandle,
 | 
						|
    VkDeviceSize alignment,
 | 
						|
    VkDeviceSize size,
 | 
						|
    uint32_t memoryTypeIndex,
 | 
						|
    VmaSuballocationType suballocationType,
 | 
						|
    bool mapped)
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
 | 
						|
    VMA_ASSERT(block != VMA_NULL);
 | 
						|
    m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
 | 
						|
    m_Alignment = alignment;
 | 
						|
    m_Size = size;
 | 
						|
    m_MemoryTypeIndex = memoryTypeIndex;
 | 
						|
    if(mapped)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
 | 
						|
        m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP;
 | 
						|
    }
 | 
						|
    m_SuballocationType = (uint8_t)suballocationType;
 | 
						|
    m_BlockAllocation.m_Block = block;
 | 
						|
    m_BlockAllocation.m_AllocHandle = allocHandle;
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocation_T::InitDedicatedAllocation(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaPool hParentPool,
 | 
						|
    uint32_t memoryTypeIndex,
 | 
						|
    VkDeviceMemory hMemory,
 | 
						|
    VmaSuballocationType suballocationType,
 | 
						|
    void* pMappedData,
 | 
						|
    VkDeviceSize size)
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
 | 
						|
    VMA_ASSERT(hMemory != VK_NULL_HANDLE);
 | 
						|
    m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
 | 
						|
    m_Alignment = 0;
 | 
						|
    m_Size = size;
 | 
						|
    m_MemoryTypeIndex = memoryTypeIndex;
 | 
						|
    m_SuballocationType = (uint8_t)suballocationType;
 | 
						|
    m_DedicatedAllocation.m_ExtraData = VMA_NULL;
 | 
						|
    m_DedicatedAllocation.m_hParentPool = hParentPool;
 | 
						|
    m_DedicatedAllocation.m_hMemory = hMemory;
 | 
						|
    m_DedicatedAllocation.m_Prev = VMA_NULL;
 | 
						|
    m_DedicatedAllocation.m_Next = VMA_NULL;
 | 
						|
 | 
						|
    if (pMappedData != VMA_NULL)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
 | 
						|
        m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP;
 | 
						|
        EnsureExtraData(allocator);
 | 
						|
        m_DedicatedAllocation.m_ExtraData->m_pMappedData = pMappedData;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocation_T::Destroy(VmaAllocator allocator)
 | 
						|
{
 | 
						|
    FreeName(allocator);
 | 
						|
 | 
						|
    if (GetType() == ALLOCATION_TYPE_DEDICATED)
 | 
						|
    {
 | 
						|
        vma_delete(allocator, m_DedicatedAllocation.m_ExtraData);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocation_T::SetName(VmaAllocator hAllocator, const char* pName)
 | 
						|
{
 | 
						|
    VMA_ASSERT(pName == VMA_NULL || pName != m_pName);
 | 
						|
 | 
						|
    FreeName(hAllocator);
 | 
						|
 | 
						|
    if (pName != VMA_NULL)
 | 
						|
        m_pName = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), pName);
 | 
						|
}
 | 
						|
 | 
						|
uint8_t VmaAllocation_T::SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocation != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
 | 
						|
    VMA_ASSERT(allocation->m_Type == ALLOCATION_TYPE_BLOCK);
 | 
						|
 | 
						|
    if (m_MapCount != 0)
 | 
						|
        m_BlockAllocation.m_Block->Unmap(hAllocator, m_MapCount);
 | 
						|
 | 
						|
    m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, allocation);
 | 
						|
    std::swap(m_BlockAllocation, allocation->m_BlockAllocation);
 | 
						|
    m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, this);
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
    std::swap(m_BufferImageUsage, allocation->m_BufferImageUsage);
 | 
						|
#endif
 | 
						|
    return m_MapCount;
 | 
						|
}
 | 
						|
 | 
						|
VmaAllocHandle VmaAllocation_T::GetAllocHandle() const
 | 
						|
{
 | 
						|
    switch (m_Type)
 | 
						|
    {
 | 
						|
    case ALLOCATION_TYPE_BLOCK:
 | 
						|
        return m_BlockAllocation.m_AllocHandle;
 | 
						|
    case ALLOCATION_TYPE_DEDICATED:
 | 
						|
        return VK_NULL_HANDLE;
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
        return VK_NULL_HANDLE;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkDeviceSize VmaAllocation_T::GetOffset() const
 | 
						|
{
 | 
						|
    switch (m_Type)
 | 
						|
    {
 | 
						|
    case ALLOCATION_TYPE_BLOCK:
 | 
						|
        return m_BlockAllocation.m_Block->m_pMetadata->GetAllocationOffset(m_BlockAllocation.m_AllocHandle);
 | 
						|
    case ALLOCATION_TYPE_DEDICATED:
 | 
						|
        return 0;
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VmaPool VmaAllocation_T::GetParentPool() const
 | 
						|
{
 | 
						|
    switch (m_Type)
 | 
						|
    {
 | 
						|
    case ALLOCATION_TYPE_BLOCK:
 | 
						|
        return m_BlockAllocation.m_Block->GetParentPool();
 | 
						|
    case ALLOCATION_TYPE_DEDICATED:
 | 
						|
        return m_DedicatedAllocation.m_hParentPool;
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
        return VK_NULL_HANDLE;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkDeviceMemory VmaAllocation_T::GetMemory() const
 | 
						|
{
 | 
						|
    switch (m_Type)
 | 
						|
    {
 | 
						|
    case ALLOCATION_TYPE_BLOCK:
 | 
						|
        return m_BlockAllocation.m_Block->GetDeviceMemory();
 | 
						|
    case ALLOCATION_TYPE_DEDICATED:
 | 
						|
        return m_DedicatedAllocation.m_hMemory;
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
        return VK_NULL_HANDLE;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void* VmaAllocation_T::GetMappedData() const
 | 
						|
{
 | 
						|
    switch (m_Type)
 | 
						|
    {
 | 
						|
    case ALLOCATION_TYPE_BLOCK:
 | 
						|
        if (m_MapCount != 0 || IsPersistentMap())
 | 
						|
        {
 | 
						|
            void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();
 | 
						|
            VMA_ASSERT(pBlockData != VMA_NULL);
 | 
						|
            return (char*)pBlockData + GetOffset();
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            return VMA_NULL;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case ALLOCATION_TYPE_DEDICATED:
 | 
						|
        VMA_ASSERT((m_DedicatedAllocation.m_ExtraData != VMA_NULL && m_DedicatedAllocation.m_ExtraData->m_pMappedData != VMA_NULL) ==
 | 
						|
            (m_MapCount != 0 || IsPersistentMap()));
 | 
						|
        return m_DedicatedAllocation.m_ExtraData != VMA_NULL ? m_DedicatedAllocation.m_ExtraData->m_pMappedData : VMA_NULL;
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
        return VMA_NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocation_T::BlockAllocMap()
 | 
						|
{
 | 
						|
    VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
 | 
						|
    VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
 | 
						|
 | 
						|
    if (m_MapCount < 0xFF)
 | 
						|
    {
 | 
						|
        ++m_MapCount;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocation_T::BlockAllocUnmap()
 | 
						|
{
 | 
						|
    VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
 | 
						|
 | 
						|
    if (m_MapCount > 0)
 | 
						|
    {
 | 
						|
        --m_MapCount;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
 | 
						|
{
 | 
						|
    VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
 | 
						|
    VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
 | 
						|
 | 
						|
    EnsureExtraData(hAllocator);
 | 
						|
 | 
						|
    if (m_MapCount != 0 || IsPersistentMap())
 | 
						|
    {
 | 
						|
        if (m_MapCount < 0xFF)
 | 
						|
        {
 | 
						|
            VMA_ASSERT(m_DedicatedAllocation.m_ExtraData->m_pMappedData != VMA_NULL);
 | 
						|
            *ppData = m_DedicatedAllocation.m_ExtraData->m_pMappedData;
 | 
						|
            ++m_MapCount;
 | 
						|
            return VK_SUCCESS;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
 | 
						|
            return VK_ERROR_MEMORY_MAP_FAILED;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
 | 
						|
            hAllocator->m_hDevice,
 | 
						|
            m_DedicatedAllocation.m_hMemory,
 | 
						|
            0, // offset
 | 
						|
            VK_WHOLE_SIZE,
 | 
						|
            0, // flags
 | 
						|
            ppData);
 | 
						|
        if (result == VK_SUCCESS)
 | 
						|
        {
 | 
						|
            m_DedicatedAllocation.m_ExtraData->m_pMappedData = *ppData;
 | 
						|
            m_MapCount = 1;
 | 
						|
        }
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
 | 
						|
{
 | 
						|
    VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
 | 
						|
 | 
						|
    if (m_MapCount > 0)
 | 
						|
    {
 | 
						|
        --m_MapCount;
 | 
						|
        if (m_MapCount == 0 && !IsPersistentMap())
 | 
						|
        {
 | 
						|
            VMA_ASSERT(m_DedicatedAllocation.m_ExtraData != VMA_NULL);
 | 
						|
            m_DedicatedAllocation.m_ExtraData->m_pMappedData = VMA_NULL;
 | 
						|
            (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
 | 
						|
                hAllocator->m_hDevice,
 | 
						|
                m_DedicatedAllocation.m_hMemory);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const
 | 
						|
{
 | 
						|
    json.WriteString("Type");
 | 
						|
    json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]);
 | 
						|
 | 
						|
    json.WriteString("Size");
 | 
						|
    json.WriteNumber(m_Size);
 | 
						|
    json.WriteString("Usage");
 | 
						|
    json.WriteNumber(m_BufferImageUsage.Value); // It may be uint32_t or uint64_t.
 | 
						|
 | 
						|
    if (m_pUserData != VMA_NULL)
 | 
						|
    {
 | 
						|
        json.WriteString("CustomData");
 | 
						|
        json.BeginString();
 | 
						|
        json.ContinueString_Pointer(m_pUserData);
 | 
						|
        json.EndString();
 | 
						|
    }
 | 
						|
    if (m_pName != VMA_NULL)
 | 
						|
    {
 | 
						|
        json.WriteString("Name");
 | 
						|
        json.WriteString(m_pName);
 | 
						|
    }
 | 
						|
}
 | 
						|
#if VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
VkResult VmaAllocation_T::GetWin32Handle(VmaAllocator hAllocator, HANDLE hTargetProcess, HANDLE* pHandle) noexcept
 | 
						|
{
 | 
						|
    auto pvkGetMemoryWin32HandleKHR = hAllocator->GetVulkanFunctions().vkGetMemoryWin32HandleKHR;
 | 
						|
    switch (m_Type)
 | 
						|
    {
 | 
						|
    case ALLOCATION_TYPE_BLOCK:
 | 
						|
        return m_BlockAllocation.m_Block->CreateWin32Handle(hAllocator, pvkGetMemoryWin32HandleKHR, hTargetProcess, pHandle);
 | 
						|
    case ALLOCATION_TYPE_DEDICATED:
 | 
						|
        EnsureExtraData(hAllocator);
 | 
						|
        return m_DedicatedAllocation.m_ExtraData->m_Handle.GetHandle(hAllocator->m_hDevice, m_DedicatedAllocation.m_hMemory, pvkGetMemoryWin32HandleKHR, hTargetProcess, hAllocator->m_UseMutex, pHandle);
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
        return VK_ERROR_FEATURE_NOT_PRESENT;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif // VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
 | 
						|
void VmaAllocation_T::EnsureExtraData(VmaAllocator hAllocator)
 | 
						|
{
 | 
						|
    if (m_DedicatedAllocation.m_ExtraData == VMA_NULL)
 | 
						|
    {
 | 
						|
        m_DedicatedAllocation.m_ExtraData = vma_new(hAllocator, VmaAllocationExtraData)();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocation_T::FreeName(VmaAllocator hAllocator)
 | 
						|
{
 | 
						|
    if(m_pName)
 | 
						|
    {
 | 
						|
        VmaFreeString(hAllocator->GetAllocationCallbacks(), m_pName);
 | 
						|
        m_pName = VMA_NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif // _VMA_ALLOCATION_T_FUNCTIONS
 | 
						|
 | 
						|
#ifndef _VMA_BLOCK_VECTOR_FUNCTIONS
 | 
						|
VmaBlockVector::VmaBlockVector(
 | 
						|
    VmaAllocator hAllocator,
 | 
						|
    VmaPool hParentPool,
 | 
						|
    uint32_t memoryTypeIndex,
 | 
						|
    VkDeviceSize preferredBlockSize,
 | 
						|
    size_t minBlockCount,
 | 
						|
    size_t maxBlockCount,
 | 
						|
    VkDeviceSize bufferImageGranularity,
 | 
						|
    bool explicitBlockSize,
 | 
						|
    uint32_t algorithm,
 | 
						|
    float priority,
 | 
						|
    VkDeviceSize minAllocationAlignment,
 | 
						|
    void* pMemoryAllocateNext)
 | 
						|
    : m_hAllocator(hAllocator),
 | 
						|
    m_hParentPool(hParentPool),
 | 
						|
    m_MemoryTypeIndex(memoryTypeIndex),
 | 
						|
    m_PreferredBlockSize(preferredBlockSize),
 | 
						|
    m_MinBlockCount(minBlockCount),
 | 
						|
    m_MaxBlockCount(maxBlockCount),
 | 
						|
    m_BufferImageGranularity(bufferImageGranularity),
 | 
						|
    m_ExplicitBlockSize(explicitBlockSize),
 | 
						|
    m_Algorithm(algorithm),
 | 
						|
    m_Priority(priority),
 | 
						|
    m_MinAllocationAlignment(minAllocationAlignment),
 | 
						|
    m_pMemoryAllocateNext(pMemoryAllocateNext),
 | 
						|
    m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
 | 
						|
    m_NextBlockId(0) {}
 | 
						|
 | 
						|
VmaBlockVector::~VmaBlockVector()
 | 
						|
{
 | 
						|
    for (size_t i = m_Blocks.size(); i--; )
 | 
						|
    {
 | 
						|
        m_Blocks[i]->Destroy(m_hAllocator);
 | 
						|
        vma_delete(m_hAllocator, m_Blocks[i]);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaBlockVector::CreateMinBlocks()
 | 
						|
{
 | 
						|
    for (size_t i = 0; i < m_MinBlockCount; ++i)
 | 
						|
    {
 | 
						|
        VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
 | 
						|
        if (res != VK_SUCCESS)
 | 
						|
        {
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockVector::AddStatistics(VmaStatistics& inoutStats)
 | 
						|
{
 | 
						|
    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | 
						|
 | 
						|
    const size_t blockCount = m_Blocks.size();
 | 
						|
    for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
 | 
						|
    {
 | 
						|
        const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
 | 
						|
        VMA_ASSERT(pBlock);
 | 
						|
        VMA_HEAVY_ASSERT(pBlock->Validate());
 | 
						|
        pBlock->m_pMetadata->AddStatistics(inoutStats);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockVector::AddDetailedStatistics(VmaDetailedStatistics& inoutStats)
 | 
						|
{
 | 
						|
    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | 
						|
 | 
						|
    const size_t blockCount = m_Blocks.size();
 | 
						|
    for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
 | 
						|
    {
 | 
						|
        const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
 | 
						|
        VMA_ASSERT(pBlock);
 | 
						|
        VMA_HEAVY_ASSERT(pBlock->Validate());
 | 
						|
        pBlock->m_pMetadata->AddDetailedStatistics(inoutStats);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockVector::IsEmpty()
 | 
						|
{
 | 
						|
    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | 
						|
    return m_Blocks.empty();
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockVector::IsCorruptionDetectionEnabled() const
 | 
						|
{
 | 
						|
    const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
 | 
						|
    return (VMA_DEBUG_DETECT_CORRUPTION != 0) &&
 | 
						|
        (VMA_DEBUG_MARGIN > 0) &&
 | 
						|
        (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) &&
 | 
						|
        (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaBlockVector::Allocate(
 | 
						|
    VkDeviceSize size,
 | 
						|
    VkDeviceSize alignment,
 | 
						|
    const VmaAllocationCreateInfo& createInfo,
 | 
						|
    VmaSuballocationType suballocType,
 | 
						|
    size_t allocationCount,
 | 
						|
    VmaAllocation* pAllocations)
 | 
						|
{
 | 
						|
    size_t allocIndex;
 | 
						|
    VkResult res = VK_SUCCESS;
 | 
						|
 | 
						|
    alignment = VMA_MAX(alignment, m_MinAllocationAlignment);
 | 
						|
 | 
						|
    if (IsCorruptionDetectionEnabled())
 | 
						|
    {
 | 
						|
        size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
 | 
						|
        alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
 | 
						|
    }
 | 
						|
 | 
						|
    {
 | 
						|
        VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
 | 
						|
        for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | 
						|
        {
 | 
						|
            res = AllocatePage(
 | 
						|
                size,
 | 
						|
                alignment,
 | 
						|
                createInfo,
 | 
						|
                suballocType,
 | 
						|
                pAllocations + allocIndex);
 | 
						|
            if (res != VK_SUCCESS)
 | 
						|
            {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (res != VK_SUCCESS)
 | 
						|
    {
 | 
						|
        // Free all already created allocations.
 | 
						|
        while (allocIndex--)
 | 
						|
            Free(pAllocations[allocIndex]);
 | 
						|
        memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
 | 
						|
    }
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaBlockVector::AllocatePage(
 | 
						|
    VkDeviceSize size,
 | 
						|
    VkDeviceSize alignment,
 | 
						|
    const VmaAllocationCreateInfo& createInfo,
 | 
						|
    VmaSuballocationType suballocType,
 | 
						|
    VmaAllocation* pAllocation)
 | 
						|
{
 | 
						|
    const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
 | 
						|
 | 
						|
    VkDeviceSize freeMemory;
 | 
						|
    {
 | 
						|
        const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
 | 
						|
        VmaBudget heapBudget = {};
 | 
						|
        m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
 | 
						|
        freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0;
 | 
						|
    }
 | 
						|
 | 
						|
    const bool canFallbackToDedicated = !HasExplicitBlockSize() &&
 | 
						|
        (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0;
 | 
						|
    const bool canCreateNewBlock =
 | 
						|
        ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
 | 
						|
        (m_Blocks.size() < m_MaxBlockCount) &&
 | 
						|
        (freeMemory >= size || !canFallbackToDedicated);
 | 
						|
    uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK;
 | 
						|
 | 
						|
    // Upper address can only be used with linear allocator and within single memory block.
 | 
						|
    if (isUpperAddress &&
 | 
						|
        (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1))
 | 
						|
    {
 | 
						|
        return VK_ERROR_FEATURE_NOT_PRESENT;
 | 
						|
    }
 | 
						|
 | 
						|
    // Early reject: requested allocation size is larger that maximum block size for this block vector.
 | 
						|
    if (size + VMA_DEBUG_MARGIN > m_PreferredBlockSize)
 | 
						|
    {
 | 
						|
        return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | 
						|
    }
 | 
						|
 | 
						|
    // 1. Search existing allocations. Try to allocate.
 | 
						|
    if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
 | 
						|
    {
 | 
						|
        // Use only last block.
 | 
						|
        if (!m_Blocks.empty())
 | 
						|
        {
 | 
						|
            VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back();
 | 
						|
            VMA_ASSERT(pCurrBlock);
 | 
						|
            VkResult res = AllocateFromBlock(
 | 
						|
                pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
 | 
						|
            if (res == VK_SUCCESS)
 | 
						|
            {
 | 
						|
                VMA_DEBUG_LOG_FORMAT("    Returned from last block #%" PRIu32, pCurrBlock->GetId());
 | 
						|
                IncrementallySortBlocks();
 | 
						|
                return VK_SUCCESS;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        if (strategy != VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) // MIN_MEMORY or default
 | 
						|
        {
 | 
						|
            const bool isHostVisible =
 | 
						|
                (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;
 | 
						|
            if(isHostVisible)
 | 
						|
            {
 | 
						|
                const bool isMappingAllowed = (createInfo.flags &
 | 
						|
                    (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0;
 | 
						|
                /*
 | 
						|
                For non-mappable allocations, check blocks that are not mapped first.
 | 
						|
                For mappable allocations, check blocks that are already mapped first.
 | 
						|
                This way, having many blocks, we will separate mappable and non-mappable allocations,
 | 
						|
                hopefully limiting the number of blocks that are mapped, which will help tools like RenderDoc.
 | 
						|
                */
 | 
						|
                for(size_t mappingI = 0; mappingI < 2; ++mappingI)
 | 
						|
                {
 | 
						|
                    // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
 | 
						|
                    for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | 
						|
                    {
 | 
						|
                        VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
 | 
						|
                        VMA_ASSERT(pCurrBlock);
 | 
						|
                        const bool isBlockMapped = pCurrBlock->GetMappedData() != VMA_NULL;
 | 
						|
                        if((mappingI == 0) == (isMappingAllowed == isBlockMapped))
 | 
						|
                        {
 | 
						|
                            VkResult res = AllocateFromBlock(
 | 
						|
                                pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
 | 
						|
                            if (res == VK_SUCCESS)
 | 
						|
                            {
 | 
						|
                                VMA_DEBUG_LOG_FORMAT("    Returned from existing block #%" PRIu32, pCurrBlock->GetId());
 | 
						|
                                IncrementallySortBlocks();
 | 
						|
                                return VK_SUCCESS;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
 | 
						|
                for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | 
						|
                {
 | 
						|
                    VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
 | 
						|
                    VMA_ASSERT(pCurrBlock);
 | 
						|
                    VkResult res = AllocateFromBlock(
 | 
						|
                        pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
 | 
						|
                    if (res == VK_SUCCESS)
 | 
						|
                    {
 | 
						|
                        VMA_DEBUG_LOG_FORMAT("    Returned from existing block #%" PRIu32, pCurrBlock->GetId());
 | 
						|
                        IncrementallySortBlocks();
 | 
						|
                        return VK_SUCCESS;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT
 | 
						|
        {
 | 
						|
            // Backward order in m_Blocks - prefer blocks with largest amount of free space.
 | 
						|
            for (size_t blockIndex = m_Blocks.size(); blockIndex--; )
 | 
						|
            {
 | 
						|
                VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
 | 
						|
                VMA_ASSERT(pCurrBlock);
 | 
						|
                VkResult res = AllocateFromBlock(pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
 | 
						|
                if (res == VK_SUCCESS)
 | 
						|
                {
 | 
						|
                    VMA_DEBUG_LOG_FORMAT("    Returned from existing block #%" PRIu32, pCurrBlock->GetId());
 | 
						|
                    IncrementallySortBlocks();
 | 
						|
                    return VK_SUCCESS;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // 2. Try to create new block.
 | 
						|
    if (canCreateNewBlock)
 | 
						|
    {
 | 
						|
        // Calculate optimal size for new block.
 | 
						|
        VkDeviceSize newBlockSize = m_PreferredBlockSize;
 | 
						|
        uint32_t newBlockSizeShift = 0;
 | 
						|
        const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;
 | 
						|
 | 
						|
        if (!m_ExplicitBlockSize)
 | 
						|
        {
 | 
						|
            // Allocate 1/8, 1/4, 1/2 as first blocks.
 | 
						|
            const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();
 | 
						|
            for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)
 | 
						|
            {
 | 
						|
                const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
 | 
						|
                if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2)
 | 
						|
                {
 | 
						|
                    newBlockSize = smallerNewBlockSize;
 | 
						|
                    ++newBlockSizeShift;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        size_t newBlockIndex = 0;
 | 
						|
        VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
 | 
						|
            CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | 
						|
        // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.
 | 
						|
        if (!m_ExplicitBlockSize)
 | 
						|
        {
 | 
						|
            while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)
 | 
						|
            {
 | 
						|
                const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
 | 
						|
                if (smallerNewBlockSize >= size)
 | 
						|
                {
 | 
						|
                    newBlockSize = smallerNewBlockSize;
 | 
						|
                    ++newBlockSizeShift;
 | 
						|
                    res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
 | 
						|
                        CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (res == VK_SUCCESS)
 | 
						|
        {
 | 
						|
            VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
 | 
						|
            VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);
 | 
						|
 | 
						|
            res = AllocateFromBlock(
 | 
						|
                pBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
 | 
						|
            if (res == VK_SUCCESS)
 | 
						|
            {
 | 
						|
                VMA_DEBUG_LOG_FORMAT("    Created new block #%" PRIu32 " Size=%" PRIu64, pBlock->GetId(), newBlockSize);
 | 
						|
                IncrementallySortBlocks();
 | 
						|
                return VK_SUCCESS;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
 | 
						|
                return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockVector::Free(const VmaAllocation hAllocation)
 | 
						|
{
 | 
						|
    VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
 | 
						|
 | 
						|
    bool budgetExceeded = false;
 | 
						|
    {
 | 
						|
        const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
 | 
						|
        VmaBudget heapBudget = {};
 | 
						|
        m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
 | 
						|
        budgetExceeded = heapBudget.usage >= heapBudget.budget;
 | 
						|
    }
 | 
						|
 | 
						|
    // Scope for lock.
 | 
						|
    {
 | 
						|
        VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
 | 
						|
 | 
						|
        VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
 | 
						|
 | 
						|
        if (IsCorruptionDetectionEnabled())
 | 
						|
        {
 | 
						|
            VkResult res = pBlock->ValidateMagicValueAfterAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize());
 | 
						|
            VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value.");
 | 
						|
        }
 | 
						|
 | 
						|
        if (hAllocation->IsPersistentMap())
 | 
						|
        {
 | 
						|
            pBlock->Unmap(m_hAllocator, 1);
 | 
						|
        }
 | 
						|
 | 
						|
        const bool hadEmptyBlockBeforeFree = HasEmptyBlock();
 | 
						|
        pBlock->m_pMetadata->Free(hAllocation->GetAllocHandle());
 | 
						|
        pBlock->PostFree(m_hAllocator);
 | 
						|
        VMA_HEAVY_ASSERT(pBlock->Validate());
 | 
						|
 | 
						|
        VMA_DEBUG_LOG_FORMAT("  Freed from MemoryTypeIndex=%" PRIu32, m_MemoryTypeIndex);
 | 
						|
 | 
						|
        const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount;
 | 
						|
        // pBlock became empty after this deallocation.
 | 
						|
        if (pBlock->m_pMetadata->IsEmpty())
 | 
						|
        {
 | 
						|
            // Already had empty block. We don't want to have two, so delete this one.
 | 
						|
            if ((hadEmptyBlockBeforeFree || budgetExceeded) && canDeleteBlock)
 | 
						|
            {
 | 
						|
                pBlockToDelete = pBlock;
 | 
						|
                Remove(pBlock);
 | 
						|
            }
 | 
						|
            // else: We now have one empty block - leave it. A hysteresis to avoid allocating whole block back and forth.
 | 
						|
        }
 | 
						|
        // pBlock didn't become empty, but we have another empty block - find and free that one.
 | 
						|
        // (This is optional, heuristics.)
 | 
						|
        else if (hadEmptyBlockBeforeFree && canDeleteBlock)
 | 
						|
        {
 | 
						|
            VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
 | 
						|
            if (pLastBlock->m_pMetadata->IsEmpty())
 | 
						|
            {
 | 
						|
                pBlockToDelete = pLastBlock;
 | 
						|
                m_Blocks.pop_back();
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        IncrementallySortBlocks();
 | 
						|
 | 
						|
        m_hAllocator->m_Budget.RemoveAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), hAllocation->GetSize());
 | 
						|
        hAllocation->Destroy(m_hAllocator);
 | 
						|
        m_hAllocator->m_AllocationObjectAllocator.Free(hAllocation);
 | 
						|
    }
 | 
						|
 | 
						|
    // Destruction of a free block. Deferred until this point, outside of mutex
 | 
						|
    // lock, for performance reason.
 | 
						|
    if (pBlockToDelete != VMA_NULL)
 | 
						|
    {
 | 
						|
        VMA_DEBUG_LOG_FORMAT("    Deleted empty block #%" PRIu32, pBlockToDelete->GetId());
 | 
						|
        pBlockToDelete->Destroy(m_hAllocator);
 | 
						|
        vma_delete(m_hAllocator, pBlockToDelete);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const
 | 
						|
{
 | 
						|
    VkDeviceSize result = 0;
 | 
						|
    for (size_t i = m_Blocks.size(); i--; )
 | 
						|
    {
 | 
						|
        result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize());
 | 
						|
        if (result >= m_PreferredBlockSize)
 | 
						|
        {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
 | 
						|
{
 | 
						|
    for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | 
						|
    {
 | 
						|
        if (m_Blocks[blockIndex] == pBlock)
 | 
						|
        {
 | 
						|
            VmaVectorRemove(m_Blocks, blockIndex);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    VMA_ASSERT(0);
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockVector::IncrementallySortBlocks()
 | 
						|
{
 | 
						|
    if (!m_IncrementalSort)
 | 
						|
        return;
 | 
						|
    if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
 | 
						|
    {
 | 
						|
        // Bubble sort only until first swap.
 | 
						|
        for (size_t i = 1; i < m_Blocks.size(); ++i)
 | 
						|
        {
 | 
						|
            if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())
 | 
						|
            {
 | 
						|
                std::swap(m_Blocks[i - 1], m_Blocks[i]);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaBlockVector::SortByFreeSize()
 | 
						|
{
 | 
						|
    VMA_SORT(m_Blocks.begin(), m_Blocks.end(),
 | 
						|
        [](VmaDeviceMemoryBlock* b1, VmaDeviceMemoryBlock* b2) -> bool
 | 
						|
        {
 | 
						|
            return b1->m_pMetadata->GetSumFreeSize() < b2->m_pMetadata->GetSumFreeSize();
 | 
						|
        });
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaBlockVector::AllocateFromBlock(
 | 
						|
    VmaDeviceMemoryBlock* pBlock,
 | 
						|
    VkDeviceSize size,
 | 
						|
    VkDeviceSize alignment,
 | 
						|
    VmaAllocationCreateFlags allocFlags,
 | 
						|
    void* pUserData,
 | 
						|
    VmaSuballocationType suballocType,
 | 
						|
    uint32_t strategy,
 | 
						|
    VmaAllocation* pAllocation)
 | 
						|
{
 | 
						|
    const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
 | 
						|
 | 
						|
    VmaAllocationRequest currRequest = {};
 | 
						|
    if (pBlock->m_pMetadata->CreateAllocationRequest(
 | 
						|
        size,
 | 
						|
        alignment,
 | 
						|
        isUpperAddress,
 | 
						|
        suballocType,
 | 
						|
        strategy,
 | 
						|
        &currRequest))
 | 
						|
    {
 | 
						|
        return CommitAllocationRequest(currRequest, pBlock, alignment, allocFlags, pUserData, suballocType, pAllocation);
 | 
						|
    }
 | 
						|
    return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaBlockVector::CommitAllocationRequest(
 | 
						|
    VmaAllocationRequest& allocRequest,
 | 
						|
    VmaDeviceMemoryBlock* pBlock,
 | 
						|
    VkDeviceSize alignment,
 | 
						|
    VmaAllocationCreateFlags allocFlags,
 | 
						|
    void* pUserData,
 | 
						|
    VmaSuballocationType suballocType,
 | 
						|
    VmaAllocation* pAllocation)
 | 
						|
{
 | 
						|
    const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
 | 
						|
    const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
 | 
						|
    const bool isMappingAllowed = (allocFlags &
 | 
						|
        (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0;
 | 
						|
 | 
						|
    pBlock->PostAlloc(m_hAllocator);
 | 
						|
    // Allocate from pCurrBlock.
 | 
						|
    if (mapped)
 | 
						|
    {
 | 
						|
        VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
 | 
						|
        if (res != VK_SUCCESS)
 | 
						|
        {
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(isMappingAllowed);
 | 
						|
    pBlock->m_pMetadata->Alloc(allocRequest, suballocType, *pAllocation);
 | 
						|
    (*pAllocation)->InitBlockAllocation(
 | 
						|
        pBlock,
 | 
						|
        allocRequest.allocHandle,
 | 
						|
        alignment,
 | 
						|
        allocRequest.size, // Not size, as actual allocation size may be larger than requested!
 | 
						|
        m_MemoryTypeIndex,
 | 
						|
        suballocType,
 | 
						|
        mapped);
 | 
						|
    VMA_HEAVY_ASSERT(pBlock->Validate());
 | 
						|
    if (isUserDataString)
 | 
						|
        (*pAllocation)->SetName(m_hAllocator, (const char*)pUserData);
 | 
						|
    else
 | 
						|
        (*pAllocation)->SetUserData(m_hAllocator, pUserData);
 | 
						|
    m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), allocRequest.size);
 | 
						|
    if (VMA_DEBUG_INITIALIZE_ALLOCATIONS)
 | 
						|
    {
 | 
						|
        m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
 | 
						|
    }
 | 
						|
    if (IsCorruptionDetectionEnabled())
 | 
						|
    {
 | 
						|
        VkResult res = pBlock->WriteMagicValueAfterAllocation(m_hAllocator, (*pAllocation)->GetOffset(), allocRequest.size);
 | 
						|
        VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
 | 
						|
    }
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
 | 
						|
{
 | 
						|
    VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
 | 
						|
    allocInfo.pNext = m_pMemoryAllocateNext;
 | 
						|
    allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
 | 
						|
    allocInfo.allocationSize = blockSize;
 | 
						|
 | 
						|
#if VMA_BUFFER_DEVICE_ADDRESS
 | 
						|
    // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature.
 | 
						|
    VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
 | 
						|
    if (m_hAllocator->m_UseKhrBufferDeviceAddress)
 | 
						|
    {
 | 
						|
        allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
 | 
						|
        VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
 | 
						|
    }
 | 
						|
#endif // VMA_BUFFER_DEVICE_ADDRESS
 | 
						|
 | 
						|
#if VMA_MEMORY_PRIORITY
 | 
						|
    VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
 | 
						|
    if (m_hAllocator->m_UseExtMemoryPriority)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(m_Priority >= 0.f && m_Priority <= 1.f);
 | 
						|
        priorityInfo.priority = m_Priority;
 | 
						|
        VmaPnextChainPushFront(&allocInfo, &priorityInfo);
 | 
						|
    }
 | 
						|
#endif // VMA_MEMORY_PRIORITY
 | 
						|
 | 
						|
#if VMA_EXTERNAL_MEMORY
 | 
						|
    // Attach VkExportMemoryAllocateInfoKHR if necessary.
 | 
						|
    VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
 | 
						|
    exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex);
 | 
						|
    if (exportMemoryAllocInfo.handleTypes != 0)
 | 
						|
    {
 | 
						|
        VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
 | 
						|
    }
 | 
						|
#endif // VMA_EXTERNAL_MEMORY
 | 
						|
 | 
						|
    VkDeviceMemory mem = VK_NULL_HANDLE;
 | 
						|
    VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
 | 
						|
    if (res < 0)
 | 
						|
    {
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    // New VkDeviceMemory successfully created.
 | 
						|
 | 
						|
    // Create new Allocation for it.
 | 
						|
    VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
 | 
						|
    pBlock->Init(
 | 
						|
        m_hAllocator,
 | 
						|
        m_hParentPool,
 | 
						|
        m_MemoryTypeIndex,
 | 
						|
        mem,
 | 
						|
        allocInfo.allocationSize,
 | 
						|
        m_NextBlockId++,
 | 
						|
        m_Algorithm,
 | 
						|
        m_BufferImageGranularity);
 | 
						|
 | 
						|
    m_Blocks.push_back(pBlock);
 | 
						|
    if (pNewBlockIndex != VMA_NULL)
 | 
						|
    {
 | 
						|
        *pNewBlockIndex = m_Blocks.size() - 1;
 | 
						|
    }
 | 
						|
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaBlockVector::HasEmptyBlock()
 | 
						|
{
 | 
						|
    for (size_t index = 0, count = m_Blocks.size(); index < count; ++index)
 | 
						|
    {
 | 
						|
        VmaDeviceMemoryBlock* const pBlock = m_Blocks[index];
 | 
						|
        if (pBlock->m_pMetadata->IsEmpty())
 | 
						|
        {
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
 | 
						|
{
 | 
						|
    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | 
						|
 | 
						|
 | 
						|
    json.BeginObject();
 | 
						|
    for (size_t i = 0; i < m_Blocks.size(); ++i)
 | 
						|
    {
 | 
						|
        json.BeginString();
 | 
						|
        json.ContinueString(m_Blocks[i]->GetId());
 | 
						|
        json.EndString();
 | 
						|
 | 
						|
        json.BeginObject();
 | 
						|
        json.WriteString("MapRefCount");
 | 
						|
        json.WriteNumber(m_Blocks[i]->GetMapRefCount());
 | 
						|
 | 
						|
        m_Blocks[i]->m_pMetadata->PrintDetailedMap(json);
 | 
						|
        json.EndObject();
 | 
						|
    }
 | 
						|
    json.EndObject();
 | 
						|
}
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
 | 
						|
VkResult VmaBlockVector::CheckCorruption()
 | 
						|
{
 | 
						|
    if (!IsCorruptionDetectionEnabled())
 | 
						|
    {
 | 
						|
        return VK_ERROR_FEATURE_NOT_PRESENT;
 | 
						|
    }
 | 
						|
 | 
						|
    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | 
						|
    for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | 
						|
    {
 | 
						|
        VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
 | 
						|
        VMA_ASSERT(pBlock);
 | 
						|
        VkResult res = pBlock->CheckCorruption(m_hAllocator);
 | 
						|
        if (res != VK_SUCCESS)
 | 
						|
        {
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
#endif // _VMA_BLOCK_VECTOR_FUNCTIONS
 | 
						|
 | 
						|
#ifndef _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS
 | 
						|
VmaDefragmentationContext_T::VmaDefragmentationContext_T(
 | 
						|
    VmaAllocator hAllocator,
 | 
						|
    const VmaDefragmentationInfo& info)
 | 
						|
    : m_MaxPassBytes(info.maxBytesPerPass == 0 ? VK_WHOLE_SIZE : info.maxBytesPerPass),
 | 
						|
    m_MaxPassAllocations(info.maxAllocationsPerPass == 0 ? UINT32_MAX : info.maxAllocationsPerPass),
 | 
						|
    m_BreakCallback(info.pfnBreakCallback),
 | 
						|
    m_BreakCallbackUserData(info.pBreakCallbackUserData),
 | 
						|
    m_MoveAllocator(hAllocator->GetAllocationCallbacks()),
 | 
						|
    m_Moves(m_MoveAllocator)
 | 
						|
{
 | 
						|
    m_Algorithm = info.flags & VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK;
 | 
						|
 | 
						|
    if (info.pool != VMA_NULL)
 | 
						|
    {
 | 
						|
        m_BlockVectorCount = 1;
 | 
						|
        m_PoolBlockVector = &info.pool->m_BlockVector;
 | 
						|
        m_pBlockVectors = &m_PoolBlockVector;
 | 
						|
        m_PoolBlockVector->SetIncrementalSort(false);
 | 
						|
        m_PoolBlockVector->SortByFreeSize();
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        m_BlockVectorCount = hAllocator->GetMemoryTypeCount();
 | 
						|
        m_PoolBlockVector = VMA_NULL;
 | 
						|
        m_pBlockVectors = hAllocator->m_pBlockVectors;
 | 
						|
        for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
 | 
						|
        {
 | 
						|
            VmaBlockVector* vector = m_pBlockVectors[i];
 | 
						|
            if (vector != VMA_NULL)
 | 
						|
            {
 | 
						|
                vector->SetIncrementalSort(false);
 | 
						|
                vector->SortByFreeSize();
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    switch (m_Algorithm)
 | 
						|
    {
 | 
						|
    case 0: // Default algorithm
 | 
						|
        m_Algorithm = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT;
 | 
						|
        m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount);
 | 
						|
        break;
 | 
						|
    case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
 | 
						|
        m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount);
 | 
						|
        break;
 | 
						|
    case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
 | 
						|
        if (hAllocator->GetBufferImageGranularity() > 1)
 | 
						|
        {
 | 
						|
            m_AlgorithmState = vma_new_array(hAllocator, StateExtensive, m_BlockVectorCount);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VmaDefragmentationContext_T::~VmaDefragmentationContext_T()
 | 
						|
{
 | 
						|
    if (m_PoolBlockVector != VMA_NULL)
 | 
						|
    {
 | 
						|
        m_PoolBlockVector->SetIncrementalSort(true);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
 | 
						|
        {
 | 
						|
            VmaBlockVector* vector = m_pBlockVectors[i];
 | 
						|
            if (vector != VMA_NULL)
 | 
						|
                vector->SetIncrementalSort(true);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (m_AlgorithmState)
 | 
						|
    {
 | 
						|
        switch (m_Algorithm)
 | 
						|
        {
 | 
						|
        case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
 | 
						|
            vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateBalanced*>(m_AlgorithmState), m_BlockVectorCount);
 | 
						|
            break;
 | 
						|
        case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
 | 
						|
            vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateExtensive*>(m_AlgorithmState), m_BlockVectorCount);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            VMA_ASSERT(0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo)
 | 
						|
{
 | 
						|
    if (m_PoolBlockVector != VMA_NULL)
 | 
						|
    {
 | 
						|
        VmaMutexLockWrite lock(m_PoolBlockVector->GetMutex(), m_PoolBlockVector->GetAllocator()->m_UseMutex);
 | 
						|
 | 
						|
        if (m_PoolBlockVector->GetBlockCount() > 1)
 | 
						|
            ComputeDefragmentation(*m_PoolBlockVector, 0);
 | 
						|
        else if (m_PoolBlockVector->GetBlockCount() == 1)
 | 
						|
            ReallocWithinBlock(*m_PoolBlockVector, m_PoolBlockVector->GetBlock(0));
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
 | 
						|
        {
 | 
						|
            if (m_pBlockVectors[i] != VMA_NULL)
 | 
						|
            {
 | 
						|
                VmaMutexLockWrite lock(m_pBlockVectors[i]->GetMutex(), m_pBlockVectors[i]->GetAllocator()->m_UseMutex);
 | 
						|
 | 
						|
                if (m_pBlockVectors[i]->GetBlockCount() > 1)
 | 
						|
                {
 | 
						|
                    if (ComputeDefragmentation(*m_pBlockVectors[i], i))
 | 
						|
                        break;
 | 
						|
                }
 | 
						|
                else if (m_pBlockVectors[i]->GetBlockCount() == 1)
 | 
						|
                {
 | 
						|
                    if (ReallocWithinBlock(*m_pBlockVectors[i], m_pBlockVectors[i]->GetBlock(0)))
 | 
						|
                        break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    moveInfo.moveCount = static_cast<uint32_t>(m_Moves.size());
 | 
						|
    if (moveInfo.moveCount > 0)
 | 
						|
    {
 | 
						|
        moveInfo.pMoves = m_Moves.data();
 | 
						|
        return VK_INCOMPLETE;
 | 
						|
    }
 | 
						|
 | 
						|
    moveInfo.pMoves = VMA_NULL;
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaDefragmentationContext_T::DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(moveInfo.moveCount > 0 ? moveInfo.pMoves != VMA_NULL : true);
 | 
						|
 | 
						|
    VkResult result = VK_SUCCESS;
 | 
						|
    VmaStlAllocator<FragmentedBlock> blockAllocator(m_MoveAllocator.m_pCallbacks);
 | 
						|
    VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> immovableBlocks(blockAllocator);
 | 
						|
    VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> mappedBlocks(blockAllocator);
 | 
						|
 | 
						|
    VmaAllocator allocator = VMA_NULL;
 | 
						|
    for (uint32_t i = 0; i < moveInfo.moveCount; ++i)
 | 
						|
    {
 | 
						|
        VmaDefragmentationMove& move = moveInfo.pMoves[i];
 | 
						|
        size_t prevCount = 0, currentCount = 0;
 | 
						|
        VkDeviceSize freedBlockSize = 0;
 | 
						|
 | 
						|
        uint32_t vectorIndex;
 | 
						|
        VmaBlockVector* vector;
 | 
						|
        if (m_PoolBlockVector != VMA_NULL)
 | 
						|
        {
 | 
						|
            vectorIndex = 0;
 | 
						|
            vector = m_PoolBlockVector;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            vectorIndex = move.srcAllocation->GetMemoryTypeIndex();
 | 
						|
            vector = m_pBlockVectors[vectorIndex];
 | 
						|
            VMA_ASSERT(vector != VMA_NULL);
 | 
						|
        }
 | 
						|
 | 
						|
        switch (move.operation)
 | 
						|
        {
 | 
						|
        case VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY:
 | 
						|
        {
 | 
						|
            uint8_t mapCount = move.srcAllocation->SwapBlockAllocation(vector->m_hAllocator, move.dstTmpAllocation);
 | 
						|
            if (mapCount > 0)
 | 
						|
            {
 | 
						|
                allocator = vector->m_hAllocator;
 | 
						|
                VmaDeviceMemoryBlock* newMapBlock = move.srcAllocation->GetBlock();
 | 
						|
                bool notPresent = true;
 | 
						|
                for (FragmentedBlock& block : mappedBlocks)
 | 
						|
                {
 | 
						|
                    if (block.block == newMapBlock)
 | 
						|
                    {
 | 
						|
                        notPresent = false;
 | 
						|
                        block.data += mapCount;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (notPresent)
 | 
						|
                    mappedBlocks.push_back({ mapCount, newMapBlock });
 | 
						|
            }
 | 
						|
 | 
						|
            // Scope for locks, Free have it's own lock
 | 
						|
            {
 | 
						|
                VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | 
						|
                prevCount = vector->GetBlockCount();
 | 
						|
                freedBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize();
 | 
						|
            }
 | 
						|
            vector->Free(move.dstTmpAllocation);
 | 
						|
            {
 | 
						|
                VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | 
						|
                currentCount = vector->GetBlockCount();
 | 
						|
            }
 | 
						|
 | 
						|
            result = VK_INCOMPLETE;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE:
 | 
						|
        {
 | 
						|
            m_PassStats.bytesMoved -= move.srcAllocation->GetSize();
 | 
						|
            --m_PassStats.allocationsMoved;
 | 
						|
            vector->Free(move.dstTmpAllocation);
 | 
						|
 | 
						|
            VmaDeviceMemoryBlock* newBlock = move.srcAllocation->GetBlock();
 | 
						|
            bool notPresent = true;
 | 
						|
            for (const FragmentedBlock& block : immovableBlocks)
 | 
						|
            {
 | 
						|
                if (block.block == newBlock)
 | 
						|
                {
 | 
						|
                    notPresent = false;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (notPresent)
 | 
						|
                immovableBlocks.push_back({ vectorIndex, newBlock });
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        case VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY:
 | 
						|
        {
 | 
						|
            m_PassStats.bytesMoved -= move.srcAllocation->GetSize();
 | 
						|
            --m_PassStats.allocationsMoved;
 | 
						|
            // Scope for locks, Free have it's own lock
 | 
						|
            {
 | 
						|
                VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | 
						|
                prevCount = vector->GetBlockCount();
 | 
						|
                freedBlockSize = move.srcAllocation->GetBlock()->m_pMetadata->GetSize();
 | 
						|
            }
 | 
						|
            vector->Free(move.srcAllocation);
 | 
						|
            {
 | 
						|
                VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | 
						|
                currentCount = vector->GetBlockCount();
 | 
						|
            }
 | 
						|
            freedBlockSize *= prevCount - currentCount;
 | 
						|
 | 
						|
            VkDeviceSize dstBlockSize;
 | 
						|
            {
 | 
						|
                VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | 
						|
                dstBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize();
 | 
						|
            }
 | 
						|
            vector->Free(move.dstTmpAllocation);
 | 
						|
            {
 | 
						|
                VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | 
						|
                freedBlockSize += dstBlockSize * (currentCount - vector->GetBlockCount());
 | 
						|
                currentCount = vector->GetBlockCount();
 | 
						|
            }
 | 
						|
 | 
						|
            result = VK_INCOMPLETE;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        default:
 | 
						|
            VMA_ASSERT(0);
 | 
						|
        }
 | 
						|
 | 
						|
        if (prevCount > currentCount)
 | 
						|
        {
 | 
						|
            size_t freedBlocks = prevCount - currentCount;
 | 
						|
            m_PassStats.deviceMemoryBlocksFreed += static_cast<uint32_t>(freedBlocks);
 | 
						|
            m_PassStats.bytesFreed += freedBlockSize;
 | 
						|
        }
 | 
						|
 | 
						|
        if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT &&
 | 
						|
            m_AlgorithmState != VMA_NULL)
 | 
						|
        {
 | 
						|
            // Avoid unnecessary tries to allocate when new free block is available
 | 
						|
            StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[vectorIndex];
 | 
						|
            if (state.firstFreeBlock != SIZE_MAX)
 | 
						|
            {
 | 
						|
                const size_t diff = prevCount - currentCount;
 | 
						|
                if (state.firstFreeBlock >= diff)
 | 
						|
                {
 | 
						|
                    state.firstFreeBlock -= diff;
 | 
						|
                    if (state.firstFreeBlock != 0)
 | 
						|
                        state.firstFreeBlock -= vector->GetBlock(state.firstFreeBlock - 1)->m_pMetadata->IsEmpty();
 | 
						|
                }
 | 
						|
                else
 | 
						|
                    state.firstFreeBlock = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    moveInfo.moveCount = 0;
 | 
						|
    moveInfo.pMoves = VMA_NULL;
 | 
						|
    m_Moves.clear();
 | 
						|
 | 
						|
    // Update stats
 | 
						|
    m_GlobalStats.allocationsMoved += m_PassStats.allocationsMoved;
 | 
						|
    m_GlobalStats.bytesFreed += m_PassStats.bytesFreed;
 | 
						|
    m_GlobalStats.bytesMoved += m_PassStats.bytesMoved;
 | 
						|
    m_GlobalStats.deviceMemoryBlocksFreed += m_PassStats.deviceMemoryBlocksFreed;
 | 
						|
    m_PassStats = { 0 };
 | 
						|
 | 
						|
    // Move blocks with immovable allocations according to algorithm
 | 
						|
    if (immovableBlocks.size() > 0)
 | 
						|
    {
 | 
						|
        do
 | 
						|
        {
 | 
						|
            if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT)
 | 
						|
            {
 | 
						|
                if (m_AlgorithmState != VMA_NULL)
 | 
						|
                {
 | 
						|
                    bool swapped = false;
 | 
						|
                    // Move to the start of free blocks range
 | 
						|
                    for (const FragmentedBlock& block : immovableBlocks)
 | 
						|
                    {
 | 
						|
                        StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[block.data];
 | 
						|
                        if (state.operation != StateExtensive::Operation::Cleanup)
 | 
						|
                        {
 | 
						|
                            VmaBlockVector* vector = m_pBlockVectors[block.data];
 | 
						|
                            VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | 
						|
 | 
						|
                            for (size_t i = 0, count = vector->GetBlockCount() - m_ImmovableBlockCount; i < count; ++i)
 | 
						|
                            {
 | 
						|
                                if (vector->GetBlock(i) == block.block)
 | 
						|
                                {
 | 
						|
                                    std::swap(vector->m_Blocks[i], vector->m_Blocks[vector->GetBlockCount() - ++m_ImmovableBlockCount]);
 | 
						|
                                    if (state.firstFreeBlock != SIZE_MAX)
 | 
						|
                                    {
 | 
						|
                                        if (i + 1 < state.firstFreeBlock)
 | 
						|
                                        {
 | 
						|
                                            if (state.firstFreeBlock > 1)
 | 
						|
                                                std::swap(vector->m_Blocks[i], vector->m_Blocks[--state.firstFreeBlock]);
 | 
						|
                                            else
 | 
						|
                                                --state.firstFreeBlock;
 | 
						|
                                        }
 | 
						|
                                    }
 | 
						|
                                    swapped = true;
 | 
						|
                                    break;
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    if (swapped)
 | 
						|
                        result = VK_INCOMPLETE;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // Move to the beginning
 | 
						|
            for (const FragmentedBlock& block : immovableBlocks)
 | 
						|
            {
 | 
						|
                VmaBlockVector* vector = m_pBlockVectors[block.data];
 | 
						|
                VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | 
						|
 | 
						|
                for (size_t i = m_ImmovableBlockCount; i < vector->GetBlockCount(); ++i)
 | 
						|
                {
 | 
						|
                    if (vector->GetBlock(i) == block.block)
 | 
						|
                    {
 | 
						|
                        std::swap(vector->m_Blocks[i], vector->m_Blocks[m_ImmovableBlockCount++]);
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } while (false);
 | 
						|
    }
 | 
						|
 | 
						|
    // Bulk-map destination blocks
 | 
						|
    for (const FragmentedBlock& block : mappedBlocks)
 | 
						|
    {
 | 
						|
        VkResult res = block.block->Map(allocator, block.data, VMA_NULL);
 | 
						|
        VMA_ASSERT(res == VK_SUCCESS);
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaDefragmentationContext_T::ComputeDefragmentation(VmaBlockVector& vector, size_t index)
 | 
						|
{
 | 
						|
    switch (m_Algorithm)
 | 
						|
    {
 | 
						|
    case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT:
 | 
						|
        return ComputeDefragmentation_Fast(vector);
 | 
						|
    case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
 | 
						|
        return ComputeDefragmentation_Balanced(vector, index, true);
 | 
						|
    case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT:
 | 
						|
        return ComputeDefragmentation_Full(vector);
 | 
						|
    case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
 | 
						|
        return ComputeDefragmentation_Extensive(vector, index);
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
        return ComputeDefragmentation_Balanced(vector, index, true);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VmaDefragmentationContext_T::MoveAllocationData VmaDefragmentationContext_T::GetMoveData(
 | 
						|
    VmaAllocHandle handle, VmaBlockMetadata* metadata)
 | 
						|
{
 | 
						|
    MoveAllocationData moveData;
 | 
						|
    moveData.move.srcAllocation = (VmaAllocation)metadata->GetAllocationUserData(handle);
 | 
						|
    moveData.size = moveData.move.srcAllocation->GetSize();
 | 
						|
    moveData.alignment = moveData.move.srcAllocation->GetAlignment();
 | 
						|
    moveData.type = moveData.move.srcAllocation->GetSuballocationType();
 | 
						|
    moveData.flags = 0;
 | 
						|
 | 
						|
    if (moveData.move.srcAllocation->IsPersistentMap())
 | 
						|
        moveData.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | 
						|
    if (moveData.move.srcAllocation->IsMappingAllowed())
 | 
						|
        moveData.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
 | 
						|
 | 
						|
    return moveData;
 | 
						|
}
 | 
						|
 | 
						|
VmaDefragmentationContext_T::CounterStatus VmaDefragmentationContext_T::CheckCounters(VkDeviceSize bytes)
 | 
						|
{
 | 
						|
    // Check custom criteria if exists
 | 
						|
    if (m_BreakCallback && m_BreakCallback(m_BreakCallbackUserData))
 | 
						|
        return CounterStatus::End;
 | 
						|
 | 
						|
    // Ignore allocation if will exceed max size for copy
 | 
						|
    if (m_PassStats.bytesMoved + bytes > m_MaxPassBytes)
 | 
						|
    {
 | 
						|
        if (++m_IgnoredAllocs < MAX_ALLOCS_TO_IGNORE)
 | 
						|
            return CounterStatus::Ignore;
 | 
						|
        else
 | 
						|
            return CounterStatus::End;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        m_IgnoredAllocs = 0;
 | 
						|
    return CounterStatus::Pass;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaDefragmentationContext_T::IncrementCounters(VkDeviceSize bytes)
 | 
						|
{
 | 
						|
    m_PassStats.bytesMoved += bytes;
 | 
						|
    // Early return when max found
 | 
						|
    if (++m_PassStats.allocationsMoved >= m_MaxPassAllocations || m_PassStats.bytesMoved >= m_MaxPassBytes)
 | 
						|
    {
 | 
						|
        VMA_ASSERT((m_PassStats.allocationsMoved == m_MaxPassAllocations ||
 | 
						|
            m_PassStats.bytesMoved == m_MaxPassBytes) && "Exceeded maximal pass threshold!");
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaDefragmentationContext_T::ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block)
 | 
						|
{
 | 
						|
    VmaBlockMetadata* metadata = block->m_pMetadata;
 | 
						|
 | 
						|
    for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
 | 
						|
        handle != VK_NULL_HANDLE;
 | 
						|
        handle = metadata->GetNextAllocation(handle))
 | 
						|
    {
 | 
						|
        MoveAllocationData moveData = GetMoveData(handle, metadata);
 | 
						|
        // Ignore newly created allocations by defragmentation algorithm
 | 
						|
        if (moveData.move.srcAllocation->GetUserData() == this)
 | 
						|
            continue;
 | 
						|
        switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | 
						|
        {
 | 
						|
        case CounterStatus::Ignore:
 | 
						|
            continue;
 | 
						|
        case CounterStatus::End:
 | 
						|
            return true;
 | 
						|
        case CounterStatus::Pass:
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            VMA_ASSERT(0);
 | 
						|
        }
 | 
						|
 | 
						|
        VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
 | 
						|
        if (offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
 | 
						|
        {
 | 
						|
            VmaAllocationRequest request = {};
 | 
						|
            if (metadata->CreateAllocationRequest(
 | 
						|
                moveData.size,
 | 
						|
                moveData.alignment,
 | 
						|
                false,
 | 
						|
                moveData.type,
 | 
						|
                VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
 | 
						|
                &request))
 | 
						|
            {
 | 
						|
                if (metadata->GetAllocationOffset(request.allocHandle) < offset)
 | 
						|
                {
 | 
						|
                    if (vector.CommitAllocationRequest(
 | 
						|
                        request,
 | 
						|
                        block,
 | 
						|
                        moveData.alignment,
 | 
						|
                        moveData.flags,
 | 
						|
                        this,
 | 
						|
                        moveData.type,
 | 
						|
                        &moveData.move.dstTmpAllocation) == VK_SUCCESS)
 | 
						|
                    {
 | 
						|
                        m_Moves.push_back(moveData.move);
 | 
						|
                        if (IncrementCounters(moveData.size))
 | 
						|
                            return true;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaDefragmentationContext_T::AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector)
 | 
						|
{
 | 
						|
    for (; start < end; ++start)
 | 
						|
    {
 | 
						|
        VmaDeviceMemoryBlock* dstBlock = vector.GetBlock(start);
 | 
						|
        if (dstBlock->m_pMetadata->GetSumFreeSize() >= data.size)
 | 
						|
        {
 | 
						|
            if (vector.AllocateFromBlock(dstBlock,
 | 
						|
                data.size,
 | 
						|
                data.alignment,
 | 
						|
                data.flags,
 | 
						|
                this,
 | 
						|
                data.type,
 | 
						|
                0,
 | 
						|
                &data.move.dstTmpAllocation) == VK_SUCCESS)
 | 
						|
            {
 | 
						|
                m_Moves.push_back(data.move);
 | 
						|
                if (IncrementCounters(data.size))
 | 
						|
                    return true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaDefragmentationContext_T::ComputeDefragmentation_Fast(VmaBlockVector& vector)
 | 
						|
{
 | 
						|
    // Move only between blocks
 | 
						|
 | 
						|
    // Go through allocations in last blocks and try to fit them inside first ones
 | 
						|
    for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
 | 
						|
    {
 | 
						|
        VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata;
 | 
						|
 | 
						|
        for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
 | 
						|
            handle != VK_NULL_HANDLE;
 | 
						|
            handle = metadata->GetNextAllocation(handle))
 | 
						|
        {
 | 
						|
            MoveAllocationData moveData = GetMoveData(handle, metadata);
 | 
						|
            // Ignore newly created allocations by defragmentation algorithm
 | 
						|
            if (moveData.move.srcAllocation->GetUserData() == this)
 | 
						|
                continue;
 | 
						|
            switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | 
						|
            {
 | 
						|
            case CounterStatus::Ignore:
 | 
						|
                continue;
 | 
						|
            case CounterStatus::End:
 | 
						|
                return true;
 | 
						|
            case CounterStatus::Pass:
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                VMA_ASSERT(0);
 | 
						|
            }
 | 
						|
 | 
						|
            // Check all previous blocks for free space
 | 
						|
            if (AllocInOtherBlock(0, i, moveData, vector))
 | 
						|
                return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaDefragmentationContext_T::ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update)
 | 
						|
{
 | 
						|
    // Go over every allocation and try to fit it in previous blocks at lowest offsets,
 | 
						|
    // if not possible: realloc within single block to minimize offset (exclude offset == 0),
 | 
						|
    // but only if there are noticeable gaps between them (some heuristic, ex. average size of allocation in block)
 | 
						|
    VMA_ASSERT(m_AlgorithmState != VMA_NULL);
 | 
						|
 | 
						|
    StateBalanced& vectorState = reinterpret_cast<StateBalanced*>(m_AlgorithmState)[index];
 | 
						|
    if (update && vectorState.avgAllocSize == UINT64_MAX)
 | 
						|
        UpdateVectorStatistics(vector, vectorState);
 | 
						|
 | 
						|
    const size_t startMoveCount = m_Moves.size();
 | 
						|
    VkDeviceSize minimalFreeRegion = vectorState.avgFreeSize / 2;
 | 
						|
    for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
 | 
						|
    {
 | 
						|
        VmaDeviceMemoryBlock* block = vector.GetBlock(i);
 | 
						|
        VmaBlockMetadata* metadata = block->m_pMetadata;
 | 
						|
        VkDeviceSize prevFreeRegionSize = 0;
 | 
						|
 | 
						|
        for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
 | 
						|
            handle != VK_NULL_HANDLE;
 | 
						|
            handle = metadata->GetNextAllocation(handle))
 | 
						|
        {
 | 
						|
            MoveAllocationData moveData = GetMoveData(handle, metadata);
 | 
						|
            // Ignore newly created allocations by defragmentation algorithm
 | 
						|
            if (moveData.move.srcAllocation->GetUserData() == this)
 | 
						|
                continue;
 | 
						|
            switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | 
						|
            {
 | 
						|
            case CounterStatus::Ignore:
 | 
						|
                continue;
 | 
						|
            case CounterStatus::End:
 | 
						|
                return true;
 | 
						|
            case CounterStatus::Pass:
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                VMA_ASSERT(0);
 | 
						|
            }
 | 
						|
 | 
						|
            // Check all previous blocks for free space
 | 
						|
            const size_t prevMoveCount = m_Moves.size();
 | 
						|
            if (AllocInOtherBlock(0, i, moveData, vector))
 | 
						|
                return true;
 | 
						|
 | 
						|
            VkDeviceSize nextFreeRegionSize = metadata->GetNextFreeRegionSize(handle);
 | 
						|
            // If no room found then realloc within block for lower offset
 | 
						|
            VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
 | 
						|
            if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
 | 
						|
            {
 | 
						|
                // Check if realloc will make sense
 | 
						|
                if (prevFreeRegionSize >= minimalFreeRegion ||
 | 
						|
                    nextFreeRegionSize >= minimalFreeRegion ||
 | 
						|
                    moveData.size <= vectorState.avgFreeSize ||
 | 
						|
                    moveData.size <= vectorState.avgAllocSize)
 | 
						|
                {
 | 
						|
                    VmaAllocationRequest request = {};
 | 
						|
                    if (metadata->CreateAllocationRequest(
 | 
						|
                        moveData.size,
 | 
						|
                        moveData.alignment,
 | 
						|
                        false,
 | 
						|
                        moveData.type,
 | 
						|
                        VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
 | 
						|
                        &request))
 | 
						|
                    {
 | 
						|
                        if (metadata->GetAllocationOffset(request.allocHandle) < offset)
 | 
						|
                        {
 | 
						|
                            if (vector.CommitAllocationRequest(
 | 
						|
                                request,
 | 
						|
                                block,
 | 
						|
                                moveData.alignment,
 | 
						|
                                moveData.flags,
 | 
						|
                                this,
 | 
						|
                                moveData.type,
 | 
						|
                                &moveData.move.dstTmpAllocation) == VK_SUCCESS)
 | 
						|
                            {
 | 
						|
                                m_Moves.push_back(moveData.move);
 | 
						|
                                if (IncrementCounters(moveData.size))
 | 
						|
                                    return true;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            prevFreeRegionSize = nextFreeRegionSize;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // No moves performed, update statistics to current vector state
 | 
						|
    if (startMoveCount == m_Moves.size() && !update)
 | 
						|
    {
 | 
						|
        vectorState.avgAllocSize = UINT64_MAX;
 | 
						|
        return ComputeDefragmentation_Balanced(vector, index, false);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaDefragmentationContext_T::ComputeDefragmentation_Full(VmaBlockVector& vector)
 | 
						|
{
 | 
						|
    // Go over every allocation and try to fit it in previous blocks at lowest offsets,
 | 
						|
    // if not possible: realloc within single block to minimize offset (exclude offset == 0)
 | 
						|
 | 
						|
    for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
 | 
						|
    {
 | 
						|
        VmaDeviceMemoryBlock* block = vector.GetBlock(i);
 | 
						|
        VmaBlockMetadata* metadata = block->m_pMetadata;
 | 
						|
 | 
						|
        for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
 | 
						|
            handle != VK_NULL_HANDLE;
 | 
						|
            handle = metadata->GetNextAllocation(handle))
 | 
						|
        {
 | 
						|
            MoveAllocationData moveData = GetMoveData(handle, metadata);
 | 
						|
            // Ignore newly created allocations by defragmentation algorithm
 | 
						|
            if (moveData.move.srcAllocation->GetUserData() == this)
 | 
						|
                continue;
 | 
						|
            switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | 
						|
            {
 | 
						|
            case CounterStatus::Ignore:
 | 
						|
                continue;
 | 
						|
            case CounterStatus::End:
 | 
						|
                return true;
 | 
						|
            case CounterStatus::Pass:
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                VMA_ASSERT(0);
 | 
						|
            }
 | 
						|
 | 
						|
            // Check all previous blocks for free space
 | 
						|
            const size_t prevMoveCount = m_Moves.size();
 | 
						|
            if (AllocInOtherBlock(0, i, moveData, vector))
 | 
						|
                return true;
 | 
						|
 | 
						|
            // If no room found then realloc within block for lower offset
 | 
						|
            VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
 | 
						|
            if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
 | 
						|
            {
 | 
						|
                VmaAllocationRequest request = {};
 | 
						|
                if (metadata->CreateAllocationRequest(
 | 
						|
                    moveData.size,
 | 
						|
                    moveData.alignment,
 | 
						|
                    false,
 | 
						|
                    moveData.type,
 | 
						|
                    VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
 | 
						|
                    &request))
 | 
						|
                {
 | 
						|
                    if (metadata->GetAllocationOffset(request.allocHandle) < offset)
 | 
						|
                    {
 | 
						|
                        if (vector.CommitAllocationRequest(
 | 
						|
                            request,
 | 
						|
                            block,
 | 
						|
                            moveData.alignment,
 | 
						|
                            moveData.flags,
 | 
						|
                            this,
 | 
						|
                            moveData.type,
 | 
						|
                            &moveData.move.dstTmpAllocation) == VK_SUCCESS)
 | 
						|
                        {
 | 
						|
                            m_Moves.push_back(moveData.move);
 | 
						|
                            if (IncrementCounters(moveData.size))
 | 
						|
                                return true;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaDefragmentationContext_T::ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index)
 | 
						|
{
 | 
						|
    // First free single block, then populate it to the brim, then free another block, and so on
 | 
						|
 | 
						|
    // Fallback to previous algorithm since without granularity conflicts it can achieve max packing
 | 
						|
    if (vector.m_BufferImageGranularity == 1)
 | 
						|
        return ComputeDefragmentation_Full(vector);
 | 
						|
 | 
						|
    VMA_ASSERT(m_AlgorithmState != VMA_NULL);
 | 
						|
 | 
						|
    StateExtensive& vectorState = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[index];
 | 
						|
 | 
						|
    bool texturePresent = false, bufferPresent = false, otherPresent = false;
 | 
						|
    switch (vectorState.operation)
 | 
						|
    {
 | 
						|
    case StateExtensive::Operation::Done: // Vector defragmented
 | 
						|
        return false;
 | 
						|
    case StateExtensive::Operation::FindFreeBlockBuffer:
 | 
						|
    case StateExtensive::Operation::FindFreeBlockTexture:
 | 
						|
    case StateExtensive::Operation::FindFreeBlockAll:
 | 
						|
    {
 | 
						|
        // No more blocks to free, just perform fast realloc and move to cleanup
 | 
						|
        if (vectorState.firstFreeBlock == 0)
 | 
						|
        {
 | 
						|
            vectorState.operation = StateExtensive::Operation::Cleanup;
 | 
						|
            return ComputeDefragmentation_Fast(vector);
 | 
						|
        }
 | 
						|
 | 
						|
        // No free blocks, have to clear last one
 | 
						|
        size_t last = (vectorState.firstFreeBlock == SIZE_MAX ? vector.GetBlockCount() : vectorState.firstFreeBlock) - 1;
 | 
						|
        VmaBlockMetadata* freeMetadata = vector.GetBlock(last)->m_pMetadata;
 | 
						|
 | 
						|
        const size_t prevMoveCount = m_Moves.size();
 | 
						|
        for (VmaAllocHandle handle = freeMetadata->GetAllocationListBegin();
 | 
						|
            handle != VK_NULL_HANDLE;
 | 
						|
            handle = freeMetadata->GetNextAllocation(handle))
 | 
						|
        {
 | 
						|
            MoveAllocationData moveData = GetMoveData(handle, freeMetadata);
 | 
						|
            switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | 
						|
            {
 | 
						|
            case CounterStatus::Ignore:
 | 
						|
                continue;
 | 
						|
            case CounterStatus::End:
 | 
						|
                return true;
 | 
						|
            case CounterStatus::Pass:
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                VMA_ASSERT(0);
 | 
						|
            }
 | 
						|
 | 
						|
            // Check all previous blocks for free space
 | 
						|
            if (AllocInOtherBlock(0, last, moveData, vector))
 | 
						|
            {
 | 
						|
                // Full clear performed already
 | 
						|
                if (prevMoveCount != m_Moves.size() && freeMetadata->GetNextAllocation(handle) == VK_NULL_HANDLE)
 | 
						|
                    vectorState.firstFreeBlock = last;
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (prevMoveCount == m_Moves.size())
 | 
						|
        {
 | 
						|
            // Cannot perform full clear, have to move data in other blocks around
 | 
						|
            if (last != 0)
 | 
						|
            {
 | 
						|
                for (size_t i = last - 1; i; --i)
 | 
						|
                {
 | 
						|
                    if (ReallocWithinBlock(vector, vector.GetBlock(i)))
 | 
						|
                        return true;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (prevMoveCount == m_Moves.size())
 | 
						|
            {
 | 
						|
                // No possible reallocs within blocks, try to move them around fast
 | 
						|
                return ComputeDefragmentation_Fast(vector);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            switch (vectorState.operation)
 | 
						|
            {
 | 
						|
            case StateExtensive::Operation::FindFreeBlockBuffer:
 | 
						|
                vectorState.operation = StateExtensive::Operation::MoveBuffers;
 | 
						|
                break;
 | 
						|
            case StateExtensive::Operation::FindFreeBlockTexture:
 | 
						|
                vectorState.operation = StateExtensive::Operation::MoveTextures;
 | 
						|
                break;
 | 
						|
            case StateExtensive::Operation::FindFreeBlockAll:
 | 
						|
                vectorState.operation = StateExtensive::Operation::MoveAll;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                VMA_ASSERT(0);
 | 
						|
                vectorState.operation = StateExtensive::Operation::MoveTextures;
 | 
						|
            }
 | 
						|
            vectorState.firstFreeBlock = last;
 | 
						|
            // Nothing done, block found without reallocations, can perform another reallocs in same pass
 | 
						|
            return ComputeDefragmentation_Extensive(vector, index);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    case StateExtensive::Operation::MoveTextures:
 | 
						|
    {
 | 
						|
        if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL, vector,
 | 
						|
            vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
 | 
						|
        {
 | 
						|
            if (texturePresent)
 | 
						|
            {
 | 
						|
                vectorState.operation = StateExtensive::Operation::FindFreeBlockTexture;
 | 
						|
                return ComputeDefragmentation_Extensive(vector, index);
 | 
						|
            }
 | 
						|
 | 
						|
            if (!bufferPresent && !otherPresent)
 | 
						|
            {
 | 
						|
                vectorState.operation = StateExtensive::Operation::Cleanup;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            // No more textures to move, check buffers
 | 
						|
            vectorState.operation = StateExtensive::Operation::MoveBuffers;
 | 
						|
            bufferPresent = false;
 | 
						|
            otherPresent = false;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            break;
 | 
						|
        VMA_FALLTHROUGH; // Fallthrough
 | 
						|
    }
 | 
						|
    case StateExtensive::Operation::MoveBuffers:
 | 
						|
    {
 | 
						|
        if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_BUFFER, vector,
 | 
						|
            vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
 | 
						|
        {
 | 
						|
            if (bufferPresent)
 | 
						|
            {
 | 
						|
                vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer;
 | 
						|
                return ComputeDefragmentation_Extensive(vector, index);
 | 
						|
            }
 | 
						|
 | 
						|
            if (!otherPresent)
 | 
						|
            {
 | 
						|
                vectorState.operation = StateExtensive::Operation::Cleanup;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            // No more buffers to move, check all others
 | 
						|
            vectorState.operation = StateExtensive::Operation::MoveAll;
 | 
						|
            otherPresent = false;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            break;
 | 
						|
        VMA_FALLTHROUGH; // Fallthrough
 | 
						|
    }
 | 
						|
    case StateExtensive::Operation::MoveAll:
 | 
						|
    {
 | 
						|
        if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_FREE, vector,
 | 
						|
            vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
 | 
						|
        {
 | 
						|
            if (otherPresent)
 | 
						|
            {
 | 
						|
                vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer;
 | 
						|
                return ComputeDefragmentation_Extensive(vector, index);
 | 
						|
            }
 | 
						|
            // Everything moved
 | 
						|
            vectorState.operation = StateExtensive::Operation::Cleanup;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    case StateExtensive::Operation::Cleanup:
 | 
						|
        // Cleanup is handled below so that other operations may reuse the cleanup code. This case is here to prevent the unhandled enum value warning (C4062).
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (vectorState.operation == StateExtensive::Operation::Cleanup)
 | 
						|
    {
 | 
						|
        // All other work done, pack data in blocks even tighter if possible
 | 
						|
        const size_t prevMoveCount = m_Moves.size();
 | 
						|
        for (size_t i = 0; i < vector.GetBlockCount(); ++i)
 | 
						|
        {
 | 
						|
            if (ReallocWithinBlock(vector, vector.GetBlock(i)))
 | 
						|
                return true;
 | 
						|
        }
 | 
						|
 | 
						|
        if (prevMoveCount == m_Moves.size())
 | 
						|
            vectorState.operation = StateExtensive::Operation::Done;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
void VmaDefragmentationContext_T::UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state)
 | 
						|
{
 | 
						|
    size_t allocCount = 0;
 | 
						|
    size_t freeCount = 0;
 | 
						|
    state.avgFreeSize = 0;
 | 
						|
    state.avgAllocSize = 0;
 | 
						|
 | 
						|
    for (size_t i = 0; i < vector.GetBlockCount(); ++i)
 | 
						|
    {
 | 
						|
        VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata;
 | 
						|
 | 
						|
        allocCount += metadata->GetAllocationCount();
 | 
						|
        freeCount += metadata->GetFreeRegionsCount();
 | 
						|
        state.avgFreeSize += metadata->GetSumFreeSize();
 | 
						|
        state.avgAllocSize += metadata->GetSize();
 | 
						|
    }
 | 
						|
 | 
						|
    state.avgAllocSize = (state.avgAllocSize - state.avgFreeSize) / allocCount;
 | 
						|
    state.avgFreeSize /= freeCount;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaDefragmentationContext_T::MoveDataToFreeBlocks(VmaSuballocationType currentType,
 | 
						|
    VmaBlockVector& vector, size_t firstFreeBlock,
 | 
						|
    bool& texturePresent, bool& bufferPresent, bool& otherPresent)
 | 
						|
{
 | 
						|
    const size_t prevMoveCount = m_Moves.size();
 | 
						|
    for (size_t i = firstFreeBlock ; i;)
 | 
						|
    {
 | 
						|
        VmaDeviceMemoryBlock* block = vector.GetBlock(--i);
 | 
						|
        VmaBlockMetadata* metadata = block->m_pMetadata;
 | 
						|
 | 
						|
        for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
 | 
						|
            handle != VK_NULL_HANDLE;
 | 
						|
            handle = metadata->GetNextAllocation(handle))
 | 
						|
        {
 | 
						|
            MoveAllocationData moveData = GetMoveData(handle, metadata);
 | 
						|
            // Ignore newly created allocations by defragmentation algorithm
 | 
						|
            if (moveData.move.srcAllocation->GetUserData() == this)
 | 
						|
                continue;
 | 
						|
            switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | 
						|
            {
 | 
						|
            case CounterStatus::Ignore:
 | 
						|
                continue;
 | 
						|
            case CounterStatus::End:
 | 
						|
                return true;
 | 
						|
            case CounterStatus::Pass:
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                VMA_ASSERT(0);
 | 
						|
            }
 | 
						|
 | 
						|
            // Move only single type of resources at once
 | 
						|
            if (!VmaIsBufferImageGranularityConflict(moveData.type, currentType))
 | 
						|
            {
 | 
						|
                // Try to fit allocation into free blocks
 | 
						|
                if (AllocInOtherBlock(firstFreeBlock, vector.GetBlockCount(), moveData, vector))
 | 
						|
                    return false;
 | 
						|
            }
 | 
						|
 | 
						|
            if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL))
 | 
						|
                texturePresent = true;
 | 
						|
            else if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_BUFFER))
 | 
						|
                bufferPresent = true;
 | 
						|
            else
 | 
						|
                otherPresent = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return prevMoveCount == m_Moves.size();
 | 
						|
}
 | 
						|
#endif // _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS
 | 
						|
 | 
						|
#ifndef _VMA_POOL_T_FUNCTIONS
 | 
						|
VmaPool_T::VmaPool_T(
 | 
						|
    VmaAllocator hAllocator,
 | 
						|
    const VmaPoolCreateInfo& createInfo,
 | 
						|
    VkDeviceSize preferredBlockSize)
 | 
						|
    : m_BlockVector(
 | 
						|
        hAllocator,
 | 
						|
        this, // hParentPool
 | 
						|
        createInfo.memoryTypeIndex,
 | 
						|
        createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
 | 
						|
        createInfo.minBlockCount,
 | 
						|
        createInfo.maxBlockCount,
 | 
						|
        (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
 | 
						|
        createInfo.blockSize != 0, // explicitBlockSize
 | 
						|
        createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm
 | 
						|
        createInfo.priority,
 | 
						|
        VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment),
 | 
						|
        createInfo.pMemoryAllocateNext),
 | 
						|
    m_Id(0),
 | 
						|
    m_Name(VMA_NULL) {}
 | 
						|
 | 
						|
VmaPool_T::~VmaPool_T()
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL);
 | 
						|
 | 
						|
    const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
 | 
						|
    VmaFreeString(allocs, m_Name);
 | 
						|
}
 | 
						|
 | 
						|
void VmaPool_T::SetName(const char* pName)
 | 
						|
{
 | 
						|
    const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
 | 
						|
    VmaFreeString(allocs, m_Name);
 | 
						|
 | 
						|
    if (pName != VMA_NULL)
 | 
						|
    {
 | 
						|
        m_Name = VmaCreateStringCopy(allocs, pName);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        m_Name = VMA_NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif // _VMA_POOL_T_FUNCTIONS
 | 
						|
 | 
						|
#ifndef _VMA_ALLOCATOR_T_FUNCTIONS
 | 
						|
VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
 | 
						|
    m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
 | 
						|
    m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0),
 | 
						|
    m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
 | 
						|
    m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0),
 | 
						|
    m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0),
 | 
						|
    m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0),
 | 
						|
    m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0),
 | 
						|
    m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0),
 | 
						|
    m_UseKhrMaintenance4((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT) != 0),
 | 
						|
    m_UseKhrMaintenance5((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT) != 0),
 | 
						|
    m_UseKhrExternalMemoryWin32((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_EXTERNAL_MEMORY_WIN32_BIT) != 0),
 | 
						|
    m_hDevice(pCreateInfo->device),
 | 
						|
    m_hInstance(pCreateInfo->instance),
 | 
						|
    m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
 | 
						|
    m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
 | 
						|
        *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
 | 
						|
    m_AllocationObjectAllocator(&m_AllocationCallbacks),
 | 
						|
    m_HeapSizeLimitMask(0),
 | 
						|
    m_DeviceMemoryCount(0),
 | 
						|
    m_PreferredLargeHeapBlockSize(0),
 | 
						|
    m_PhysicalDevice(pCreateInfo->physicalDevice),
 | 
						|
    m_GpuDefragmentationMemoryTypeBits(UINT32_MAX),
 | 
						|
    m_NextPoolId(0),
 | 
						|
    m_GlobalMemoryTypeBits(UINT32_MAX)
 | 
						|
{
 | 
						|
    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | 
						|
    {
 | 
						|
        m_UseKhrDedicatedAllocation = false;
 | 
						|
        m_UseKhrBindMemory2 = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if(VMA_DEBUG_DETECT_CORRUPTION)
 | 
						|
    {
 | 
						|
        // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it.
 | 
						|
        VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0);
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance);
 | 
						|
 | 
						|
    if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))
 | 
						|
    {
 | 
						|
#if !(VMA_DEDICATED_ALLOCATION)
 | 
						|
        if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0)
 | 
						|
        {
 | 
						|
            VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros.");
 | 
						|
        }
 | 
						|
#endif
 | 
						|
#if !(VMA_BIND_MEMORY2)
 | 
						|
        if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0)
 | 
						|
        {
 | 
						|
            VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros.");
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#if !(VMA_MEMORY_BUDGET)
 | 
						|
    if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros.");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if !(VMA_BUFFER_DEVICE_ADDRESS)
 | 
						|
    if(m_UseKhrBufferDeviceAddress)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if VMA_VULKAN_VERSION < 1004000
 | 
						|
    VMA_ASSERT(m_VulkanApiVersion < VK_MAKE_VERSION(1, 4, 0) && "vulkanApiVersion >= VK_API_VERSION_1_4 but required Vulkan version is disabled by preprocessor macros.");
 | 
						|
#endif
 | 
						|
#if VMA_VULKAN_VERSION < 1003000
 | 
						|
    VMA_ASSERT(m_VulkanApiVersion < VK_MAKE_VERSION(1, 3, 0) && "vulkanApiVersion >= VK_API_VERSION_1_3 but required Vulkan version is disabled by preprocessor macros.");
 | 
						|
#endif
 | 
						|
#if VMA_VULKAN_VERSION < 1002000
 | 
						|
    VMA_ASSERT(m_VulkanApiVersion < VK_MAKE_VERSION(1, 2, 0) && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros.");
 | 
						|
#endif
 | 
						|
#if VMA_VULKAN_VERSION < 1001000
 | 
						|
    VMA_ASSERT(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0) && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros.");
 | 
						|
#endif
 | 
						|
#if !(VMA_MEMORY_PRIORITY)
 | 
						|
    if(m_UseExtMemoryPriority)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if !(VMA_KHR_MAINTENANCE4)
 | 
						|
    if(m_UseKhrMaintenance4)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if !(VMA_KHR_MAINTENANCE5)
 | 
						|
    if(m_UseKhrMaintenance5)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if !(VMA_KHR_MAINTENANCE5)
 | 
						|
    if(m_UseKhrMaintenance5)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if !(VMA_EXTERNAL_MEMORY_WIN32)
 | 
						|
    if(m_UseKhrExternalMemoryWin32)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_EXTERNAL_MEMORY_WIN32_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
 | 
						|
    memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
 | 
						|
    memset(&m_MemProps, 0, sizeof(m_MemProps));
 | 
						|
 | 
						|
    memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
 | 
						|
    memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions));
 | 
						|
 | 
						|
#if VMA_EXTERNAL_MEMORY
 | 
						|
    memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes));
 | 
						|
#endif // #if VMA_EXTERNAL_MEMORY
 | 
						|
 | 
						|
    if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
 | 
						|
    {
 | 
						|
        m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData;
 | 
						|
        m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
 | 
						|
        m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
 | 
						|
    }
 | 
						|
 | 
						|
    ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
 | 
						|
 | 
						|
    (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
 | 
						|
    (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
 | 
						|
 | 
						|
    VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT));
 | 
						|
    VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY));
 | 
						|
    VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity));
 | 
						|
    VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize));
 | 
						|
 | 
						|
    m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
 | 
						|
        pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
 | 
						|
 | 
						|
    m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits();
 | 
						|
 | 
						|
#if VMA_EXTERNAL_MEMORY
 | 
						|
    if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL)
 | 
						|
    {
 | 
						|
        memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes,
 | 
						|
            sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount());
 | 
						|
    }
 | 
						|
#endif // #if VMA_EXTERNAL_MEMORY
 | 
						|
 | 
						|
    if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
 | 
						|
    {
 | 
						|
        for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
 | 
						|
        {
 | 
						|
            const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
 | 
						|
            if(limit != VK_WHOLE_SIZE)
 | 
						|
            {
 | 
						|
                m_HeapSizeLimitMask |= 1u << heapIndex;
 | 
						|
                if(limit < m_MemProps.memoryHeaps[heapIndex].size)
 | 
						|
                {
 | 
						|
                    m_MemProps.memoryHeaps[heapIndex].size = limit;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | 
						|
    {
 | 
						|
        // Create only supported types
 | 
						|
        if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
 | 
						|
        {
 | 
						|
            const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
 | 
						|
            m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
 | 
						|
                this,
 | 
						|
                VK_NULL_HANDLE, // hParentPool
 | 
						|
                memTypeIndex,
 | 
						|
                preferredBlockSize,
 | 
						|
                0,
 | 
						|
                SIZE_MAX,
 | 
						|
                GetBufferImageGranularity(),
 | 
						|
                false, // explicitBlockSize
 | 
						|
                0, // algorithm
 | 
						|
                0.5f, // priority (0.5 is the default per Vulkan spec)
 | 
						|
                GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment
 | 
						|
                VMA_NULL); // // pMemoryAllocateNext
 | 
						|
            // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
 | 
						|
            // because minBlockCount is 0.
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo)
 | 
						|
{
 | 
						|
    VkResult res = VK_SUCCESS;
 | 
						|
 | 
						|
#if VMA_MEMORY_BUDGET
 | 
						|
    if(m_UseExtMemoryBudget)
 | 
						|
    {
 | 
						|
        UpdateVulkanBudget();
 | 
						|
    }
 | 
						|
#endif // #if VMA_MEMORY_BUDGET
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VmaAllocator_T::~VmaAllocator_T()
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_Pools.IsEmpty());
 | 
						|
 | 
						|
    for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )
 | 
						|
    {
 | 
						|
        vma_delete(this, m_pBlockVectors[memTypeIndex]);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
 | 
						|
{
 | 
						|
#if VMA_STATIC_VULKAN_FUNCTIONS == 1
 | 
						|
    ImportVulkanFunctions_Static();
 | 
						|
#endif
 | 
						|
 | 
						|
    if(pVulkanFunctions != VMA_NULL)
 | 
						|
    {
 | 
						|
        ImportVulkanFunctions_Custom(pVulkanFunctions);
 | 
						|
    }
 | 
						|
 | 
						|
#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
 | 
						|
    ImportVulkanFunctions_Dynamic();
 | 
						|
#endif
 | 
						|
 | 
						|
    ValidateVulkanFunctions();
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATIC_VULKAN_FUNCTIONS == 1
 | 
						|
 | 
						|
void VmaAllocator_T::ImportVulkanFunctions_Static()
 | 
						|
{
 | 
						|
    // Vulkan 1.0
 | 
						|
    m_VulkanFunctions.vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr;
 | 
						|
    m_VulkanFunctions.vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetDeviceProcAddr;
 | 
						|
    m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties;
 | 
						|
    m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties;
 | 
						|
    m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
 | 
						|
    m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory;
 | 
						|
    m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory;
 | 
						|
    m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory;
 | 
						|
    m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges;
 | 
						|
    m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges;
 | 
						|
    m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory;
 | 
						|
    m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory;
 | 
						|
    m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements;
 | 
						|
    m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements;
 | 
						|
    m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer;
 | 
						|
    m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer;
 | 
						|
    m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage;
 | 
						|
    m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage;
 | 
						|
    m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer;
 | 
						|
 | 
						|
    // Vulkan 1.1
 | 
						|
#if VMA_VULKAN_VERSION >= 1001000
 | 
						|
    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | 
						|
    {
 | 
						|
        m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2;
 | 
						|
        m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2;
 | 
						|
        m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2;
 | 
						|
        m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_VULKAN_VERSION >= 1001000
 | 
						|
    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | 
						|
    {
 | 
						|
        m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_VULKAN_VERSION >= 1003000
 | 
						|
    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
 | 
						|
    {
 | 
						|
        m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements = (PFN_vkGetDeviceBufferMemoryRequirements)vkGetDeviceBufferMemoryRequirements;
 | 
						|
        m_VulkanFunctions.vkGetDeviceImageMemoryRequirements = (PFN_vkGetDeviceImageMemoryRequirements)vkGetDeviceImageMemoryRequirements;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif // VMA_STATIC_VULKAN_FUNCTIONS == 1
 | 
						|
 | 
						|
void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions)
 | 
						|
{
 | 
						|
    VMA_ASSERT(pVulkanFunctions != VMA_NULL);
 | 
						|
 | 
						|
#define VMA_COPY_IF_NOT_NULL(funcName) \
 | 
						|
    if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
 | 
						|
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetInstanceProcAddr);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetDeviceProcAddr);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkFreeMemory);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkMapMemory);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkCreateImage);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkDestroyImage);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer);
 | 
						|
 | 
						|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR);
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR);
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetDeviceBufferMemoryRequirements);
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetDeviceImageMemoryRequirements);
 | 
						|
#endif
 | 
						|
#if VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
    VMA_COPY_IF_NOT_NULL(vkGetMemoryWin32HandleKHR);
 | 
						|
#endif
 | 
						|
#undef VMA_COPY_IF_NOT_NULL
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
 | 
						|
 | 
						|
void VmaAllocator_T::ImportVulkanFunctions_Dynamic()
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkGetInstanceProcAddr && m_VulkanFunctions.vkGetDeviceProcAddr &&
 | 
						|
        "To use VMA_DYNAMIC_VULKAN_FUNCTIONS in new versions of VMA you now have to pass "
 | 
						|
        "VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. "
 | 
						|
        "Other members can be null.");
 | 
						|
 | 
						|
#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \
 | 
						|
    if(m_VulkanFunctions.memberName == VMA_NULL) \
 | 
						|
        m_VulkanFunctions.memberName = \
 | 
						|
            (functionPointerType)m_VulkanFunctions.vkGetInstanceProcAddr(m_hInstance, functionNameString);
 | 
						|
#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \
 | 
						|
    if(m_VulkanFunctions.memberName == VMA_NULL) \
 | 
						|
        m_VulkanFunctions.memberName = \
 | 
						|
            (functionPointerType)m_VulkanFunctions.vkGetDeviceProcAddr(m_hDevice, functionNameString);
 | 
						|
 | 
						|
    VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties");
 | 
						|
    VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage");
 | 
						|
    VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer");
 | 
						|
 | 
						|
#if VMA_VULKAN_VERSION >= 1001000
 | 
						|
    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | 
						|
    {
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2");
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2");
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2");
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | 
						|
    {
 | 
						|
        VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2");
 | 
						|
        // Try to fetch the pointer from the other name, based on suspected driver bug - see issue #410.
 | 
						|
        VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR");
 | 
						|
    }
 | 
						|
    else if(m_UseExtMemoryBudget)
 | 
						|
    {
 | 
						|
        VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR");
 | 
						|
        // Try to fetch the pointer from the other name, based on suspected driver bug - see issue #410.
 | 
						|
        VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_DEDICATED_ALLOCATION
 | 
						|
    if(m_UseKhrDedicatedAllocation)
 | 
						|
    {
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR");
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_BIND_MEMORY2
 | 
						|
    if(m_UseKhrBindMemory2)
 | 
						|
    {
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR");
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR");
 | 
						|
    }
 | 
						|
#endif // #if VMA_BIND_MEMORY2
 | 
						|
 | 
						|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | 
						|
    {
 | 
						|
        VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2");
 | 
						|
    }
 | 
						|
    else if(m_UseExtMemoryBudget)
 | 
						|
    {
 | 
						|
        VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR");
 | 
						|
    }
 | 
						|
#endif // #if VMA_MEMORY_BUDGET
 | 
						|
 | 
						|
#if VMA_VULKAN_VERSION >= 1003000
 | 
						|
    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
 | 
						|
    {
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirements, "vkGetDeviceBufferMemoryRequirements");
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirements, "vkGetDeviceImageMemoryRequirements");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if VMA_KHR_MAINTENANCE4
 | 
						|
    if(m_UseKhrMaintenance4)
 | 
						|
    {
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirementsKHR, "vkGetDeviceBufferMemoryRequirementsKHR");
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirementsKHR, "vkGetDeviceImageMemoryRequirementsKHR");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
    if (m_UseKhrExternalMemoryWin32)
 | 
						|
    {
 | 
						|
        VMA_FETCH_DEVICE_FUNC(vkGetMemoryWin32HandleKHR, PFN_vkGetMemoryWin32HandleKHR, "vkGetMemoryWin32HandleKHR");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#undef VMA_FETCH_DEVICE_FUNC
 | 
						|
#undef VMA_FETCH_INSTANCE_FUNC
 | 
						|
}
 | 
						|
 | 
						|
#endif // VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
 | 
						|
 | 
						|
void VmaAllocator_T::ValidateVulkanFunctions()
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
 | 
						|
    VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL);
 | 
						|
 | 
						|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
 | 
						|
        VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL);
 | 
						|
        VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | 
						|
    {
 | 
						|
        VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
    if (m_UseKhrExternalMemoryWin32)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(m_VulkanFunctions.vkGetMemoryWin32HandleKHR != VMA_NULL);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    // Not validating these due to suspected driver bugs with these function
 | 
						|
    // pointers being null despite correct extension or Vulkan version is enabled.
 | 
						|
    // See issue #397. Their usage in VMA is optional anyway.
 | 
						|
    //
 | 
						|
    // VMA_ASSERT(m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements != VMA_NULL);
 | 
						|
    // VMA_ASSERT(m_VulkanFunctions.vkGetDeviceImageMemoryRequirements != VMA_NULL);
 | 
						|
}
 | 
						|
 | 
						|
VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
 | 
						|
{
 | 
						|
    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
 | 
						|
    const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
 | 
						|
    const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;
 | 
						|
    return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32);
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::AllocateMemoryOfType(
 | 
						|
    VmaPool pool,
 | 
						|
    VkDeviceSize size,
 | 
						|
    VkDeviceSize alignment,
 | 
						|
    bool dedicatedPreferred,
 | 
						|
    VkBuffer dedicatedBuffer,
 | 
						|
    VkImage dedicatedImage,
 | 
						|
    VmaBufferImageUsage dedicatedBufferImageUsage,
 | 
						|
    const VmaAllocationCreateInfo& createInfo,
 | 
						|
    uint32_t memTypeIndex,
 | 
						|
    VmaSuballocationType suballocType,
 | 
						|
    VmaDedicatedAllocationList& dedicatedAllocations,
 | 
						|
    VmaBlockVector& blockVector,
 | 
						|
    size_t allocationCount,
 | 
						|
    VmaAllocation* pAllocations)
 | 
						|
{
 | 
						|
    VMA_ASSERT(pAllocations != VMA_NULL);
 | 
						|
    VMA_DEBUG_LOG_FORMAT("  AllocateMemory: MemoryTypeIndex=%" PRIu32 ", AllocationCount=%zu, Size=%" PRIu64, memTypeIndex, allocationCount, size);
 | 
						|
 | 
						|
    VmaAllocationCreateInfo finalCreateInfo = createInfo;
 | 
						|
    VkResult res = CalcMemTypeParams(
 | 
						|
        finalCreateInfo,
 | 
						|
        memTypeIndex,
 | 
						|
        size,
 | 
						|
        allocationCount);
 | 
						|
    if(res != VK_SUCCESS)
 | 
						|
        return res;
 | 
						|
 | 
						|
    if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
 | 
						|
    {
 | 
						|
        return AllocateDedicatedMemory(
 | 
						|
            pool,
 | 
						|
            size,
 | 
						|
            suballocType,
 | 
						|
            dedicatedAllocations,
 | 
						|
            memTypeIndex,
 | 
						|
            (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
 | 
						|
            (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
 | 
						|
            (finalCreateInfo.flags &
 | 
						|
                (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
 | 
						|
            (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
 | 
						|
            finalCreateInfo.pUserData,
 | 
						|
            finalCreateInfo.priority,
 | 
						|
            dedicatedBuffer,
 | 
						|
            dedicatedImage,
 | 
						|
            dedicatedBufferImageUsage,
 | 
						|
            allocationCount,
 | 
						|
            pAllocations,
 | 
						|
            blockVector.GetAllocationNextPtr());
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        const bool canAllocateDedicated =
 | 
						|
            (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
 | 
						|
            (pool == VK_NULL_HANDLE || !blockVector.HasExplicitBlockSize());
 | 
						|
 | 
						|
        if(canAllocateDedicated)
 | 
						|
        {
 | 
						|
            // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
 | 
						|
            if(size > blockVector.GetPreferredBlockSize() / 2)
 | 
						|
            {
 | 
						|
                dedicatedPreferred = true;
 | 
						|
            }
 | 
						|
            // Protection against creating each allocation as dedicated when we reach or exceed heap size/budget,
 | 
						|
            // which can quickly deplete maxMemoryAllocationCount: Don't prefer dedicated allocations when above
 | 
						|
            // 3/4 of the maximum allocation count.
 | 
						|
            if(m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount < UINT32_MAX / 4 &&
 | 
						|
                m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4)
 | 
						|
            {
 | 
						|
                dedicatedPreferred = false;
 | 
						|
            }
 | 
						|
 | 
						|
            if(dedicatedPreferred)
 | 
						|
            {
 | 
						|
                res = AllocateDedicatedMemory(
 | 
						|
                    pool,
 | 
						|
                    size,
 | 
						|
                    suballocType,
 | 
						|
                    dedicatedAllocations,
 | 
						|
                    memTypeIndex,
 | 
						|
                    (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
 | 
						|
                    (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
 | 
						|
                    (finalCreateInfo.flags &
 | 
						|
                        (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
 | 
						|
                    (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
 | 
						|
                    finalCreateInfo.pUserData,
 | 
						|
                    finalCreateInfo.priority,
 | 
						|
                    dedicatedBuffer,
 | 
						|
                    dedicatedImage,
 | 
						|
                    dedicatedBufferImageUsage,
 | 
						|
                    allocationCount,
 | 
						|
                    pAllocations,
 | 
						|
                    blockVector.GetAllocationNextPtr());
 | 
						|
                if(res == VK_SUCCESS)
 | 
						|
                {
 | 
						|
                    // Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here.
 | 
						|
                    VMA_DEBUG_LOG("    Allocated as DedicatedMemory");
 | 
						|
                    return VK_SUCCESS;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        res = blockVector.Allocate(
 | 
						|
            size,
 | 
						|
            alignment,
 | 
						|
            finalCreateInfo,
 | 
						|
            suballocType,
 | 
						|
            allocationCount,
 | 
						|
            pAllocations);
 | 
						|
        if(res == VK_SUCCESS)
 | 
						|
            return VK_SUCCESS;
 | 
						|
 | 
						|
        // Try dedicated memory.
 | 
						|
        if(canAllocateDedicated && !dedicatedPreferred)
 | 
						|
        {
 | 
						|
            res = AllocateDedicatedMemory(
 | 
						|
                pool,
 | 
						|
                size,
 | 
						|
                suballocType,
 | 
						|
                dedicatedAllocations,
 | 
						|
                memTypeIndex,
 | 
						|
                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
 | 
						|
                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
 | 
						|
                (finalCreateInfo.flags &
 | 
						|
                    (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
 | 
						|
                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
 | 
						|
                finalCreateInfo.pUserData,
 | 
						|
                finalCreateInfo.priority,
 | 
						|
                dedicatedBuffer,
 | 
						|
                dedicatedImage,
 | 
						|
                dedicatedBufferImageUsage,
 | 
						|
                allocationCount,
 | 
						|
                pAllocations,
 | 
						|
                blockVector.GetAllocationNextPtr());
 | 
						|
            if(res == VK_SUCCESS)
 | 
						|
            {
 | 
						|
                // Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here.
 | 
						|
                VMA_DEBUG_LOG("    Allocated as DedicatedMemory");
 | 
						|
                return VK_SUCCESS;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        // Everything failed: Return error code.
 | 
						|
        VMA_DEBUG_LOG("    vkAllocateMemory FAILED");
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::AllocateDedicatedMemory(
 | 
						|
    VmaPool pool,
 | 
						|
    VkDeviceSize size,
 | 
						|
    VmaSuballocationType suballocType,
 | 
						|
    VmaDedicatedAllocationList& dedicatedAllocations,
 | 
						|
    uint32_t memTypeIndex,
 | 
						|
    bool map,
 | 
						|
    bool isUserDataString,
 | 
						|
    bool isMappingAllowed,
 | 
						|
    bool canAliasMemory,
 | 
						|
    void* pUserData,
 | 
						|
    float priority,
 | 
						|
    VkBuffer dedicatedBuffer,
 | 
						|
    VkImage dedicatedImage,
 | 
						|
    VmaBufferImageUsage dedicatedBufferImageUsage,
 | 
						|
    size_t allocationCount,
 | 
						|
    VmaAllocation* pAllocations,
 | 
						|
    const void* pNextChain)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocationCount > 0 && pAllocations);
 | 
						|
 | 
						|
    VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
 | 
						|
    allocInfo.memoryTypeIndex = memTypeIndex;
 | 
						|
    allocInfo.allocationSize = size;
 | 
						|
    allocInfo.pNext = pNextChain;
 | 
						|
 | 
						|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
 | 
						|
    if(!canAliasMemory)
 | 
						|
    {
 | 
						|
        if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | 
						|
        {
 | 
						|
            if(dedicatedBuffer != VK_NULL_HANDLE)
 | 
						|
            {
 | 
						|
                VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
 | 
						|
                dedicatedAllocInfo.buffer = dedicatedBuffer;
 | 
						|
                VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
 | 
						|
            }
 | 
						|
            else if(dedicatedImage != VK_NULL_HANDLE)
 | 
						|
            {
 | 
						|
                dedicatedAllocInfo.image = dedicatedImage;
 | 
						|
                VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | 
						|
 | 
						|
#if VMA_BUFFER_DEVICE_ADDRESS
 | 
						|
    VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
 | 
						|
    if(m_UseKhrBufferDeviceAddress)
 | 
						|
    {
 | 
						|
        bool canContainBufferWithDeviceAddress = true;
 | 
						|
        if(dedicatedBuffer != VK_NULL_HANDLE)
 | 
						|
        {
 | 
						|
            canContainBufferWithDeviceAddress = dedicatedBufferImageUsage == VmaBufferImageUsage::UNKNOWN ||
 | 
						|
                dedicatedBufferImageUsage.Contains(VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT);
 | 
						|
        }
 | 
						|
        else if(dedicatedImage != VK_NULL_HANDLE)
 | 
						|
        {
 | 
						|
            canContainBufferWithDeviceAddress = false;
 | 
						|
        }
 | 
						|
        if(canContainBufferWithDeviceAddress)
 | 
						|
        {
 | 
						|
            allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
 | 
						|
            VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif // #if VMA_BUFFER_DEVICE_ADDRESS
 | 
						|
 | 
						|
#if VMA_MEMORY_PRIORITY
 | 
						|
    VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
 | 
						|
    if(m_UseExtMemoryPriority)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(priority >= 0.f && priority <= 1.f);
 | 
						|
        priorityInfo.priority = priority;
 | 
						|
        VmaPnextChainPushFront(&allocInfo, &priorityInfo);
 | 
						|
    }
 | 
						|
#endif // #if VMA_MEMORY_PRIORITY
 | 
						|
 | 
						|
#if VMA_EXTERNAL_MEMORY
 | 
						|
    // Attach VkExportMemoryAllocateInfoKHR if necessary.
 | 
						|
    VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
 | 
						|
    exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex);
 | 
						|
    if(exportMemoryAllocInfo.handleTypes != 0)
 | 
						|
    {
 | 
						|
        VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
 | 
						|
    }
 | 
						|
#endif // #if VMA_EXTERNAL_MEMORY
 | 
						|
 | 
						|
    size_t allocIndex;
 | 
						|
    VkResult res = VK_SUCCESS;
 | 
						|
    for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | 
						|
    {
 | 
						|
        res = AllocateDedicatedMemoryPage(
 | 
						|
            pool,
 | 
						|
            size,
 | 
						|
            suballocType,
 | 
						|
            memTypeIndex,
 | 
						|
            allocInfo,
 | 
						|
            map,
 | 
						|
            isUserDataString,
 | 
						|
            isMappingAllowed,
 | 
						|
            pUserData,
 | 
						|
            pAllocations + allocIndex);
 | 
						|
        if(res != VK_SUCCESS)
 | 
						|
        {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if(res == VK_SUCCESS)
 | 
						|
    {
 | 
						|
        for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | 
						|
        {
 | 
						|
            dedicatedAllocations.Register(pAllocations[allocIndex]);
 | 
						|
        }
 | 
						|
        VMA_DEBUG_LOG_FORMAT("    Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%" PRIu32, allocationCount, memTypeIndex);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        // Free all already created allocations.
 | 
						|
        while(allocIndex--)
 | 
						|
        {
 | 
						|
            VmaAllocation currAlloc = pAllocations[allocIndex];
 | 
						|
            VkDeviceMemory hMemory = currAlloc->GetMemory();
 | 
						|
 | 
						|
            /*
 | 
						|
            There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
 | 
						|
            before vkFreeMemory.
 | 
						|
 | 
						|
            if(currAlloc->GetMappedData() != VMA_NULL)
 | 
						|
            {
 | 
						|
                (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
 | 
						|
            }
 | 
						|
            */
 | 
						|
 | 
						|
            FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory);
 | 
						|
            m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize());
 | 
						|
            m_AllocationObjectAllocator.Free(currAlloc);
 | 
						|
        }
 | 
						|
 | 
						|
        memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
 | 
						|
    }
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::AllocateDedicatedMemoryPage(
 | 
						|
    VmaPool pool,
 | 
						|
    VkDeviceSize size,
 | 
						|
    VmaSuballocationType suballocType,
 | 
						|
    uint32_t memTypeIndex,
 | 
						|
    const VkMemoryAllocateInfo& allocInfo,
 | 
						|
    bool map,
 | 
						|
    bool isUserDataString,
 | 
						|
    bool isMappingAllowed,
 | 
						|
    void* pUserData,
 | 
						|
    VmaAllocation* pAllocation)
 | 
						|
{
 | 
						|
    VkDeviceMemory hMemory = VK_NULL_HANDLE;
 | 
						|
    VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
 | 
						|
    if(res < 0)
 | 
						|
    {
 | 
						|
        VMA_DEBUG_LOG("    vkAllocateMemory FAILED");
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    void* pMappedData = VMA_NULL;
 | 
						|
    if(map)
 | 
						|
    {
 | 
						|
        res = (*m_VulkanFunctions.vkMapMemory)(
 | 
						|
            m_hDevice,
 | 
						|
            hMemory,
 | 
						|
            0,
 | 
						|
            VK_WHOLE_SIZE,
 | 
						|
            0,
 | 
						|
            &pMappedData);
 | 
						|
        if(res < 0)
 | 
						|
        {
 | 
						|
            VMA_DEBUG_LOG("    vkMapMemory FAILED");
 | 
						|
            FreeVulkanMemory(memTypeIndex, size, hMemory);
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    *pAllocation = m_AllocationObjectAllocator.Allocate(isMappingAllowed);
 | 
						|
    (*pAllocation)->InitDedicatedAllocation(this, pool, memTypeIndex, hMemory, suballocType, pMappedData, size);
 | 
						|
    if (isUserDataString)
 | 
						|
        (*pAllocation)->SetName(this, (const char*)pUserData);
 | 
						|
    else
 | 
						|
        (*pAllocation)->SetUserData(this, pUserData);
 | 
						|
    m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size);
 | 
						|
    if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
 | 
						|
    {
 | 
						|
        FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
 | 
						|
    }
 | 
						|
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::GetBufferMemoryRequirements(
 | 
						|
    VkBuffer hBuffer,
 | 
						|
    VkMemoryRequirements& memReq,
 | 
						|
    bool& requiresDedicatedAllocation,
 | 
						|
    bool& prefersDedicatedAllocation) const
 | 
						|
{
 | 
						|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | 
						|
    {
 | 
						|
        VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
 | 
						|
        memReqInfo.buffer = hBuffer;
 | 
						|
 | 
						|
        VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
 | 
						|
 | 
						|
        VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
 | 
						|
        VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
 | 
						|
 | 
						|
        (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
 | 
						|
 | 
						|
        memReq = memReq2.memoryRequirements;
 | 
						|
        requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
 | 
						|
        prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    {
 | 
						|
        (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
 | 
						|
        requiresDedicatedAllocation = false;
 | 
						|
        prefersDedicatedAllocation  = false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::GetImageMemoryRequirements(
 | 
						|
    VkImage hImage,
 | 
						|
    VkMemoryRequirements& memReq,
 | 
						|
    bool& requiresDedicatedAllocation,
 | 
						|
    bool& prefersDedicatedAllocation) const
 | 
						|
{
 | 
						|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | 
						|
    {
 | 
						|
        VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
 | 
						|
        memReqInfo.image = hImage;
 | 
						|
 | 
						|
        VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
 | 
						|
 | 
						|
        VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
 | 
						|
        VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
 | 
						|
 | 
						|
        (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
 | 
						|
 | 
						|
        memReq = memReq2.memoryRequirements;
 | 
						|
        requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
 | 
						|
        prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | 
						|
    {
 | 
						|
        (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
 | 
						|
        requiresDedicatedAllocation = false;
 | 
						|
        prefersDedicatedAllocation  = false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::FindMemoryTypeIndex(
 | 
						|
    uint32_t memoryTypeBits,
 | 
						|
    const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | 
						|
    VmaBufferImageUsage bufImgUsage,
 | 
						|
    uint32_t* pMemoryTypeIndex) const
 | 
						|
{
 | 
						|
    memoryTypeBits &= GetGlobalMemoryTypeBits();
 | 
						|
 | 
						|
    if(pAllocationCreateInfo->memoryTypeBits != 0)
 | 
						|
    {
 | 
						|
        memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
 | 
						|
    }
 | 
						|
 | 
						|
    VkMemoryPropertyFlags requiredFlags = 0, preferredFlags = 0, notPreferredFlags = 0;
 | 
						|
    if(!FindMemoryPreferences(
 | 
						|
        IsIntegratedGpu(),
 | 
						|
        *pAllocationCreateInfo,
 | 
						|
        bufImgUsage,
 | 
						|
        requiredFlags, preferredFlags, notPreferredFlags))
 | 
						|
    {
 | 
						|
        return VK_ERROR_FEATURE_NOT_PRESENT;
 | 
						|
    }
 | 
						|
 | 
						|
    *pMemoryTypeIndex = UINT32_MAX;
 | 
						|
    uint32_t minCost = UINT32_MAX;
 | 
						|
    for(uint32_t memTypeIndex = 0, memTypeBit = 1;
 | 
						|
        memTypeIndex < GetMemoryTypeCount();
 | 
						|
        ++memTypeIndex, memTypeBit <<= 1)
 | 
						|
    {
 | 
						|
        // This memory type is acceptable according to memoryTypeBits bitmask.
 | 
						|
        if((memTypeBit & memoryTypeBits) != 0)
 | 
						|
        {
 | 
						|
            const VkMemoryPropertyFlags currFlags =
 | 
						|
                m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
 | 
						|
            // This memory type contains requiredFlags.
 | 
						|
            if((requiredFlags & ~currFlags) == 0)
 | 
						|
            {
 | 
						|
                // Calculate cost as number of bits from preferredFlags not present in this memory type.
 | 
						|
                uint32_t currCost = VMA_COUNT_BITS_SET(preferredFlags & ~currFlags) +
 | 
						|
                    VMA_COUNT_BITS_SET(currFlags & notPreferredFlags);
 | 
						|
                // Remember memory type with lowest cost.
 | 
						|
                if(currCost < minCost)
 | 
						|
                {
 | 
						|
                    *pMemoryTypeIndex = memTypeIndex;
 | 
						|
                    if(currCost == 0)
 | 
						|
                    {
 | 
						|
                        return VK_SUCCESS;
 | 
						|
                    }
 | 
						|
                    minCost = currCost;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::CalcMemTypeParams(
 | 
						|
    VmaAllocationCreateInfo& inoutCreateInfo,
 | 
						|
    uint32_t memTypeIndex,
 | 
						|
    VkDeviceSize size,
 | 
						|
    size_t allocationCount)
 | 
						|
{
 | 
						|
    // If memory type is not HOST_VISIBLE, disable MAPPED.
 | 
						|
    if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
 | 
						|
        (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
 | 
						|
    {
 | 
						|
        inoutCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | 
						|
    }
 | 
						|
 | 
						|
    if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
 | 
						|
        (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0)
 | 
						|
    {
 | 
						|
        const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
 | 
						|
        VmaBudget heapBudget = {};
 | 
						|
        GetHeapBudgets(&heapBudget, heapIndex, 1);
 | 
						|
        if(heapBudget.usage + size * allocationCount > heapBudget.budget)
 | 
						|
        {
 | 
						|
            return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::CalcAllocationParams(
 | 
						|
    VmaAllocationCreateInfo& inoutCreateInfo,
 | 
						|
    bool dedicatedRequired,
 | 
						|
    bool dedicatedPreferred)
 | 
						|
{
 | 
						|
    VMA_ASSERT((inoutCreateInfo.flags &
 | 
						|
        (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) !=
 | 
						|
        (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) &&
 | 
						|
        "Specifying both flags VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT and VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT is incorrect.");
 | 
						|
    VMA_ASSERT((((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) == 0 ||
 | 
						|
        (inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0)) &&
 | 
						|
        "Specifying VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT requires also VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.");
 | 
						|
    if(inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST)
 | 
						|
    {
 | 
						|
        if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0)
 | 
						|
        {
 | 
						|
            VMA_ASSERT((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0 &&
 | 
						|
                "When using VMA_ALLOCATION_CREATE_MAPPED_BIT and usage = VMA_MEMORY_USAGE_AUTO*, you must also specify VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // If memory is lazily allocated, it should be always dedicated.
 | 
						|
    if(dedicatedRequired ||
 | 
						|
        inoutCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED)
 | 
						|
    {
 | 
						|
        inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
 | 
						|
    }
 | 
						|
 | 
						|
    if(inoutCreateInfo.pool != VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() &&
 | 
						|
            (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
 | 
						|
        {
 | 
						|
            VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations.");
 | 
						|
            return VK_ERROR_FEATURE_NOT_PRESENT;
 | 
						|
        }
 | 
						|
        inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority();
 | 
						|
    }
 | 
						|
 | 
						|
    if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
 | 
						|
        (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
 | 
						|
        return VK_ERROR_FEATURE_NOT_PRESENT;
 | 
						|
    }
 | 
						|
 | 
						|
    if(VMA_DEBUG_ALWAYS_DEDICATED_MEMORY &&
 | 
						|
        (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
 | 
						|
    {
 | 
						|
        inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
 | 
						|
    }
 | 
						|
 | 
						|
    // Non-auto USAGE values imply HOST_ACCESS flags.
 | 
						|
    // And so does VMA_MEMORY_USAGE_UNKNOWN because it is used with custom pools.
 | 
						|
    // Which specific flag is used doesn't matter. They change things only when used with VMA_MEMORY_USAGE_AUTO*.
 | 
						|
    // Otherwise they just protect from assert on mapping.
 | 
						|
    if(inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO &&
 | 
						|
        inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE &&
 | 
						|
        inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_HOST)
 | 
						|
    {
 | 
						|
        if((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) == 0)
 | 
						|
        {
 | 
						|
            inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::AllocateMemory(
 | 
						|
    const VkMemoryRequirements& vkMemReq,
 | 
						|
    bool requiresDedicatedAllocation,
 | 
						|
    bool prefersDedicatedAllocation,
 | 
						|
    VkBuffer dedicatedBuffer,
 | 
						|
    VkImage dedicatedImage,
 | 
						|
    VmaBufferImageUsage dedicatedBufferImageUsage,
 | 
						|
    const VmaAllocationCreateInfo& createInfo,
 | 
						|
    VmaSuballocationType suballocType,
 | 
						|
    size_t allocationCount,
 | 
						|
    VmaAllocation* pAllocations)
 | 
						|
{
 | 
						|
    memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
 | 
						|
 | 
						|
    VMA_ASSERT(VmaIsPow2(vkMemReq.alignment));
 | 
						|
 | 
						|
    if(vkMemReq.size == 0)
 | 
						|
    {
 | 
						|
        return VK_ERROR_INITIALIZATION_FAILED;
 | 
						|
    }
 | 
						|
 | 
						|
    VmaAllocationCreateInfo createInfoFinal = createInfo;
 | 
						|
    VkResult res = CalcAllocationParams(createInfoFinal, requiresDedicatedAllocation, prefersDedicatedAllocation);
 | 
						|
    if(res != VK_SUCCESS)
 | 
						|
        return res;
 | 
						|
 | 
						|
    if(createInfoFinal.pool != VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector;
 | 
						|
        return AllocateMemoryOfType(
 | 
						|
            createInfoFinal.pool,
 | 
						|
            vkMemReq.size,
 | 
						|
            vkMemReq.alignment,
 | 
						|
            prefersDedicatedAllocation,
 | 
						|
            dedicatedBuffer,
 | 
						|
            dedicatedImage,
 | 
						|
            dedicatedBufferImageUsage,
 | 
						|
            createInfoFinal,
 | 
						|
            blockVector.GetMemoryTypeIndex(),
 | 
						|
            suballocType,
 | 
						|
            createInfoFinal.pool->m_DedicatedAllocations,
 | 
						|
            blockVector,
 | 
						|
            allocationCount,
 | 
						|
            pAllocations);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        // Bit mask of memory Vulkan types acceptable for this allocation.
 | 
						|
        uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
 | 
						|
        uint32_t memTypeIndex = UINT32_MAX;
 | 
						|
        res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex);
 | 
						|
        // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
 | 
						|
        if(res != VK_SUCCESS)
 | 
						|
            return res;
 | 
						|
        do
 | 
						|
        {
 | 
						|
            VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex];
 | 
						|
            VMA_ASSERT(blockVector && "Trying to use unsupported memory type!");
 | 
						|
            res = AllocateMemoryOfType(
 | 
						|
                VK_NULL_HANDLE,
 | 
						|
                vkMemReq.size,
 | 
						|
                vkMemReq.alignment,
 | 
						|
                requiresDedicatedAllocation || prefersDedicatedAllocation,
 | 
						|
                dedicatedBuffer,
 | 
						|
                dedicatedImage,
 | 
						|
                dedicatedBufferImageUsage,
 | 
						|
                createInfoFinal,
 | 
						|
                memTypeIndex,
 | 
						|
                suballocType,
 | 
						|
                m_DedicatedAllocations[memTypeIndex],
 | 
						|
                *blockVector,
 | 
						|
                allocationCount,
 | 
						|
                pAllocations);
 | 
						|
            // Allocation succeeded
 | 
						|
            if(res == VK_SUCCESS)
 | 
						|
                return VK_SUCCESS;
 | 
						|
 | 
						|
            // Remove old memTypeIndex from list of possibilities.
 | 
						|
            memoryTypeBits &= ~(1u << memTypeIndex);
 | 
						|
            // Find alternative memTypeIndex.
 | 
						|
            res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex);
 | 
						|
        } while(res == VK_SUCCESS);
 | 
						|
 | 
						|
        // No other matching memory type index could be found.
 | 
						|
        // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
 | 
						|
        return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::FreeMemory(
 | 
						|
    size_t allocationCount,
 | 
						|
    const VmaAllocation* pAllocations)
 | 
						|
{
 | 
						|
    VMA_ASSERT(pAllocations);
 | 
						|
 | 
						|
    for(size_t allocIndex = allocationCount; allocIndex--; )
 | 
						|
    {
 | 
						|
        VmaAllocation allocation = pAllocations[allocIndex];
 | 
						|
 | 
						|
        if(allocation != VK_NULL_HANDLE)
 | 
						|
        {
 | 
						|
            if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
 | 
						|
            {
 | 
						|
                FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED);
 | 
						|
            }
 | 
						|
 | 
						|
            switch(allocation->GetType())
 | 
						|
            {
 | 
						|
            case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | 
						|
                {
 | 
						|
                    VmaBlockVector* pBlockVector = VMA_NULL;
 | 
						|
                    VmaPool hPool = allocation->GetParentPool();
 | 
						|
                    if(hPool != VK_NULL_HANDLE)
 | 
						|
                    {
 | 
						|
                        pBlockVector = &hPool->m_BlockVector;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
 | 
						|
                        pBlockVector = m_pBlockVectors[memTypeIndex];
 | 
						|
                        VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!");
 | 
						|
                    }
 | 
						|
                    pBlockVector->Free(allocation);
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | 
						|
                FreeDedicatedMemory(allocation);
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                VMA_ASSERT(0);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::CalculateStatistics(VmaTotalStatistics* pStats)
 | 
						|
{
 | 
						|
    // Initialize.
 | 
						|
    VmaClearDetailedStatistics(pStats->total);
 | 
						|
    for(uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
 | 
						|
        VmaClearDetailedStatistics(pStats->memoryType[i]);
 | 
						|
    for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
 | 
						|
        VmaClearDetailedStatistics(pStats->memoryHeap[i]);
 | 
						|
 | 
						|
    // Process default pools.
 | 
						|
    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | 
						|
    {
 | 
						|
        VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
 | 
						|
        if (pBlockVector != VMA_NULL)
 | 
						|
            pBlockVector->AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
 | 
						|
    }
 | 
						|
 | 
						|
    // Process custom pools.
 | 
						|
    {
 | 
						|
        VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
 | 
						|
        for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
 | 
						|
        {
 | 
						|
            VmaBlockVector& blockVector = pool->m_BlockVector;
 | 
						|
            const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex();
 | 
						|
            blockVector.AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
 | 
						|
            pool->m_DedicatedAllocations.AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Process dedicated allocations.
 | 
						|
    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | 
						|
    {
 | 
						|
        m_DedicatedAllocations[memTypeIndex].AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
 | 
						|
    }
 | 
						|
 | 
						|
    // Sum from memory types to memory heaps.
 | 
						|
    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | 
						|
    {
 | 
						|
        const uint32_t memHeapIndex = m_MemProps.memoryTypes[memTypeIndex].heapIndex;
 | 
						|
        VmaAddDetailedStatistics(pStats->memoryHeap[memHeapIndex], pStats->memoryType[memTypeIndex]);
 | 
						|
    }
 | 
						|
 | 
						|
    // Sum from memory heaps to total.
 | 
						|
    for(uint32_t memHeapIndex = 0; memHeapIndex < GetMemoryHeapCount(); ++memHeapIndex)
 | 
						|
        VmaAddDetailedStatistics(pStats->total, pStats->memoryHeap[memHeapIndex]);
 | 
						|
 | 
						|
    VMA_ASSERT(pStats->total.statistics.allocationCount == 0 ||
 | 
						|
        pStats->total.allocationSizeMax >= pStats->total.allocationSizeMin);
 | 
						|
    VMA_ASSERT(pStats->total.unusedRangeCount == 0 ||
 | 
						|
        pStats->total.unusedRangeSizeMax >= pStats->total.unusedRangeSizeMin);
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::GetHeapBudgets(VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount)
 | 
						|
{
 | 
						|
#if VMA_MEMORY_BUDGET
 | 
						|
    if(m_UseExtMemoryBudget)
 | 
						|
    {
 | 
						|
        if(m_Budget.m_OperationsSinceBudgetFetch < 30)
 | 
						|
        {
 | 
						|
            VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex);
 | 
						|
            for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
 | 
						|
            {
 | 
						|
                const uint32_t heapIndex = firstHeap + i;
 | 
						|
 | 
						|
                outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex];
 | 
						|
                outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex];
 | 
						|
                outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex];
 | 
						|
                outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
 | 
						|
 | 
						|
                if(m_Budget.m_VulkanUsage[heapIndex] + outBudgets->statistics.blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex])
 | 
						|
                {
 | 
						|
                    outBudgets->usage = m_Budget.m_VulkanUsage[heapIndex] +
 | 
						|
                        outBudgets->statistics.blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    outBudgets->usage = 0;
 | 
						|
                }
 | 
						|
 | 
						|
                // Have to take MIN with heap size because explicit HeapSizeLimit is included in it.
 | 
						|
                outBudgets->budget = VMA_MIN(
 | 
						|
                    m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            UpdateVulkanBudget(); // Outside of mutex lock
 | 
						|
            GetHeapBudgets(outBudgets, firstHeap, heapCount); // Recursion
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif
 | 
						|
    {
 | 
						|
        for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
 | 
						|
        {
 | 
						|
            const uint32_t heapIndex = firstHeap + i;
 | 
						|
 | 
						|
            outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex];
 | 
						|
            outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex];
 | 
						|
            outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex];
 | 
						|
            outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
 | 
						|
 | 
						|
            outBudgets->usage = outBudgets->statistics.blockBytes;
 | 
						|
            outBudgets->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
 | 
						|
{
 | 
						|
    pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
 | 
						|
    pAllocationInfo->deviceMemory = hAllocation->GetMemory();
 | 
						|
    pAllocationInfo->offset = hAllocation->GetOffset();
 | 
						|
    pAllocationInfo->size = hAllocation->GetSize();
 | 
						|
    pAllocationInfo->pMappedData = hAllocation->GetMappedData();
 | 
						|
    pAllocationInfo->pUserData = hAllocation->GetUserData();
 | 
						|
    pAllocationInfo->pName = hAllocation->GetName();
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::GetAllocationInfo2(VmaAllocation hAllocation, VmaAllocationInfo2* pAllocationInfo)
 | 
						|
{
 | 
						|
    GetAllocationInfo(hAllocation, &pAllocationInfo->allocationInfo);
 | 
						|
 | 
						|
    switch (hAllocation->GetType())
 | 
						|
    {
 | 
						|
    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | 
						|
        pAllocationInfo->blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize();
 | 
						|
        pAllocationInfo->dedicatedMemory = VK_FALSE;
 | 
						|
        break;
 | 
						|
    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | 
						|
        pAllocationInfo->blockSize = pAllocationInfo->allocationInfo.size;
 | 
						|
        pAllocationInfo->dedicatedMemory = VK_TRUE;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
 | 
						|
{
 | 
						|
    VMA_DEBUG_LOG_FORMAT("  CreatePool: MemoryTypeIndex=%" PRIu32 ", flags=%" PRIu32, pCreateInfo->memoryTypeIndex, pCreateInfo->flags);
 | 
						|
 | 
						|
    VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
 | 
						|
 | 
						|
    // Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash.
 | 
						|
    if(pCreateInfo->pMemoryAllocateNext)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0);
 | 
						|
    }
 | 
						|
 | 
						|
    if(newCreateInfo.maxBlockCount == 0)
 | 
						|
    {
 | 
						|
        newCreateInfo.maxBlockCount = SIZE_MAX;
 | 
						|
    }
 | 
						|
    if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount)
 | 
						|
    {
 | 
						|
        return VK_ERROR_INITIALIZATION_FAILED;
 | 
						|
    }
 | 
						|
    // Memory type index out of range or forbidden.
 | 
						|
    if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() ||
 | 
						|
        ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0)
 | 
						|
    {
 | 
						|
        return VK_ERROR_FEATURE_NOT_PRESENT;
 | 
						|
    }
 | 
						|
    if(newCreateInfo.minAllocationAlignment > 0)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment));
 | 
						|
    }
 | 
						|
 | 
						|
    const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
 | 
						|
 | 
						|
    *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
 | 
						|
 | 
						|
    VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
 | 
						|
    if(res != VK_SUCCESS)
 | 
						|
    {
 | 
						|
        vma_delete(this, *pPool);
 | 
						|
        *pPool = VMA_NULL;
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add to m_Pools.
 | 
						|
    {
 | 
						|
        VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
 | 
						|
        (*pPool)->SetId(m_NextPoolId++);
 | 
						|
        m_Pools.PushBack(*pPool);
 | 
						|
    }
 | 
						|
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::DestroyPool(VmaPool pool)
 | 
						|
{
 | 
						|
    // Remove from m_Pools.
 | 
						|
    {
 | 
						|
        VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
 | 
						|
        m_Pools.Remove(pool);
 | 
						|
    }
 | 
						|
 | 
						|
    vma_delete(this, pool);
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats)
 | 
						|
{
 | 
						|
    VmaClearStatistics(*pPoolStats);
 | 
						|
    pool->m_BlockVector.AddStatistics(*pPoolStats);
 | 
						|
    pool->m_DedicatedAllocations.AddStatistics(*pPoolStats);
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats)
 | 
						|
{
 | 
						|
    VmaClearDetailedStatistics(*pPoolStats);
 | 
						|
    pool->m_BlockVector.AddDetailedStatistics(*pPoolStats);
 | 
						|
    pool->m_DedicatedAllocations.AddDetailedStatistics(*pPoolStats);
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
 | 
						|
{
 | 
						|
    m_CurrentFrameIndex.store(frameIndex);
 | 
						|
 | 
						|
#if VMA_MEMORY_BUDGET
 | 
						|
    if(m_UseExtMemoryBudget)
 | 
						|
    {
 | 
						|
        UpdateVulkanBudget();
 | 
						|
    }
 | 
						|
#endif // #if VMA_MEMORY_BUDGET
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)
 | 
						|
{
 | 
						|
    return hPool->m_BlockVector.CheckCorruption();
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
 | 
						|
{
 | 
						|
    VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT;
 | 
						|
 | 
						|
    // Process default pools.
 | 
						|
    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | 
						|
    {
 | 
						|
        VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
 | 
						|
        if(pBlockVector != VMA_NULL)
 | 
						|
        {
 | 
						|
            VkResult localRes = pBlockVector->CheckCorruption();
 | 
						|
            switch(localRes)
 | 
						|
            {
 | 
						|
            case VK_ERROR_FEATURE_NOT_PRESENT:
 | 
						|
                break;
 | 
						|
            case VK_SUCCESS:
 | 
						|
                finalRes = VK_SUCCESS;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                return localRes;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Process custom pools.
 | 
						|
    {
 | 
						|
        VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
 | 
						|
        for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
 | 
						|
        {
 | 
						|
            if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)
 | 
						|
            {
 | 
						|
                VkResult localRes = pool->m_BlockVector.CheckCorruption();
 | 
						|
                switch(localRes)
 | 
						|
                {
 | 
						|
                case VK_ERROR_FEATURE_NOT_PRESENT:
 | 
						|
                    break;
 | 
						|
                case VK_SUCCESS:
 | 
						|
                    finalRes = VK_SUCCESS;
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    return localRes;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return finalRes;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
 | 
						|
{
 | 
						|
    AtomicTransactionalIncrement<VMA_ATOMIC_UINT32> deviceMemoryCountIncrement;
 | 
						|
    const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount);
 | 
						|
#if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
 | 
						|
    if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount)
 | 
						|
    {
 | 
						|
        return VK_ERROR_TOO_MANY_OBJECTS;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
 | 
						|
 | 
						|
    // HeapSizeLimit is in effect for this heap.
 | 
						|
    if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0)
 | 
						|
    {
 | 
						|
        const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
 | 
						|
        VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex];
 | 
						|
        for(;;)
 | 
						|
        {
 | 
						|
            const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize;
 | 
						|
            if(blockBytesAfterAllocation > heapSize)
 | 
						|
            {
 | 
						|
                return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | 
						|
            }
 | 
						|
            if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation))
 | 
						|
            {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize;
 | 
						|
    }
 | 
						|
    ++m_Budget.m_BlockCount[heapIndex];
 | 
						|
 | 
						|
    // VULKAN CALL vkAllocateMemory.
 | 
						|
    VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
 | 
						|
 | 
						|
    if(res == VK_SUCCESS)
 | 
						|
    {
 | 
						|
#if VMA_MEMORY_BUDGET
 | 
						|
        ++m_Budget.m_OperationsSinceBudgetFetch;
 | 
						|
#endif
 | 
						|
 | 
						|
        // Informative callback.
 | 
						|
        if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
 | 
						|
        {
 | 
						|
            (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData);
 | 
						|
        }
 | 
						|
 | 
						|
        deviceMemoryCountIncrement.Commit();
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        --m_Budget.m_BlockCount[heapIndex];
 | 
						|
        m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize;
 | 
						|
    }
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
 | 
						|
{
 | 
						|
    // Informative callback.
 | 
						|
    if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
 | 
						|
    {
 | 
						|
        (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData);
 | 
						|
    }
 | 
						|
 | 
						|
    // VULKAN CALL vkFreeMemory.
 | 
						|
    (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
 | 
						|
 | 
						|
    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);
 | 
						|
    --m_Budget.m_BlockCount[heapIndex];
 | 
						|
    m_Budget.m_BlockBytes[heapIndex] -= size;
 | 
						|
 | 
						|
    --m_DeviceMemoryCount;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::BindVulkanBuffer(
 | 
						|
    VkDeviceMemory memory,
 | 
						|
    VkDeviceSize memoryOffset,
 | 
						|
    VkBuffer buffer,
 | 
						|
    const void* pNext)
 | 
						|
{
 | 
						|
    if(pNext != VMA_NULL)
 | 
						|
    {
 | 
						|
#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
 | 
						|
        if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
 | 
						|
            m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL)
 | 
						|
        {
 | 
						|
            VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR };
 | 
						|
            bindBufferMemoryInfo.pNext = pNext;
 | 
						|
            bindBufferMemoryInfo.buffer = buffer;
 | 
						|
            bindBufferMemoryInfo.memory = memory;
 | 
						|
            bindBufferMemoryInfo.memoryOffset = memoryOffset;
 | 
						|
            return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
 | 
						|
        }
 | 
						|
        else
 | 
						|
#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
 | 
						|
        {
 | 
						|
            return VK_ERROR_EXTENSION_NOT_PRESENT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::BindVulkanImage(
 | 
						|
    VkDeviceMemory memory,
 | 
						|
    VkDeviceSize memoryOffset,
 | 
						|
    VkImage image,
 | 
						|
    const void* pNext)
 | 
						|
{
 | 
						|
    if(pNext != VMA_NULL)
 | 
						|
    {
 | 
						|
#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
 | 
						|
        if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
 | 
						|
            m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL)
 | 
						|
        {
 | 
						|
            VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR };
 | 
						|
            bindBufferMemoryInfo.pNext = pNext;
 | 
						|
            bindBufferMemoryInfo.image = image;
 | 
						|
            bindBufferMemoryInfo.memory = memory;
 | 
						|
            bindBufferMemoryInfo.memoryOffset = memoryOffset;
 | 
						|
            return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
 | 
						|
        }
 | 
						|
        else
 | 
						|
#endif // #if VMA_BIND_MEMORY2
 | 
						|
        {
 | 
						|
            return VK_ERROR_EXTENSION_NOT_PRESENT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
 | 
						|
{
 | 
						|
    switch(hAllocation->GetType())
 | 
						|
    {
 | 
						|
    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | 
						|
        {
 | 
						|
            VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
 | 
						|
            char *pBytes = VMA_NULL;
 | 
						|
            VkResult res = pBlock->Map(this, 1, (void**)&pBytes);
 | 
						|
            if(res == VK_SUCCESS)
 | 
						|
            {
 | 
						|
                *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
 | 
						|
                hAllocation->BlockAllocMap();
 | 
						|
            }
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | 
						|
        return hAllocation->DedicatedAllocMap(this, ppData);
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
        return VK_ERROR_MEMORY_MAP_FAILED;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
 | 
						|
{
 | 
						|
    switch(hAllocation->GetType())
 | 
						|
    {
 | 
						|
    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | 
						|
        {
 | 
						|
            VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
 | 
						|
            hAllocation->BlockAllocUnmap();
 | 
						|
            pBlock->Unmap(this, 1);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | 
						|
        hAllocation->DedicatedAllocUnmap(this);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::BindBufferMemory(
 | 
						|
    VmaAllocation hAllocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    VkBuffer hBuffer,
 | 
						|
    const void* pNext)
 | 
						|
{
 | 
						|
    VkResult res = VK_ERROR_UNKNOWN_COPY;
 | 
						|
    switch(hAllocation->GetType())
 | 
						|
    {
 | 
						|
    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | 
						|
        res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext);
 | 
						|
        break;
 | 
						|
    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | 
						|
    {
 | 
						|
        VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
 | 
						|
        VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block.");
 | 
						|
        res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::BindImageMemory(
 | 
						|
    VmaAllocation hAllocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    VkImage hImage,
 | 
						|
    const void* pNext)
 | 
						|
{
 | 
						|
    VkResult res = VK_ERROR_UNKNOWN_COPY;
 | 
						|
    switch(hAllocation->GetType())
 | 
						|
    {
 | 
						|
    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | 
						|
        res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext);
 | 
						|
        break;
 | 
						|
    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | 
						|
    {
 | 
						|
        VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
 | 
						|
        VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block.");
 | 
						|
        res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
        VMA_ASSERT(0);
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::FlushOrInvalidateAllocation(
 | 
						|
    VmaAllocation hAllocation,
 | 
						|
    VkDeviceSize offset, VkDeviceSize size,
 | 
						|
    VMA_CACHE_OPERATION op)
 | 
						|
{
 | 
						|
    VkResult res = VK_SUCCESS;
 | 
						|
 | 
						|
    VkMappedMemoryRange memRange = {};
 | 
						|
    if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange))
 | 
						|
    {
 | 
						|
        switch(op)
 | 
						|
        {
 | 
						|
        case VMA_CACHE_FLUSH:
 | 
						|
            res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange);
 | 
						|
            break;
 | 
						|
        case VMA_CACHE_INVALIDATE:
 | 
						|
            res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            VMA_ASSERT(0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // else: Just ignore this call.
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::FlushOrInvalidateAllocations(
 | 
						|
    uint32_t allocationCount,
 | 
						|
    const VmaAllocation* allocations,
 | 
						|
    const VkDeviceSize* offsets, const VkDeviceSize* sizes,
 | 
						|
    VMA_CACHE_OPERATION op)
 | 
						|
{
 | 
						|
    typedef VmaStlAllocator<VkMappedMemoryRange> RangeAllocator;
 | 
						|
    typedef VmaSmallVector<VkMappedMemoryRange, RangeAllocator, 16> RangeVector;
 | 
						|
    RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks()));
 | 
						|
 | 
						|
    for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | 
						|
    {
 | 
						|
        const VmaAllocation alloc = allocations[allocIndex];
 | 
						|
        const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0;
 | 
						|
        const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE;
 | 
						|
        VkMappedMemoryRange newRange;
 | 
						|
        if(GetFlushOrInvalidateRange(alloc, offset, size, newRange))
 | 
						|
        {
 | 
						|
            ranges.push_back(newRange);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    VkResult res = VK_SUCCESS;
 | 
						|
    if(!ranges.empty())
 | 
						|
    {
 | 
						|
        switch(op)
 | 
						|
        {
 | 
						|
        case VMA_CACHE_FLUSH:
 | 
						|
            res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
 | 
						|
            break;
 | 
						|
        case VMA_CACHE_INVALIDATE:
 | 
						|
            res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            VMA_ASSERT(0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // else: Just ignore this call.
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::CopyMemoryToAllocation(
 | 
						|
    const void* pSrcHostPointer,
 | 
						|
    VmaAllocation dstAllocation,
 | 
						|
    VkDeviceSize dstAllocationLocalOffset,
 | 
						|
    VkDeviceSize size)
 | 
						|
{
 | 
						|
    void* dstMappedData = VMA_NULL;
 | 
						|
    VkResult res = Map(dstAllocation, &dstMappedData);
 | 
						|
    if(res == VK_SUCCESS)
 | 
						|
    {
 | 
						|
        memcpy((char*)dstMappedData + dstAllocationLocalOffset, pSrcHostPointer, (size_t)size);
 | 
						|
        Unmap(dstAllocation);
 | 
						|
        res = FlushOrInvalidateAllocation(dstAllocation, dstAllocationLocalOffset, size, VMA_CACHE_FLUSH);
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VkResult VmaAllocator_T::CopyAllocationToMemory(
 | 
						|
    VmaAllocation srcAllocation,
 | 
						|
    VkDeviceSize srcAllocationLocalOffset,
 | 
						|
    void* pDstHostPointer,
 | 
						|
    VkDeviceSize size)
 | 
						|
{
 | 
						|
    void* srcMappedData = VMA_NULL;
 | 
						|
    VkResult res = Map(srcAllocation, &srcMappedData);
 | 
						|
    if(res == VK_SUCCESS)
 | 
						|
    {
 | 
						|
        res = FlushOrInvalidateAllocation(srcAllocation, srcAllocationLocalOffset, size, VMA_CACHE_INVALIDATE);
 | 
						|
        if(res == VK_SUCCESS)
 | 
						|
        {
 | 
						|
            memcpy(pDstHostPointer, (const char*)srcMappedData + srcAllocationLocalOffset, (size_t)size);
 | 
						|
            Unmap(srcAllocation);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
 | 
						|
 | 
						|
    const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
 | 
						|
    VmaPool parentPool = allocation->GetParentPool();
 | 
						|
    if(parentPool == VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        // Default pool
 | 
						|
        m_DedicatedAllocations[memTypeIndex].Unregister(allocation);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        // Custom pool
 | 
						|
        parentPool->m_DedicatedAllocations.Unregister(allocation);
 | 
						|
    }
 | 
						|
 | 
						|
    VkDeviceMemory hMemory = allocation->GetMemory();
 | 
						|
 | 
						|
    /*
 | 
						|
    There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
 | 
						|
    before vkFreeMemory.
 | 
						|
 | 
						|
    if(allocation->GetMappedData() != VMA_NULL)
 | 
						|
    {
 | 
						|
        (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
 | 
						|
    }
 | 
						|
    */
 | 
						|
 | 
						|
    FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
 | 
						|
 | 
						|
    m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize());
 | 
						|
    allocation->Destroy(this);
 | 
						|
    m_AllocationObjectAllocator.Free(allocation);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG_FORMAT("    Freed DedicatedMemory MemoryTypeIndex=%" PRIu32, memTypeIndex);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const
 | 
						|
{
 | 
						|
    VkBufferCreateInfo dummyBufCreateInfo;
 | 
						|
    VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo);
 | 
						|
 | 
						|
    uint32_t memoryTypeBits = 0;
 | 
						|
 | 
						|
    // Create buffer.
 | 
						|
    VkBuffer buf = VK_NULL_HANDLE;
 | 
						|
    VkResult res = (*GetVulkanFunctions().vkCreateBuffer)(
 | 
						|
        m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf);
 | 
						|
    if(res == VK_SUCCESS)
 | 
						|
    {
 | 
						|
        // Query for supported memory types.
 | 
						|
        VkMemoryRequirements memReq;
 | 
						|
        (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq);
 | 
						|
        memoryTypeBits = memReq.memoryTypeBits;
 | 
						|
 | 
						|
        // Destroy buffer.
 | 
						|
        (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks());
 | 
						|
    }
 | 
						|
 | 
						|
    return memoryTypeBits;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const
 | 
						|
{
 | 
						|
    // Make sure memory information is already fetched.
 | 
						|
    VMA_ASSERT(GetMemoryTypeCount() > 0);
 | 
						|
 | 
						|
    uint32_t memoryTypeBits = UINT32_MAX;
 | 
						|
 | 
						|
    if(!m_UseAmdDeviceCoherentMemory)
 | 
						|
    {
 | 
						|
        // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD.
 | 
						|
        for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | 
						|
        {
 | 
						|
            if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0)
 | 
						|
            {
 | 
						|
                memoryTypeBits &= ~(1u << memTypeIndex);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return memoryTypeBits;
 | 
						|
}
 | 
						|
 | 
						|
bool VmaAllocator_T::GetFlushOrInvalidateRange(
 | 
						|
    VmaAllocation allocation,
 | 
						|
    VkDeviceSize offset, VkDeviceSize size,
 | 
						|
    VkMappedMemoryRange& outRange) const
 | 
						|
{
 | 
						|
    const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
 | 
						|
    if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex))
 | 
						|
    {
 | 
						|
        const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
 | 
						|
        const VkDeviceSize allocationSize = allocation->GetSize();
 | 
						|
        VMA_ASSERT(offset <= allocationSize);
 | 
						|
 | 
						|
        outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
 | 
						|
        outRange.pNext = VMA_NULL;
 | 
						|
        outRange.memory = allocation->GetMemory();
 | 
						|
 | 
						|
        switch(allocation->GetType())
 | 
						|
        {
 | 
						|
        case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | 
						|
            outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
 | 
						|
            if(size == VK_WHOLE_SIZE)
 | 
						|
            {
 | 
						|
                outRange.size = allocationSize - outRange.offset;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                VMA_ASSERT(offset + size <= allocationSize);
 | 
						|
                outRange.size = VMA_MIN(
 | 
						|
                    VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize),
 | 
						|
                    allocationSize - outRange.offset);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | 
						|
        {
 | 
						|
            // 1. Still within this allocation.
 | 
						|
            outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
 | 
						|
            if(size == VK_WHOLE_SIZE)
 | 
						|
            {
 | 
						|
                size = allocationSize - offset;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                VMA_ASSERT(offset + size <= allocationSize);
 | 
						|
            }
 | 
						|
            outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize);
 | 
						|
 | 
						|
            // 2. Adjust to whole block.
 | 
						|
            const VkDeviceSize allocationOffset = allocation->GetOffset();
 | 
						|
            VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0);
 | 
						|
            const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize();
 | 
						|
            outRange.offset += allocationOffset;
 | 
						|
            outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset);
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        default:
 | 
						|
            VMA_ASSERT(0);
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_MEMORY_BUDGET
 | 
						|
void VmaAllocator_T::UpdateVulkanBudget()
 | 
						|
{
 | 
						|
    VMA_ASSERT(m_UseExtMemoryBudget);
 | 
						|
 | 
						|
    VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR };
 | 
						|
 | 
						|
    VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT };
 | 
						|
    VmaPnextChainPushFront(&memProps, &budgetProps);
 | 
						|
 | 
						|
    GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps);
 | 
						|
 | 
						|
    {
 | 
						|
        VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex);
 | 
						|
 | 
						|
        for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
 | 
						|
        {
 | 
						|
            m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex];
 | 
						|
            m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex];
 | 
						|
            m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load();
 | 
						|
 | 
						|
            // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size.
 | 
						|
            if(m_Budget.m_VulkanBudget[heapIndex] == 0)
 | 
						|
            {
 | 
						|
                m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
 | 
						|
            }
 | 
						|
            else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size)
 | 
						|
            {
 | 
						|
                m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size;
 | 
						|
            }
 | 
						|
            if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0)
 | 
						|
            {
 | 
						|
                m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        m_Budget.m_OperationsSinceBudgetFetch = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif // VMA_MEMORY_BUDGET
 | 
						|
 | 
						|
void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern)
 | 
						|
{
 | 
						|
    if(VMA_DEBUG_INITIALIZE_ALLOCATIONS &&
 | 
						|
        hAllocation->IsMappingAllowed() &&
 | 
						|
        (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
 | 
						|
    {
 | 
						|
        void* pData = VMA_NULL;
 | 
						|
        VkResult res = Map(hAllocation, &pData);
 | 
						|
        if(res == VK_SUCCESS)
 | 
						|
        {
 | 
						|
            memset(pData, (int)pattern, (size_t)hAllocation->GetSize());
 | 
						|
            FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH);
 | 
						|
            Unmap(hAllocation);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation.");
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits()
 | 
						|
{
 | 
						|
    uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load();
 | 
						|
    if(memoryTypeBits == UINT32_MAX)
 | 
						|
    {
 | 
						|
        memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits();
 | 
						|
        m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits);
 | 
						|
    }
 | 
						|
    return memoryTypeBits;
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
 | 
						|
{
 | 
						|
    json.WriteString("DefaultPools");
 | 
						|
    json.BeginObject();
 | 
						|
    {
 | 
						|
        for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | 
						|
        {
 | 
						|
            VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex];
 | 
						|
            VmaDedicatedAllocationList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex];
 | 
						|
            if (pBlockVector != VMA_NULL)
 | 
						|
            {
 | 
						|
                json.BeginString("Type ");
 | 
						|
                json.ContinueString(memTypeIndex);
 | 
						|
                json.EndString();
 | 
						|
                json.BeginObject();
 | 
						|
                {
 | 
						|
                    json.WriteString("PreferredBlockSize");
 | 
						|
                    json.WriteNumber(pBlockVector->GetPreferredBlockSize());
 | 
						|
 | 
						|
                    json.WriteString("Blocks");
 | 
						|
                    pBlockVector->PrintDetailedMap(json);
 | 
						|
 | 
						|
                    json.WriteString("DedicatedAllocations");
 | 
						|
                    dedicatedAllocList.BuildStatsString(json);
 | 
						|
                }
 | 
						|
                json.EndObject();
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    json.EndObject();
 | 
						|
 | 
						|
    json.WriteString("CustomPools");
 | 
						|
    json.BeginObject();
 | 
						|
    {
 | 
						|
        VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
 | 
						|
        if (!m_Pools.IsEmpty())
 | 
						|
        {
 | 
						|
            for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | 
						|
            {
 | 
						|
                bool displayType = true;
 | 
						|
                size_t index = 0;
 | 
						|
                for (VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
 | 
						|
                {
 | 
						|
                    VmaBlockVector& blockVector = pool->m_BlockVector;
 | 
						|
                    if (blockVector.GetMemoryTypeIndex() == memTypeIndex)
 | 
						|
                    {
 | 
						|
                        if (displayType)
 | 
						|
                        {
 | 
						|
                            json.BeginString("Type ");
 | 
						|
                            json.ContinueString(memTypeIndex);
 | 
						|
                            json.EndString();
 | 
						|
                            json.BeginArray();
 | 
						|
                            displayType = false;
 | 
						|
                        }
 | 
						|
 | 
						|
                        json.BeginObject();
 | 
						|
                        {
 | 
						|
                            json.WriteString("Name");
 | 
						|
                            json.BeginString();
 | 
						|
                            json.ContinueString((uint64_t)index++);
 | 
						|
                            if (pool->GetName())
 | 
						|
                            {
 | 
						|
                                json.ContinueString(" - ");
 | 
						|
                                json.ContinueString(pool->GetName());
 | 
						|
                            }
 | 
						|
                            json.EndString();
 | 
						|
 | 
						|
                            json.WriteString("PreferredBlockSize");
 | 
						|
                            json.WriteNumber(blockVector.GetPreferredBlockSize());
 | 
						|
 | 
						|
                            json.WriteString("Blocks");
 | 
						|
                            blockVector.PrintDetailedMap(json);
 | 
						|
 | 
						|
                            json.WriteString("DedicatedAllocations");
 | 
						|
                            pool->m_DedicatedAllocations.BuildStatsString(json);
 | 
						|
                        }
 | 
						|
                        json.EndObject();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if (!displayType)
 | 
						|
                    json.EndArray();
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    json.EndObject();
 | 
						|
}
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
#endif // _VMA_ALLOCATOR_T_FUNCTIONS
 | 
						|
 | 
						|
 | 
						|
#ifndef _VMA_PUBLIC_INTERFACE
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
 | 
						|
    const VmaAllocatorCreateInfo* pCreateInfo,
 | 
						|
    VmaAllocator* pAllocator)
 | 
						|
{
 | 
						|
    VMA_ASSERT(pCreateInfo && pAllocator);
 | 
						|
    VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 ||
 | 
						|
        (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 4));
 | 
						|
    VMA_DEBUG_LOG("vmaCreateAllocator");
 | 
						|
    *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
 | 
						|
    VkResult result = (*pAllocator)->Init(pCreateInfo);
 | 
						|
    if(result < 0)
 | 
						|
    {
 | 
						|
        vma_delete(pCreateInfo->pAllocationCallbacks, *pAllocator);
 | 
						|
        *pAllocator = VK_NULL_HANDLE;
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
 | 
						|
    VmaAllocator allocator)
 | 
						|
{
 | 
						|
    if(allocator != VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        VMA_DEBUG_LOG("vmaDestroyAllocator");
 | 
						|
        VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
 | 
						|
        vma_delete(&allocationCallbacks, allocator);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pAllocatorInfo);
 | 
						|
    pAllocatorInfo->instance = allocator->m_hInstance;
 | 
						|
    pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice();
 | 
						|
    pAllocatorInfo->device = allocator->m_hDevice;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
 | 
						|
    *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
 | 
						|
    *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    uint32_t memoryTypeIndex,
 | 
						|
    VkMemoryPropertyFlags* pFlags)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pFlags);
 | 
						|
    VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
 | 
						|
    *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    uint32_t frameIndex)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator);
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    allocator->SetCurrentFrameIndex(frameIndex);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaTotalStatistics* pStats)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pStats);
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
    allocator->CalculateStatistics(pStats);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaBudget* pBudgets)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pBudgets);
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
    allocator->GetHeapBudgets(pBudgets, 0, allocator->GetMemoryHeapCount());
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    char** ppStatsString,
 | 
						|
    VkBool32 detailedMap)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && ppStatsString);
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    VmaStringBuilder sb(allocator->GetAllocationCallbacks());
 | 
						|
    {
 | 
						|
        VmaBudget budgets[VK_MAX_MEMORY_HEAPS];
 | 
						|
        allocator->GetHeapBudgets(budgets, 0, allocator->GetMemoryHeapCount());
 | 
						|
 | 
						|
        VmaTotalStatistics stats;
 | 
						|
        allocator->CalculateStatistics(&stats);
 | 
						|
 | 
						|
        VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
 | 
						|
        json.BeginObject();
 | 
						|
        {
 | 
						|
            json.WriteString("General");
 | 
						|
            json.BeginObject();
 | 
						|
            {
 | 
						|
                const VkPhysicalDeviceProperties& deviceProperties = allocator->m_PhysicalDeviceProperties;
 | 
						|
                const VkPhysicalDeviceMemoryProperties& memoryProperties = allocator->m_MemProps;
 | 
						|
 | 
						|
                json.WriteString("API");
 | 
						|
                json.WriteString("Vulkan");
 | 
						|
 | 
						|
                json.WriteString("apiVersion");
 | 
						|
                json.BeginString();
 | 
						|
                json.ContinueString(VK_VERSION_MAJOR(deviceProperties.apiVersion));
 | 
						|
                json.ContinueString(".");
 | 
						|
                json.ContinueString(VK_VERSION_MINOR(deviceProperties.apiVersion));
 | 
						|
                json.ContinueString(".");
 | 
						|
                json.ContinueString(VK_VERSION_PATCH(deviceProperties.apiVersion));
 | 
						|
                json.EndString();
 | 
						|
 | 
						|
                json.WriteString("GPU");
 | 
						|
                json.WriteString(deviceProperties.deviceName);
 | 
						|
                json.WriteString("deviceType");
 | 
						|
                json.WriteNumber(static_cast<uint32_t>(deviceProperties.deviceType));
 | 
						|
 | 
						|
                json.WriteString("maxMemoryAllocationCount");
 | 
						|
                json.WriteNumber(deviceProperties.limits.maxMemoryAllocationCount);
 | 
						|
                json.WriteString("bufferImageGranularity");
 | 
						|
                json.WriteNumber(deviceProperties.limits.bufferImageGranularity);
 | 
						|
                json.WriteString("nonCoherentAtomSize");
 | 
						|
                json.WriteNumber(deviceProperties.limits.nonCoherentAtomSize);
 | 
						|
 | 
						|
                json.WriteString("memoryHeapCount");
 | 
						|
                json.WriteNumber(memoryProperties.memoryHeapCount);
 | 
						|
                json.WriteString("memoryTypeCount");
 | 
						|
                json.WriteNumber(memoryProperties.memoryTypeCount);
 | 
						|
            }
 | 
						|
            json.EndObject();
 | 
						|
        }
 | 
						|
        {
 | 
						|
            json.WriteString("Total");
 | 
						|
            VmaPrintDetailedStatistics(json, stats.total);
 | 
						|
        }
 | 
						|
        {
 | 
						|
            json.WriteString("MemoryInfo");
 | 
						|
            json.BeginObject();
 | 
						|
            {
 | 
						|
                for (uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
 | 
						|
                {
 | 
						|
                    json.BeginString("Heap ");
 | 
						|
                    json.ContinueString(heapIndex);
 | 
						|
                    json.EndString();
 | 
						|
                    json.BeginObject();
 | 
						|
                    {
 | 
						|
                        const VkMemoryHeap& heapInfo = allocator->m_MemProps.memoryHeaps[heapIndex];
 | 
						|
                        json.WriteString("Flags");
 | 
						|
                        json.BeginArray(true);
 | 
						|
                        {
 | 
						|
                            if (heapInfo.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT)
 | 
						|
                                json.WriteString("DEVICE_LOCAL");
 | 
						|
                        #if VMA_VULKAN_VERSION >= 1001000
 | 
						|
                            if (heapInfo.flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT)
 | 
						|
                                json.WriteString("MULTI_INSTANCE");
 | 
						|
                        #endif
 | 
						|
 | 
						|
                            VkMemoryHeapFlags flags = heapInfo.flags &
 | 
						|
                                ~(VK_MEMORY_HEAP_DEVICE_LOCAL_BIT
 | 
						|
                        #if VMA_VULKAN_VERSION >= 1001000
 | 
						|
                                    | VK_MEMORY_HEAP_MULTI_INSTANCE_BIT
 | 
						|
                        #endif
 | 
						|
                                    );
 | 
						|
                            if (flags != 0)
 | 
						|
                                json.WriteNumber(flags);
 | 
						|
                        }
 | 
						|
                        json.EndArray();
 | 
						|
 | 
						|
                        json.WriteString("Size");
 | 
						|
                        json.WriteNumber(heapInfo.size);
 | 
						|
 | 
						|
                        json.WriteString("Budget");
 | 
						|
                        json.BeginObject();
 | 
						|
                        {
 | 
						|
                            json.WriteString("BudgetBytes");
 | 
						|
                            json.WriteNumber(budgets[heapIndex].budget);
 | 
						|
                            json.WriteString("UsageBytes");
 | 
						|
                            json.WriteNumber(budgets[heapIndex].usage);
 | 
						|
                        }
 | 
						|
                        json.EndObject();
 | 
						|
 | 
						|
                        json.WriteString("Stats");
 | 
						|
                        VmaPrintDetailedStatistics(json, stats.memoryHeap[heapIndex]);
 | 
						|
 | 
						|
                        json.WriteString("MemoryPools");
 | 
						|
                        json.BeginObject();
 | 
						|
                        {
 | 
						|
                            for (uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
 | 
						|
                            {
 | 
						|
                                if (allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
 | 
						|
                                {
 | 
						|
                                    json.BeginString("Type ");
 | 
						|
                                    json.ContinueString(typeIndex);
 | 
						|
                                    json.EndString();
 | 
						|
                                    json.BeginObject();
 | 
						|
                                    {
 | 
						|
                                        json.WriteString("Flags");
 | 
						|
                                        json.BeginArray(true);
 | 
						|
                                        {
 | 
						|
                                            VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
 | 
						|
                                            if (flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
 | 
						|
                                                json.WriteString("DEVICE_LOCAL");
 | 
						|
                                            if (flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
 | 
						|
                                                json.WriteString("HOST_VISIBLE");
 | 
						|
                                            if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
 | 
						|
                                                json.WriteString("HOST_COHERENT");
 | 
						|
                                            if (flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT)
 | 
						|
                                                json.WriteString("HOST_CACHED");
 | 
						|
                                            if (flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT)
 | 
						|
                                                json.WriteString("LAZILY_ALLOCATED");
 | 
						|
                                        #if VMA_VULKAN_VERSION >= 1001000
 | 
						|
                                            if (flags & VK_MEMORY_PROPERTY_PROTECTED_BIT)
 | 
						|
                                                json.WriteString("PROTECTED");
 | 
						|
                                        #endif
 | 
						|
                                        #if VK_AMD_device_coherent_memory
 | 
						|
                                            if (flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY)
 | 
						|
                                                json.WriteString("DEVICE_COHERENT_AMD");
 | 
						|
                                            if (flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)
 | 
						|
                                                json.WriteString("DEVICE_UNCACHED_AMD");
 | 
						|
                                        #endif
 | 
						|
 | 
						|
                                            flags &= ~(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
 | 
						|
                                        #if VMA_VULKAN_VERSION >= 1001000
 | 
						|
                                                | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT
 | 
						|
                                        #endif
 | 
						|
                                        #if VK_AMD_device_coherent_memory
 | 
						|
                                                | VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY
 | 
						|
                                                | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY
 | 
						|
                                        #endif
 | 
						|
                                                | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
 | 
						|
                                                | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
 | 
						|
                                                | VK_MEMORY_PROPERTY_HOST_CACHED_BIT);
 | 
						|
                                            if (flags != 0)
 | 
						|
                                                json.WriteNumber(flags);
 | 
						|
                                        }
 | 
						|
                                        json.EndArray();
 | 
						|
 | 
						|
                                        json.WriteString("Stats");
 | 
						|
                                        VmaPrintDetailedStatistics(json, stats.memoryType[typeIndex]);
 | 
						|
                                    }
 | 
						|
                                    json.EndObject();
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
 | 
						|
                        }
 | 
						|
                        json.EndObject();
 | 
						|
                    }
 | 
						|
                    json.EndObject();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            json.EndObject();
 | 
						|
        }
 | 
						|
 | 
						|
        if (detailedMap == VK_TRUE)
 | 
						|
            allocator->PrintDetailedMap(json);
 | 
						|
 | 
						|
        json.EndObject();
 | 
						|
    }
 | 
						|
 | 
						|
    *ppStatsString = VmaCreateStringCopy(allocator->GetAllocationCallbacks(), sb.GetData(), sb.GetLength());
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    char* pStatsString)
 | 
						|
{
 | 
						|
    if(pStatsString != VMA_NULL)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(allocator);
 | 
						|
        VmaFreeString(allocator->GetAllocationCallbacks(), pStatsString);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
 | 
						|
/*
 | 
						|
This function is not protected by any mutex because it just reads immutable data.
 | 
						|
*/
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    uint32_t memoryTypeBits,
 | 
						|
    const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | 
						|
    uint32_t* pMemoryTypeIndex)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator != VK_NULL_HANDLE);
 | 
						|
    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
 | 
						|
    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
 | 
						|
 | 
						|
    return allocator->FindMemoryTypeIndex(memoryTypeBits, pAllocationCreateInfo, VmaBufferImageUsage::UNKNOWN, pMemoryTypeIndex);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const VkBufferCreateInfo* pBufferCreateInfo,
 | 
						|
    const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | 
						|
    uint32_t* pMemoryTypeIndex)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator != VK_NULL_HANDLE);
 | 
						|
    VMA_ASSERT(pBufferCreateInfo != VMA_NULL);
 | 
						|
    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
 | 
						|
    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
 | 
						|
 | 
						|
    const VkDevice hDev = allocator->m_hDevice;
 | 
						|
    const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
 | 
						|
    VkResult res;
 | 
						|
 | 
						|
#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
 | 
						|
    if(funcs->vkGetDeviceBufferMemoryRequirements)
 | 
						|
    {
 | 
						|
        // Can query straight from VkBufferCreateInfo :)
 | 
						|
        VkDeviceBufferMemoryRequirementsKHR devBufMemReq = {VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS_KHR};
 | 
						|
        devBufMemReq.pCreateInfo = pBufferCreateInfo;
 | 
						|
 | 
						|
        VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2};
 | 
						|
        (*funcs->vkGetDeviceBufferMemoryRequirements)(hDev, &devBufMemReq, &memReq);
 | 
						|
 | 
						|
        res = allocator->FindMemoryTypeIndex(
 | 
						|
            memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo,
 | 
						|
            VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), pMemoryTypeIndex);
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif // VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
 | 
						|
    {
 | 
						|
        // Must create a dummy buffer to query :(
 | 
						|
        VkBuffer hBuffer = VK_NULL_HANDLE;
 | 
						|
        res = funcs->vkCreateBuffer(
 | 
						|
            hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);
 | 
						|
        if(res == VK_SUCCESS)
 | 
						|
        {
 | 
						|
            VkMemoryRequirements memReq = {};
 | 
						|
            funcs->vkGetBufferMemoryRequirements(hDev, hBuffer, &memReq);
 | 
						|
 | 
						|
            res = allocator->FindMemoryTypeIndex(
 | 
						|
                memReq.memoryTypeBits, pAllocationCreateInfo,
 | 
						|
                VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), pMemoryTypeIndex);
 | 
						|
 | 
						|
            funcs->vkDestroyBuffer(
 | 
						|
                hDev, hBuffer, allocator->GetAllocationCallbacks());
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const VkImageCreateInfo* pImageCreateInfo,
 | 
						|
    const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | 
						|
    uint32_t* pMemoryTypeIndex)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator != VK_NULL_HANDLE);
 | 
						|
    VMA_ASSERT(pImageCreateInfo != VMA_NULL);
 | 
						|
    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
 | 
						|
    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
 | 
						|
 | 
						|
    const VkDevice hDev = allocator->m_hDevice;
 | 
						|
    const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
 | 
						|
    VkResult res;
 | 
						|
 | 
						|
#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
 | 
						|
    if(funcs->vkGetDeviceImageMemoryRequirements)
 | 
						|
    {
 | 
						|
        // Can query straight from VkImageCreateInfo :)
 | 
						|
        VkDeviceImageMemoryRequirementsKHR devImgMemReq = {VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS_KHR};
 | 
						|
        devImgMemReq.pCreateInfo = pImageCreateInfo;
 | 
						|
        VMA_ASSERT(pImageCreateInfo->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY && (pImageCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_COPY) == 0 &&
 | 
						|
            "Cannot use this VkImageCreateInfo with vmaFindMemoryTypeIndexForImageInfo as I don't know what to pass as VkDeviceImageMemoryRequirements::planeAspect.");
 | 
						|
 | 
						|
        VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2};
 | 
						|
        (*funcs->vkGetDeviceImageMemoryRequirements)(hDev, &devImgMemReq, &memReq);
 | 
						|
 | 
						|
        res = allocator->FindMemoryTypeIndex(
 | 
						|
            memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo,
 | 
						|
            VmaBufferImageUsage(*pImageCreateInfo), pMemoryTypeIndex);
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif // VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
 | 
						|
    {
 | 
						|
        // Must create a dummy image to query :(
 | 
						|
        VkImage hImage = VK_NULL_HANDLE;
 | 
						|
        res = funcs->vkCreateImage(
 | 
						|
            hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);
 | 
						|
        if(res == VK_SUCCESS)
 | 
						|
        {
 | 
						|
            VkMemoryRequirements memReq = {};
 | 
						|
            funcs->vkGetImageMemoryRequirements(hDev, hImage, &memReq);
 | 
						|
 | 
						|
            res = allocator->FindMemoryTypeIndex(
 | 
						|
                memReq.memoryTypeBits, pAllocationCreateInfo,
 | 
						|
                VmaBufferImageUsage(*pImageCreateInfo), pMemoryTypeIndex);
 | 
						|
 | 
						|
            funcs->vkDestroyImage(
 | 
						|
                hDev, hImage, allocator->GetAllocationCallbacks());
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const VmaPoolCreateInfo* pCreateInfo,
 | 
						|
    VmaPool* pPool)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pCreateInfo && pPool);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaCreatePool");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->CreatePool(pCreateInfo, pPool);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaPool pool)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator);
 | 
						|
 | 
						|
    if(pool == VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaDestroyPool");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    allocator->DestroyPool(pool);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaPool pool,
 | 
						|
    VmaStatistics* pPoolStats)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pool && pPoolStats);
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    allocator->GetPoolStatistics(pool, pPoolStats);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaPool pool,
 | 
						|
    VmaDetailedStatistics* pPoolStats)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pool && pPoolStats);
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    allocator->CalculatePoolStatistics(pool, pPoolStats);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pool);
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaCheckPoolCorruption");
 | 
						|
 | 
						|
    return allocator->CheckPoolCorruption(pool);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaPool pool,
 | 
						|
    const char** ppName)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pool && ppName);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaGetPoolName");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    *ppName = pool->GetName();
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaPool pool,
 | 
						|
    const char* pName)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pool);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaSetPoolName");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    pool->SetName(pName);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const VkMemoryRequirements* pVkMemoryRequirements,
 | 
						|
    const VmaAllocationCreateInfo* pCreateInfo,
 | 
						|
    VmaAllocation* pAllocation,
 | 
						|
    VmaAllocationInfo* pAllocationInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaAllocateMemory");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    VkResult result = allocator->AllocateMemory(
 | 
						|
        *pVkMemoryRequirements,
 | 
						|
        false, // requiresDedicatedAllocation
 | 
						|
        false, // prefersDedicatedAllocation
 | 
						|
        VK_NULL_HANDLE, // dedicatedBuffer
 | 
						|
        VK_NULL_HANDLE, // dedicatedImage
 | 
						|
        VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage
 | 
						|
        *pCreateInfo,
 | 
						|
        VMA_SUBALLOCATION_TYPE_UNKNOWN,
 | 
						|
        1, // allocationCount
 | 
						|
        pAllocation);
 | 
						|
 | 
						|
    if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
 | 
						|
    {
 | 
						|
        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const VkMemoryRequirements* pVkMemoryRequirements,
 | 
						|
    const VmaAllocationCreateInfo* pCreateInfo,
 | 
						|
    size_t allocationCount,
 | 
						|
    VmaAllocation* pAllocations,
 | 
						|
    VmaAllocationInfo* pAllocationInfo)
 | 
						|
{
 | 
						|
    if(allocationCount == 0)
 | 
						|
    {
 | 
						|
        return VK_SUCCESS;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaAllocateMemoryPages");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    VkResult result = allocator->AllocateMemory(
 | 
						|
        *pVkMemoryRequirements,
 | 
						|
        false, // requiresDedicatedAllocation
 | 
						|
        false, // prefersDedicatedAllocation
 | 
						|
        VK_NULL_HANDLE, // dedicatedBuffer
 | 
						|
        VK_NULL_HANDLE, // dedicatedImage
 | 
						|
        VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage
 | 
						|
        *pCreateInfo,
 | 
						|
        VMA_SUBALLOCATION_TYPE_UNKNOWN,
 | 
						|
        allocationCount,
 | 
						|
        pAllocations);
 | 
						|
 | 
						|
    if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
 | 
						|
    {
 | 
						|
        for(size_t i = 0; i < allocationCount; ++i)
 | 
						|
        {
 | 
						|
            allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VkBuffer buffer,
 | 
						|
    const VmaAllocationCreateInfo* pCreateInfo,
 | 
						|
    VmaAllocation* pAllocation,
 | 
						|
    VmaAllocationInfo* pAllocationInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    VkMemoryRequirements vkMemReq = {};
 | 
						|
    bool requiresDedicatedAllocation = false;
 | 
						|
    bool prefersDedicatedAllocation = false;
 | 
						|
    allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
 | 
						|
        requiresDedicatedAllocation,
 | 
						|
        prefersDedicatedAllocation);
 | 
						|
 | 
						|
    VkResult result = allocator->AllocateMemory(
 | 
						|
        vkMemReq,
 | 
						|
        requiresDedicatedAllocation,
 | 
						|
        prefersDedicatedAllocation,
 | 
						|
        buffer, // dedicatedBuffer
 | 
						|
        VK_NULL_HANDLE, // dedicatedImage
 | 
						|
        VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage
 | 
						|
        *pCreateInfo,
 | 
						|
        VMA_SUBALLOCATION_TYPE_BUFFER,
 | 
						|
        1, // allocationCount
 | 
						|
        pAllocation);
 | 
						|
 | 
						|
    if(pAllocationInfo && result == VK_SUCCESS)
 | 
						|
    {
 | 
						|
        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VkImage image,
 | 
						|
    const VmaAllocationCreateInfo* pCreateInfo,
 | 
						|
    VmaAllocation* pAllocation,
 | 
						|
    VmaAllocationInfo* pAllocationInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    VkMemoryRequirements vkMemReq = {};
 | 
						|
    bool requiresDedicatedAllocation = false;
 | 
						|
    bool prefersDedicatedAllocation  = false;
 | 
						|
    allocator->GetImageMemoryRequirements(image, vkMemReq,
 | 
						|
        requiresDedicatedAllocation, prefersDedicatedAllocation);
 | 
						|
 | 
						|
    VkResult result = allocator->AllocateMemory(
 | 
						|
        vkMemReq,
 | 
						|
        requiresDedicatedAllocation,
 | 
						|
        prefersDedicatedAllocation,
 | 
						|
        VK_NULL_HANDLE, // dedicatedBuffer
 | 
						|
        image, // dedicatedImage
 | 
						|
        VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage
 | 
						|
        *pCreateInfo,
 | 
						|
        VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
 | 
						|
        1, // allocationCount
 | 
						|
        pAllocation);
 | 
						|
 | 
						|
    if(pAllocationInfo && result == VK_SUCCESS)
 | 
						|
    {
 | 
						|
        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator);
 | 
						|
 | 
						|
    if(allocation == VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaFreeMemory");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    allocator->FreeMemory(
 | 
						|
        1, // allocationCount
 | 
						|
        &allocation);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    size_t allocationCount,
 | 
						|
    const VmaAllocation* pAllocations)
 | 
						|
{
 | 
						|
    if(allocationCount == 0)
 | 
						|
    {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_ASSERT(allocator);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaFreeMemoryPages");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    allocator->FreeMemory(allocationCount, pAllocations);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation,
 | 
						|
    VmaAllocationInfo* pAllocationInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation && pAllocationInfo);
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    allocator->GetAllocationInfo(allocation, pAllocationInfo);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo2(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation,
 | 
						|
    VmaAllocationInfo2* pAllocationInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation && pAllocationInfo);
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    allocator->GetAllocationInfo2(allocation, pAllocationInfo);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation,
 | 
						|
    void* pUserData)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation);
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    allocation->SetUserData(allocator, pUserData);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    const char* VMA_NULLABLE pName)
 | 
						|
{
 | 
						|
    allocation->SetName(allocator, pName);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkMemoryPropertyFlags* VMA_NOT_NULL pFlags)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation && pFlags);
 | 
						|
    const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
 | 
						|
    *pFlags = allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation,
 | 
						|
    void** ppData)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation && ppData);
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->Map(allocation, ppData);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation);
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    allocator->Unmap(allocation);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation,
 | 
						|
    VkDeviceSize offset,
 | 
						|
    VkDeviceSize size)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaFlushAllocation");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation,
 | 
						|
    VkDeviceSize offset,
 | 
						|
    VkDeviceSize size)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaInvalidateAllocation");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    uint32_t allocationCount,
 | 
						|
    const VmaAllocation* allocations,
 | 
						|
    const VkDeviceSize* offsets,
 | 
						|
    const VkDeviceSize* sizes)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator);
 | 
						|
 | 
						|
    if(allocationCount == 0)
 | 
						|
    {
 | 
						|
        return VK_SUCCESS;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_ASSERT(allocations);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaFlushAllocations");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    uint32_t allocationCount,
 | 
						|
    const VmaAllocation* allocations,
 | 
						|
    const VkDeviceSize* offsets,
 | 
						|
    const VkDeviceSize* sizes)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator);
 | 
						|
 | 
						|
    if(allocationCount == 0)
 | 
						|
    {
 | 
						|
        return VK_SUCCESS;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_ASSERT(allocations);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaInvalidateAllocations");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyMemoryToAllocation(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const void* pSrcHostPointer,
 | 
						|
    VmaAllocation dstAllocation,
 | 
						|
    VkDeviceSize dstAllocationLocalOffset,
 | 
						|
    VkDeviceSize size)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pSrcHostPointer && dstAllocation);
 | 
						|
 | 
						|
    if(size == 0)
 | 
						|
    {
 | 
						|
        return VK_SUCCESS;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaCopyMemoryToAllocation");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->CopyMemoryToAllocation(pSrcHostPointer, dstAllocation, dstAllocationLocalOffset, size);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyAllocationToMemory(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation srcAllocation,
 | 
						|
    VkDeviceSize srcAllocationLocalOffset,
 | 
						|
    void* pDstHostPointer,
 | 
						|
    VkDeviceSize size)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && srcAllocation && pDstHostPointer);
 | 
						|
 | 
						|
    if(size == 0)
 | 
						|
    {
 | 
						|
        return VK_SUCCESS;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaCopyAllocationToMemory");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->CopyAllocationToMemory(srcAllocation, srcAllocationLocalOffset, pDstHostPointer, size);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    uint32_t memoryTypeBits)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaCheckCorruption");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->CheckCorruption(memoryTypeBits);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const VmaDefragmentationInfo* pInfo,
 | 
						|
    VmaDefragmentationContext* pContext)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pInfo && pContext);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaBeginDefragmentation");
 | 
						|
 | 
						|
    if (pInfo->pool != VMA_NULL)
 | 
						|
    {
 | 
						|
        // Check if run on supported algorithms
 | 
						|
        if (pInfo->pool->m_BlockVector.GetAlgorithm() & VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
 | 
						|
            return VK_ERROR_FEATURE_NOT_PRESENT;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    *pContext = vma_new(allocator, VmaDefragmentationContext_T)(allocator, *pInfo);
 | 
						|
    return VK_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaDefragmentationContext context,
 | 
						|
    VmaDefragmentationStats* pStats)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && context);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaEndDefragmentation");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    if (pStats)
 | 
						|
        context->GetStats(*pStats);
 | 
						|
    vma_delete(allocator, context);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaDefragmentationContext VMA_NOT_NULL context,
 | 
						|
    VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(context && pPassInfo);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaBeginDefragmentationPass");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return context->DefragmentPassBegin(*pPassInfo);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaDefragmentationContext VMA_NOT_NULL context,
 | 
						|
    VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(context && pPassInfo);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaEndDefragmentationPass");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return context->DefragmentPassEnd(*pPassInfo);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation,
 | 
						|
    VkBuffer buffer)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation && buffer);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaBindBufferMemory");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    VkBuffer buffer,
 | 
						|
    const void* pNext)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation && buffer);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaBindBufferMemory2");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation,
 | 
						|
    VkImage image)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation && image);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaBindImageMemory");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    return allocator->BindImageMemory(allocation, 0, image, VMA_NULL);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VmaAllocation allocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    VkImage image,
 | 
						|
    const void* pNext)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation && image);
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaBindImageMemory2");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
        return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const VkBufferCreateInfo* pBufferCreateInfo,
 | 
						|
    const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | 
						|
    VkBuffer* pBuffer,
 | 
						|
    VmaAllocation* pAllocation,
 | 
						|
    VmaAllocationInfo* pAllocationInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
 | 
						|
 | 
						|
    if(pBufferCreateInfo->size == 0)
 | 
						|
    {
 | 
						|
        return VK_ERROR_INITIALIZATION_FAILED;
 | 
						|
    }
 | 
						|
    if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
 | 
						|
        !allocator->m_UseKhrBufferDeviceAddress)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
 | 
						|
        return VK_ERROR_INITIALIZATION_FAILED;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaCreateBuffer");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    *pBuffer = VK_NULL_HANDLE;
 | 
						|
    *pAllocation = VK_NULL_HANDLE;
 | 
						|
 | 
						|
    // 1. Create VkBuffer.
 | 
						|
    VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
 | 
						|
        allocator->m_hDevice,
 | 
						|
        pBufferCreateInfo,
 | 
						|
        allocator->GetAllocationCallbacks(),
 | 
						|
        pBuffer);
 | 
						|
    if(res >= 0)
 | 
						|
    {
 | 
						|
        // 2. vkGetBufferMemoryRequirements.
 | 
						|
        VkMemoryRequirements vkMemReq = {};
 | 
						|
        bool requiresDedicatedAllocation = false;
 | 
						|
        bool prefersDedicatedAllocation  = false;
 | 
						|
        allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
 | 
						|
            requiresDedicatedAllocation, prefersDedicatedAllocation);
 | 
						|
 | 
						|
        // 3. Allocate memory using allocator.
 | 
						|
        res = allocator->AllocateMemory(
 | 
						|
            vkMemReq,
 | 
						|
            requiresDedicatedAllocation,
 | 
						|
            prefersDedicatedAllocation,
 | 
						|
            *pBuffer, // dedicatedBuffer
 | 
						|
            VK_NULL_HANDLE, // dedicatedImage
 | 
						|
            VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), // dedicatedBufferImageUsage
 | 
						|
            *pAllocationCreateInfo,
 | 
						|
            VMA_SUBALLOCATION_TYPE_BUFFER,
 | 
						|
            1, // allocationCount
 | 
						|
            pAllocation);
 | 
						|
 | 
						|
        if(res >= 0)
 | 
						|
        {
 | 
						|
            // 3. Bind buffer with memory.
 | 
						|
            if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
 | 
						|
            {
 | 
						|
                res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
 | 
						|
            }
 | 
						|
            if(res >= 0)
 | 
						|
            {
 | 
						|
                // All steps succeeded.
 | 
						|
                #if VMA_STATS_STRING_ENABLED
 | 
						|
                    (*pAllocation)->InitBufferUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5);
 | 
						|
                #endif
 | 
						|
                if(pAllocationInfo != VMA_NULL)
 | 
						|
                {
 | 
						|
                    allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | 
						|
                }
 | 
						|
 | 
						|
                return VK_SUCCESS;
 | 
						|
            }
 | 
						|
            allocator->FreeMemory(
 | 
						|
                1, // allocationCount
 | 
						|
                pAllocation);
 | 
						|
            *pAllocation = VK_NULL_HANDLE;
 | 
						|
            (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | 
						|
            *pBuffer = VK_NULL_HANDLE;
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | 
						|
        *pBuffer = VK_NULL_HANDLE;
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const VkBufferCreateInfo* pBufferCreateInfo,
 | 
						|
    const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | 
						|
    VkDeviceSize minAlignment,
 | 
						|
    VkBuffer* pBuffer,
 | 
						|
    VmaAllocation* pAllocation,
 | 
						|
    VmaAllocationInfo* pAllocationInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && VmaIsPow2(minAlignment) && pBuffer && pAllocation);
 | 
						|
 | 
						|
    if(pBufferCreateInfo->size == 0)
 | 
						|
    {
 | 
						|
        return VK_ERROR_INITIALIZATION_FAILED;
 | 
						|
    }
 | 
						|
    if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
 | 
						|
        !allocator->m_UseKhrBufferDeviceAddress)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
 | 
						|
        return VK_ERROR_INITIALIZATION_FAILED;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaCreateBufferWithAlignment");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    *pBuffer = VK_NULL_HANDLE;
 | 
						|
    *pAllocation = VK_NULL_HANDLE;
 | 
						|
 | 
						|
    // 1. Create VkBuffer.
 | 
						|
    VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
 | 
						|
        allocator->m_hDevice,
 | 
						|
        pBufferCreateInfo,
 | 
						|
        allocator->GetAllocationCallbacks(),
 | 
						|
        pBuffer);
 | 
						|
    if(res >= 0)
 | 
						|
    {
 | 
						|
        // 2. vkGetBufferMemoryRequirements.
 | 
						|
        VkMemoryRequirements vkMemReq = {};
 | 
						|
        bool requiresDedicatedAllocation = false;
 | 
						|
        bool prefersDedicatedAllocation  = false;
 | 
						|
        allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
 | 
						|
            requiresDedicatedAllocation, prefersDedicatedAllocation);
 | 
						|
 | 
						|
        // 2a. Include minAlignment
 | 
						|
        vkMemReq.alignment = VMA_MAX(vkMemReq.alignment, minAlignment);
 | 
						|
 | 
						|
        // 3. Allocate memory using allocator.
 | 
						|
        res = allocator->AllocateMemory(
 | 
						|
            vkMemReq,
 | 
						|
            requiresDedicatedAllocation,
 | 
						|
            prefersDedicatedAllocation,
 | 
						|
            *pBuffer, // dedicatedBuffer
 | 
						|
            VK_NULL_HANDLE, // dedicatedImage
 | 
						|
            VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), // dedicatedBufferImageUsage
 | 
						|
            *pAllocationCreateInfo,
 | 
						|
            VMA_SUBALLOCATION_TYPE_BUFFER,
 | 
						|
            1, // allocationCount
 | 
						|
            pAllocation);
 | 
						|
 | 
						|
        if(res >= 0)
 | 
						|
        {
 | 
						|
            // 3. Bind buffer with memory.
 | 
						|
            if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
 | 
						|
            {
 | 
						|
                res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
 | 
						|
            }
 | 
						|
            if(res >= 0)
 | 
						|
            {
 | 
						|
                // All steps succeeded.
 | 
						|
                #if VMA_STATS_STRING_ENABLED
 | 
						|
                    (*pAllocation)->InitBufferUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5);
 | 
						|
                #endif
 | 
						|
                if(pAllocationInfo != VMA_NULL)
 | 
						|
                {
 | 
						|
                    allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | 
						|
                }
 | 
						|
 | 
						|
                return VK_SUCCESS;
 | 
						|
            }
 | 
						|
            allocator->FreeMemory(
 | 
						|
                1, // allocationCount
 | 
						|
                pAllocation);
 | 
						|
            *pAllocation = VK_NULL_HANDLE;
 | 
						|
            (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | 
						|
            *pBuffer = VK_NULL_HANDLE;
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | 
						|
        *pBuffer = VK_NULL_HANDLE;
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | 
						|
    VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer)
 | 
						|
{
 | 
						|
    return vmaCreateAliasingBuffer2(allocator, allocation, 0, pBufferCreateInfo, pBuffer);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | 
						|
    VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pBufferCreateInfo && pBuffer && allocation);
 | 
						|
    VMA_ASSERT(allocationLocalOffset + pBufferCreateInfo->size <= allocation->GetSize());
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaCreateAliasingBuffer2");
 | 
						|
 | 
						|
    *pBuffer = VK_NULL_HANDLE;
 | 
						|
 | 
						|
    if (pBufferCreateInfo->size == 0)
 | 
						|
    {
 | 
						|
        return VK_ERROR_INITIALIZATION_FAILED;
 | 
						|
    }
 | 
						|
    if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
 | 
						|
        !allocator->m_UseKhrBufferDeviceAddress)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
 | 
						|
        return VK_ERROR_INITIALIZATION_FAILED;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    // 1. Create VkBuffer.
 | 
						|
    VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
 | 
						|
        allocator->m_hDevice,
 | 
						|
        pBufferCreateInfo,
 | 
						|
        allocator->GetAllocationCallbacks(),
 | 
						|
        pBuffer);
 | 
						|
    if (res >= 0)
 | 
						|
    {
 | 
						|
        // 2. Bind buffer with memory.
 | 
						|
        res = allocator->BindBufferMemory(allocation, allocationLocalOffset, *pBuffer, VMA_NULL);
 | 
						|
        if (res >= 0)
 | 
						|
        {
 | 
						|
            return VK_SUCCESS;
 | 
						|
        }
 | 
						|
        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    VkBuffer buffer,
 | 
						|
    VmaAllocation allocation)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator);
 | 
						|
 | 
						|
    if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaDestroyBuffer");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    if(buffer != VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
 | 
						|
    }
 | 
						|
 | 
						|
    if(allocation != VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        allocator->FreeMemory(
 | 
						|
            1, // allocationCount
 | 
						|
            &allocation);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
 | 
						|
    VmaAllocator allocator,
 | 
						|
    const VkImageCreateInfo* pImageCreateInfo,
 | 
						|
    const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | 
						|
    VkImage* pImage,
 | 
						|
    VmaAllocation* pAllocation,
 | 
						|
    VmaAllocationInfo* pAllocationInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
 | 
						|
 | 
						|
    if(pImageCreateInfo->extent.width == 0 ||
 | 
						|
        pImageCreateInfo->extent.height == 0 ||
 | 
						|
        pImageCreateInfo->extent.depth == 0 ||
 | 
						|
        pImageCreateInfo->mipLevels == 0 ||
 | 
						|
        pImageCreateInfo->arrayLayers == 0)
 | 
						|
    {
 | 
						|
        return VK_ERROR_INITIALIZATION_FAILED;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaCreateImage");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    *pImage = VK_NULL_HANDLE;
 | 
						|
    *pAllocation = VK_NULL_HANDLE;
 | 
						|
 | 
						|
    // 1. Create VkImage.
 | 
						|
    VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
 | 
						|
        allocator->m_hDevice,
 | 
						|
        pImageCreateInfo,
 | 
						|
        allocator->GetAllocationCallbacks(),
 | 
						|
        pImage);
 | 
						|
    if(res == VK_SUCCESS)
 | 
						|
    {
 | 
						|
        VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
 | 
						|
            VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
 | 
						|
            VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
 | 
						|
 | 
						|
        // 2. Allocate memory using allocator.
 | 
						|
        VkMemoryRequirements vkMemReq = {};
 | 
						|
        bool requiresDedicatedAllocation = false;
 | 
						|
        bool prefersDedicatedAllocation  = false;
 | 
						|
        allocator->GetImageMemoryRequirements(*pImage, vkMemReq,
 | 
						|
            requiresDedicatedAllocation, prefersDedicatedAllocation);
 | 
						|
 | 
						|
        res = allocator->AllocateMemory(
 | 
						|
            vkMemReq,
 | 
						|
            requiresDedicatedAllocation,
 | 
						|
            prefersDedicatedAllocation,
 | 
						|
            VK_NULL_HANDLE, // dedicatedBuffer
 | 
						|
            *pImage, // dedicatedImage
 | 
						|
            VmaBufferImageUsage(*pImageCreateInfo), // dedicatedBufferImageUsage
 | 
						|
            *pAllocationCreateInfo,
 | 
						|
            suballocType,
 | 
						|
            1, // allocationCount
 | 
						|
            pAllocation);
 | 
						|
 | 
						|
        if(res == VK_SUCCESS)
 | 
						|
        {
 | 
						|
            // 3. Bind image with memory.
 | 
						|
            if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
 | 
						|
            {
 | 
						|
                res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL);
 | 
						|
            }
 | 
						|
            if(res == VK_SUCCESS)
 | 
						|
            {
 | 
						|
                // All steps succeeded.
 | 
						|
                #if VMA_STATS_STRING_ENABLED
 | 
						|
                    (*pAllocation)->InitImageUsage(*pImageCreateInfo);
 | 
						|
                #endif
 | 
						|
                if(pAllocationInfo != VMA_NULL)
 | 
						|
                {
 | 
						|
                    allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | 
						|
                }
 | 
						|
 | 
						|
                return VK_SUCCESS;
 | 
						|
            }
 | 
						|
            allocator->FreeMemory(
 | 
						|
                1, // allocationCount
 | 
						|
                pAllocation);
 | 
						|
            *pAllocation = VK_NULL_HANDLE;
 | 
						|
            (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
 | 
						|
            *pImage = VK_NULL_HANDLE;
 | 
						|
            return res;
 | 
						|
        }
 | 
						|
        (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
 | 
						|
        *pImage = VK_NULL_HANDLE;
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | 
						|
    VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage)
 | 
						|
{
 | 
						|
    return vmaCreateAliasingImage2(allocator, allocation, 0, pImageCreateInfo, pImage);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation,
 | 
						|
    VkDeviceSize allocationLocalOffset,
 | 
						|
    const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | 
						|
    VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && pImageCreateInfo && pImage && allocation);
 | 
						|
 | 
						|
    *pImage = VK_NULL_HANDLE;
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaCreateImage2");
 | 
						|
 | 
						|
    if (pImageCreateInfo->extent.width == 0 ||
 | 
						|
        pImageCreateInfo->extent.height == 0 ||
 | 
						|
        pImageCreateInfo->extent.depth == 0 ||
 | 
						|
        pImageCreateInfo->mipLevels == 0 ||
 | 
						|
        pImageCreateInfo->arrayLayers == 0)
 | 
						|
    {
 | 
						|
        return VK_ERROR_INITIALIZATION_FAILED;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    // 1. Create VkImage.
 | 
						|
    VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
 | 
						|
        allocator->m_hDevice,
 | 
						|
        pImageCreateInfo,
 | 
						|
        allocator->GetAllocationCallbacks(),
 | 
						|
        pImage);
 | 
						|
    if (res >= 0)
 | 
						|
    {
 | 
						|
        // 2. Bind image with memory.
 | 
						|
        res = allocator->BindImageMemory(allocation, allocationLocalOffset, *pImage, VMA_NULL);
 | 
						|
        if (res >= 0)
 | 
						|
        {
 | 
						|
            return VK_SUCCESS;
 | 
						|
        }
 | 
						|
        (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
 | 
						|
    VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
 | 
						|
    VmaAllocation VMA_NULLABLE allocation)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator);
 | 
						|
 | 
						|
    if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    VMA_DEBUG_LOG("vmaDestroyImage");
 | 
						|
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | 
						|
 | 
						|
    if(image != VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
 | 
						|
    }
 | 
						|
    if(allocation != VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        allocator->FreeMemory(
 | 
						|
            1, // allocationCount
 | 
						|
            &allocation);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
 | 
						|
    const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
 | 
						|
    VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock)
 | 
						|
{
 | 
						|
    VMA_ASSERT(pCreateInfo && pVirtualBlock);
 | 
						|
    VMA_ASSERT(pCreateInfo->size > 0);
 | 
						|
    VMA_DEBUG_LOG("vmaCreateVirtualBlock");
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
    *pVirtualBlock = vma_new(pCreateInfo->pAllocationCallbacks, VmaVirtualBlock_T)(*pCreateInfo);
 | 
						|
    VkResult res = (*pVirtualBlock)->Init();
 | 
						|
    if(res < 0)
 | 
						|
    {
 | 
						|
        vma_delete(pCreateInfo->pAllocationCallbacks, *pVirtualBlock);
 | 
						|
        *pVirtualBlock = VK_NULL_HANDLE;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock)
 | 
						|
{
 | 
						|
    if(virtualBlock != VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        VMA_DEBUG_LOG("vmaDestroyVirtualBlock");
 | 
						|
        VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
        VkAllocationCallbacks allocationCallbacks = virtualBlock->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
 | 
						|
        vma_delete(&allocationCallbacks, virtualBlock);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
 | 
						|
{
 | 
						|
    VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
 | 
						|
    VMA_DEBUG_LOG("vmaIsVirtualBlockEmpty");
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
    return virtualBlock->IsEmpty() ? VK_TRUE : VK_FALSE;
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo)
 | 
						|
{
 | 
						|
    VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL);
 | 
						|
    VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo");
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
    virtualBlock->GetAllocationInfo(allocation, *pVirtualAllocInfo);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation,
 | 
						|
    VkDeviceSize* VMA_NULLABLE pOffset)
 | 
						|
{
 | 
						|
    VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pAllocation != VMA_NULL);
 | 
						|
    VMA_DEBUG_LOG("vmaVirtualAllocate");
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
    return virtualBlock->Allocate(*pCreateInfo, *pAllocation, pOffset);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation)
 | 
						|
{
 | 
						|
    if(allocation != VK_NULL_HANDLE)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
 | 
						|
        VMA_DEBUG_LOG("vmaVirtualFree");
 | 
						|
        VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
        virtualBlock->Free(allocation);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
 | 
						|
{
 | 
						|
    VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
 | 
						|
    VMA_DEBUG_LOG("vmaClearVirtualBlock");
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
    virtualBlock->Clear();
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData)
 | 
						|
{
 | 
						|
    VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
 | 
						|
    VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData");
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
    virtualBlock->SetAllocationUserData(allocation, pUserData);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    VmaStatistics* VMA_NOT_NULL pStats)
 | 
						|
{
 | 
						|
    VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL);
 | 
						|
    VMA_DEBUG_LOG("vmaGetVirtualBlockStatistics");
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
    virtualBlock->GetStatistics(*pStats);
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    VmaDetailedStatistics* VMA_NOT_NULL pStats)
 | 
						|
{
 | 
						|
    VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL);
 | 
						|
    VMA_DEBUG_LOG("vmaCalculateVirtualBlockStatistics");
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
    virtualBlock->CalculateDetailedStatistics(*pStats);
 | 
						|
}
 | 
						|
 | 
						|
#if VMA_STATS_STRING_ENABLED
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap)
 | 
						|
{
 | 
						|
    VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && ppStatsString != VMA_NULL);
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
    const VkAllocationCallbacks* allocationCallbacks = virtualBlock->GetAllocationCallbacks();
 | 
						|
    VmaStringBuilder sb(allocationCallbacks);
 | 
						|
    virtualBlock->BuildStatsString(detailedMap != VK_FALSE, sb);
 | 
						|
    *ppStatsString = VmaCreateStringCopy(allocationCallbacks, sb.GetData(), sb.GetLength());
 | 
						|
}
 | 
						|
 | 
						|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | 
						|
    char* VMA_NULLABLE pStatsString)
 | 
						|
{
 | 
						|
    if(pStatsString != VMA_NULL)
 | 
						|
    {
 | 
						|
        VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
 | 
						|
        VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
        VmaFreeString(virtualBlock->GetAllocationCallbacks(), pStatsString);
 | 
						|
    }
 | 
						|
}
 | 
						|
#if VMA_EXTERNAL_MEMORY_WIN32
 | 
						|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaGetMemoryWin32Handle(VmaAllocator VMA_NOT_NULL allocator,
 | 
						|
    VmaAllocation VMA_NOT_NULL allocation, HANDLE hTargetProcess, HANDLE* VMA_NOT_NULL pHandle)
 | 
						|
{
 | 
						|
    VMA_ASSERT(allocator && allocation && pHandle);
 | 
						|
    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | 
						|
    return allocation->GetWin32Handle(allocator, hTargetProcess, pHandle);
 | 
						|
}
 | 
						|
#endif // VMA_EXTERNAL_MEMORY_WIN32 
 | 
						|
#endif // VMA_STATS_STRING_ENABLED
 | 
						|
#endif // _VMA_PUBLIC_INTERFACE
 | 
						|
#endif // VMA_IMPLEMENTATION
 | 
						|
 | 
						|
/**
 | 
						|
\page quick_start Quick start
 | 
						|
 | 
						|
\section quick_start_project_setup Project setup
 | 
						|
 | 
						|
Vulkan Memory Allocator comes in form of a "stb-style" single header file.
 | 
						|
While you can pull the entire repository e.g. as Git module, there is also Cmake script provided,
 | 
						|
you don't need to build it as a separate library project.
 | 
						|
You can add file "vk_mem_alloc.h" directly to your project and submit it to code repository next to your other source files.
 | 
						|
 | 
						|
"Single header" doesn't mean that everything is contained in C/C++ declarations,
 | 
						|
like it tends to be in case of inline functions or C++ templates.
 | 
						|
It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.
 | 
						|
If you don't do it properly, it will result in linker errors.
 | 
						|
 | 
						|
To do it properly:
 | 
						|
 | 
						|
-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.
 | 
						|
   This includes declarations of all members of the library.
 | 
						|
-# In exactly one CPP file define following macro before this include.
 | 
						|
   It enables also internal definitions.
 | 
						|
 | 
						|
\code
 | 
						|
#define VMA_IMPLEMENTATION
 | 
						|
#include "vk_mem_alloc.h"
 | 
						|
\endcode
 | 
						|
 | 
						|
It may be a good idea to create dedicated CPP file just for this purpose, e.g. "VmaUsage.cpp".
 | 
						|
 | 
						|
This library includes header `<vulkan/vulkan.h>`, which in turn
 | 
						|
includes `<windows.h>` on Windows. If you need some specific macros defined
 | 
						|
before including these headers (like `WIN32_LEAN_AND_MEAN` or
 | 
						|
`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define
 | 
						|
them before every `#include` of this library.
 | 
						|
It may be a good idea to create a dedicate header file for this purpose, e.g. "VmaUsage.h",
 | 
						|
that will be included in other source files instead of VMA header directly.
 | 
						|
 | 
						|
This library is written in C++, but has C-compatible interface.
 | 
						|
Thus, you can include and use "vk_mem_alloc.h" in C or C++ code, but full
 | 
						|
implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C.
 | 
						|
Some features of C++14 are used and required. Features of C++20 are used optionally when available.
 | 
						|
Some headers of standard C and C++ library are used, but STL containers, RTTI, or C++ exceptions are not used.
 | 
						|
 | 
						|
 | 
						|
\section quick_start_initialization Initialization
 | 
						|
 | 
						|
VMA offers library interface in a style similar to Vulkan, with object handles like #VmaAllocation,
 | 
						|
structures describing parameters of objects to be created like #VmaAllocationCreateInfo,
 | 
						|
and errors codes returned from functions using `VkResult` type.
 | 
						|
 | 
						|
The first and the main object that needs to be created is #VmaAllocator.
 | 
						|
It represents the initialization of the entire library.
 | 
						|
Only one such object should be created per `VkDevice`.
 | 
						|
You should create it at program startup, after `VkDevice` was created, and before any device memory allocator needs to be made.
 | 
						|
It must be destroyed before `VkDevice` is destroyed.
 | 
						|
 | 
						|
At program startup:
 | 
						|
 | 
						|
-# Initialize Vulkan to have `VkInstance`, `VkPhysicalDevice`, `VkDevice` object.
 | 
						|
-# Fill VmaAllocatorCreateInfo structure and call vmaCreateAllocator() to create #VmaAllocator object.
 | 
						|
 | 
						|
Only members `physicalDevice`, `device`, `instance` are required.
 | 
						|
However, you should inform the library which Vulkan version do you use by setting
 | 
						|
VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable
 | 
						|
by setting VmaAllocatorCreateInfo::flags.
 | 
						|
Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions.
 | 
						|
See below for details.
 | 
						|
 | 
						|
\subsection quick_start_initialization_selecting_vulkan_version Selecting Vulkan version
 | 
						|
 | 
						|
VMA supports Vulkan version down to 1.0, for backward compatibility.
 | 
						|
If you want to use higher version, you need to inform the library about it.
 | 
						|
This is a two-step process.
 | 
						|
 | 
						|
<b>Step 1: Compile time.</b> By default, VMA compiles with code supporting the highest
 | 
						|
Vulkan version found in the included `<vulkan/vulkan.h>` that is also supported by the library.
 | 
						|
If this is OK, you don't need to do anything.
 | 
						|
However, if you want to compile VMA as if only some lower Vulkan version was available,
 | 
						|
define macro `VMA_VULKAN_VERSION` before every `#include "vk_mem_alloc.h"`.
 | 
						|
It should have decimal numeric value in form of ABBBCCC, where A = major, BBB = minor, CCC = patch Vulkan version.
 | 
						|
For example, to compile against Vulkan 1.2:
 | 
						|
 | 
						|
\code
 | 
						|
#define VMA_VULKAN_VERSION 1002000 // Vulkan 1.2
 | 
						|
#include "vk_mem_alloc.h"
 | 
						|
\endcode
 | 
						|
 | 
						|
<b>Step 2: Runtime.</b> Even when compiled with higher Vulkan version available,
 | 
						|
VMA can use only features of a lower version, which is configurable during creation of the #VmaAllocator object.
 | 
						|
By default, only Vulkan 1.0 is used.
 | 
						|
To initialize the allocator with support for higher Vulkan version, you need to set member
 | 
						|
VmaAllocatorCreateInfo::vulkanApiVersion to an appropriate value, e.g. using constants like `VK_API_VERSION_1_2`.
 | 
						|
See code sample below.
 | 
						|
 | 
						|
\subsection quick_start_initialization_importing_vulkan_functions Importing Vulkan functions
 | 
						|
 | 
						|
You may need to configure importing Vulkan functions. There are 3 ways to do this:
 | 
						|
 | 
						|
-# **If you link with Vulkan static library** (e.g. "vulkan-1.lib" on Windows):
 | 
						|
   - You don't need to do anything.
 | 
						|
   - VMA will use these, as macro `VMA_STATIC_VULKAN_FUNCTIONS` is defined to 1 by default.
 | 
						|
-# **If you want VMA to fetch pointers to Vulkan functions dynamically** using `vkGetInstanceProcAddr`,
 | 
						|
   `vkGetDeviceProcAddr` (this is the option presented in the example below):
 | 
						|
   - Define `VMA_STATIC_VULKAN_FUNCTIONS` to 0, `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 1.
 | 
						|
   - Provide pointers to these two functions via VmaVulkanFunctions::vkGetInstanceProcAddr,
 | 
						|
     VmaVulkanFunctions::vkGetDeviceProcAddr.
 | 
						|
   - The library will fetch pointers to all other functions it needs internally.
 | 
						|
-# **If you fetch pointers to all Vulkan functions in a custom way**, e.g. using some loader like
 | 
						|
   [Volk](https://github.com/zeux/volk):
 | 
						|
   - Define `VMA_STATIC_VULKAN_FUNCTIONS` and `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 0.
 | 
						|
   - Pass these pointers via structure #VmaVulkanFunctions.
 | 
						|
 | 
						|
\subsection quick_start_initialization_enabling_extensions Enabling extensions
 | 
						|
 | 
						|
VMA can automatically use following Vulkan extensions.
 | 
						|
If you found them available on the selected physical device and you enabled them
 | 
						|
while creating `VkInstance` / `VkDevice` object, inform VMA about their availability
 | 
						|
by setting appropriate flags in VmaAllocatorCreateInfo::flags.
 | 
						|
 | 
						|
Vulkan extension              | VMA flag
 | 
						|
------------------------------|-----------------------------------------------------
 | 
						|
VK_KHR_dedicated_allocation   | #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT
 | 
						|
VK_KHR_bind_memory2           | #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT
 | 
						|
VK_KHR_maintenance4           | #VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT
 | 
						|
VK_KHR_maintenance5           | #VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT
 | 
						|
VK_EXT_memory_budget          | #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT
 | 
						|
VK_KHR_buffer_device_address  | #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT
 | 
						|
VK_EXT_memory_priority        | #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT
 | 
						|
VK_AMD_device_coherent_memory | #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT
 | 
						|
VK_KHR_external_memory_win32  | #VMA_ALLOCATOR_CREATE_KHR_EXTERNAL_MEMORY_WIN32_BIT
 | 
						|
 | 
						|
Example with fetching pointers to Vulkan functions dynamically:
 | 
						|
 | 
						|
\code
 | 
						|
#define VMA_STATIC_VULKAN_FUNCTIONS 0
 | 
						|
#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
 | 
						|
#include "vk_mem_alloc.h"
 | 
						|
 | 
						|
...
 | 
						|
 | 
						|
VmaVulkanFunctions vulkanFunctions = {};
 | 
						|
vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr;
 | 
						|
vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr;
 | 
						|
 | 
						|
VmaAllocatorCreateInfo allocatorCreateInfo = {};
 | 
						|
allocatorCreateInfo.flags = VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT;
 | 
						|
allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2;
 | 
						|
allocatorCreateInfo.physicalDevice = physicalDevice;
 | 
						|
allocatorCreateInfo.device = device;
 | 
						|
allocatorCreateInfo.instance = instance;
 | 
						|
allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions;
 | 
						|
 | 
						|
VmaAllocator allocator;
 | 
						|
vmaCreateAllocator(&allocatorCreateInfo, &allocator);
 | 
						|
 | 
						|
// Entire program...
 | 
						|
 | 
						|
// At the end, don't forget to:
 | 
						|
vmaDestroyAllocator(allocator);
 | 
						|
\endcode
 | 
						|
 | 
						|
 | 
						|
\subsection quick_start_initialization_other_config Other configuration options
 | 
						|
 | 
						|
There are additional configuration options available through preprocessor macros that you can define
 | 
						|
before including VMA header and through parameters passed in #VmaAllocatorCreateInfo.
 | 
						|
They include a possibility to use your own callbacks for host memory allocations (`VkAllocationCallbacks`),
 | 
						|
callbacks for device memory allocations (instead of `vkAllocateMemory`, `vkFreeMemory`),
 | 
						|
or your custom `VMA_ASSERT` macro, among others.
 | 
						|
For more information, see: @ref configuration.
 | 
						|
 | 
						|
 | 
						|
\section quick_start_resource_allocation Resource allocation
 | 
						|
 | 
						|
When you want to create a buffer or image:
 | 
						|
 | 
						|
-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
 | 
						|
-# Fill VmaAllocationCreateInfo structure.
 | 
						|
-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
 | 
						|
   already allocated and bound to it, plus #VmaAllocation objects that represents its underlying memory.
 | 
						|
 | 
						|
\code
 | 
						|
VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
bufferInfo.size = 65536;
 | 
						|
bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocInfo = {};
 | 
						|
allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
 | 
						|
VkBuffer buffer;
 | 
						|
VmaAllocation allocation;
 | 
						|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | 
						|
\endcode
 | 
						|
 | 
						|
Don't forget to destroy your buffer and allocation objects when no longer needed:
 | 
						|
 | 
						|
\code
 | 
						|
vmaDestroyBuffer(allocator, buffer, allocation);
 | 
						|
\endcode
 | 
						|
 | 
						|
If you need to map the buffer, you must set flag
 | 
						|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
 | 
						|
in VmaAllocationCreateInfo::flags.
 | 
						|
There are many additional parameters that can control the choice of memory type to be used for the allocation
 | 
						|
and other features.
 | 
						|
For more information, see documentation chapters: @ref choosing_memory_type, @ref memory_mapping.
 | 
						|
 | 
						|
 | 
						|
\page choosing_memory_type Choosing memory type
 | 
						|
 | 
						|
Physical devices in Vulkan support various combinations of memory heaps and
 | 
						|
types. Help with choosing correct and optimal memory type for your specific
 | 
						|
resource is one of the key features of this library. You can use it by filling
 | 
						|
appropriate members of VmaAllocationCreateInfo structure, as described below.
 | 
						|
You can also combine multiple methods.
 | 
						|
 | 
						|
-# If you just want to find memory type index that meets your requirements, you
 | 
						|
   can use function: vmaFindMemoryTypeIndexForBufferInfo(),
 | 
						|
   vmaFindMemoryTypeIndexForImageInfo(), vmaFindMemoryTypeIndex().
 | 
						|
-# If you want to allocate a region of device memory without association with any
 | 
						|
   specific image or buffer, you can use function vmaAllocateMemory(). Usage of
 | 
						|
   this function is not recommended and usually not needed.
 | 
						|
   vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once,
 | 
						|
   which may be useful for sparse binding.
 | 
						|
-# If you already have a buffer or an image created, you want to allocate memory
 | 
						|
   for it and then you will bind it yourself, you can use function
 | 
						|
   vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
 | 
						|
   For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory()
 | 
						|
   or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2().
 | 
						|
-# If you want to create a buffer or an image, allocate memory for it, and bind
 | 
						|
   them together, all in one call, you can use function vmaCreateBuffer(),
 | 
						|
   vmaCreateImage().
 | 
						|
   <b>This is the easiest and recommended way to use this library!</b>
 | 
						|
 | 
						|
When using 3. or 4., the library internally queries Vulkan for memory types
 | 
						|
supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
 | 
						|
and uses only one of these types.
 | 
						|
 | 
						|
If no memory type can be found that meets all the requirements, these functions
 | 
						|
return `VK_ERROR_FEATURE_NOT_PRESENT`.
 | 
						|
 | 
						|
You can leave VmaAllocationCreateInfo structure completely filled with zeros.
 | 
						|
It means no requirements are specified for memory type.
 | 
						|
It is valid, although not very useful.
 | 
						|
 | 
						|
\section choosing_memory_type_usage Usage
 | 
						|
 | 
						|
The easiest way to specify memory requirements is to fill member
 | 
						|
VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.
 | 
						|
It defines high level, common usage types.
 | 
						|
Since version 3 of the library, it is recommended to use #VMA_MEMORY_USAGE_AUTO to let it select best memory type for your resource automatically.
 | 
						|
 | 
						|
For example, if you want to create a uniform buffer that will be filled using
 | 
						|
transfer only once or infrequently and then used for rendering every frame as a uniform buffer, you can
 | 
						|
do it using following code. The buffer will most likely end up in a memory type with
 | 
						|
`VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT` to be fast to access by the GPU device.
 | 
						|
 | 
						|
\code
 | 
						|
VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
bufferInfo.size = 65536;
 | 
						|
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocInfo = {};
 | 
						|
allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
 | 
						|
VkBuffer buffer;
 | 
						|
VmaAllocation allocation;
 | 
						|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | 
						|
\endcode
 | 
						|
 | 
						|
If you have a preference for putting the resource in GPU (device) memory or CPU (host) memory
 | 
						|
on systems with discrete graphics card that have the memories separate, you can use
 | 
						|
#VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST.
 | 
						|
 | 
						|
When using `VMA_MEMORY_USAGE_AUTO*` while you want to map the allocated memory,
 | 
						|
you also need to specify one of the host access flags:
 | 
						|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
 | 
						|
This will help the library decide about preferred memory type to ensure it has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
 | 
						|
so you can map it.
 | 
						|
 | 
						|
For example, a staging buffer that will be filled via mapped pointer and then
 | 
						|
used as a source of transfer to the buffer described previously can be created like this.
 | 
						|
It will likely end up in a memory type that is `HOST_VISIBLE` and `HOST_COHERENT`
 | 
						|
but not `HOST_CACHED` (meaning uncached, write-combined) and not `DEVICE_LOCAL` (meaning system RAM).
 | 
						|
 | 
						|
\code
 | 
						|
VkBufferCreateInfo stagingBufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
stagingBufferInfo.size = 65536;
 | 
						|
stagingBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo stagingAllocInfo = {};
 | 
						|
stagingAllocInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
stagingAllocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
 | 
						|
 | 
						|
VkBuffer stagingBuffer;
 | 
						|
VmaAllocation stagingAllocation;
 | 
						|
vmaCreateBuffer(allocator, &stagingBufferInfo, &stagingAllocInfo, &stagingBuffer, &stagingAllocation, nullptr);
 | 
						|
\endcode
 | 
						|
 | 
						|
For more examples of creating different kinds of resources, see chapter \ref usage_patterns.
 | 
						|
See also: @ref memory_mapping.
 | 
						|
 | 
						|
Usage values `VMA_MEMORY_USAGE_AUTO*` are legal to use only when the library knows
 | 
						|
about the resource being created by having `VkBufferCreateInfo` / `VkImageCreateInfo` passed,
 | 
						|
so they work with functions like: vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo() etc.
 | 
						|
If you allocate raw memory using function vmaAllocateMemory(), you have to use other means of selecting
 | 
						|
memory type, as described below.
 | 
						|
 | 
						|
\note
 | 
						|
Old usage values (`VMA_MEMORY_USAGE_GPU_ONLY`, `VMA_MEMORY_USAGE_CPU_ONLY`,
 | 
						|
`VMA_MEMORY_USAGE_CPU_TO_GPU`, `VMA_MEMORY_USAGE_GPU_TO_CPU`, `VMA_MEMORY_USAGE_CPU_COPY`)
 | 
						|
are still available and work same way as in previous versions of the library
 | 
						|
for backward compatibility, but they are deprecated.
 | 
						|
 | 
						|
\section choosing_memory_type_required_preferred_flags Required and preferred flags
 | 
						|
 | 
						|
You can specify more detailed requirements by filling members
 | 
						|
VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
 | 
						|
with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
 | 
						|
if you want to create a buffer that will be persistently mapped on host (so it
 | 
						|
must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
 | 
						|
use following code:
 | 
						|
 | 
						|
\code
 | 
						|
VmaAllocationCreateInfo allocInfo = {};
 | 
						|
allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | 
						|
allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
 | 
						|
allocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | 
						|
 | 
						|
VkBuffer buffer;
 | 
						|
VmaAllocation allocation;
 | 
						|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | 
						|
\endcode
 | 
						|
 | 
						|
A memory type is chosen that has all the required flags and as many preferred
 | 
						|
flags set as possible.
 | 
						|
 | 
						|
Value passed in VmaAllocationCreateInfo::usage is internally converted to a set of required and preferred flags,
 | 
						|
plus some extra "magic" (heuristics).
 | 
						|
 | 
						|
\section choosing_memory_type_explicit_memory_types Explicit memory types
 | 
						|
 | 
						|
If you inspected memory types available on the physical device and <b>you have
 | 
						|
a preference for memory types that you want to use</b>, you can fill member
 | 
						|
VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
 | 
						|
means that a memory type with that index is allowed to be used for the
 | 
						|
allocation. Special value 0, just like `UINT32_MAX`, means there are no
 | 
						|
restrictions to memory type index.
 | 
						|
 | 
						|
Please note that this member is NOT just a memory type index.
 | 
						|
Still you can use it to choose just one, specific memory type.
 | 
						|
For example, if you already determined that your buffer should be created in
 | 
						|
memory type 2, use following code:
 | 
						|
 | 
						|
\code
 | 
						|
uint32_t memoryTypeIndex = 2;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocInfo = {};
 | 
						|
allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
 | 
						|
 | 
						|
VkBuffer buffer;
 | 
						|
VmaAllocation allocation;
 | 
						|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | 
						|
\endcode
 | 
						|
 | 
						|
You can also use this parameter to <b>exclude some memory types</b>.
 | 
						|
If you inspect memory heaps and types available on the current physical device and
 | 
						|
you determine that for some reason you don't want to use a specific memory type for the allocation,
 | 
						|
you can enable automatic memory type selection but exclude certain memory type or types
 | 
						|
by setting all bits of `memoryTypeBits` to 1 except the ones you choose.
 | 
						|
 | 
						|
\code
 | 
						|
// ...
 | 
						|
uint32_t excludedMemoryTypeIndex = 2;
 | 
						|
VmaAllocationCreateInfo allocInfo = {};
 | 
						|
allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
allocInfo.memoryTypeBits = ~(1u << excludedMemoryTypeIndex);
 | 
						|
// ...
 | 
						|
\endcode
 | 
						|
 | 
						|
 | 
						|
\section choosing_memory_type_custom_memory_pools Custom memory pools
 | 
						|
 | 
						|
If you allocate from custom memory pool, all the ways of specifying memory
 | 
						|
requirements described above are not applicable and the aforementioned members
 | 
						|
of VmaAllocationCreateInfo structure are ignored. Memory type is selected
 | 
						|
explicitly when creating the pool and then used to make all the allocations from
 | 
						|
that pool. For further details, see \ref custom_memory_pools.
 | 
						|
 | 
						|
\section choosing_memory_type_dedicated_allocations Dedicated allocations
 | 
						|
 | 
						|
Memory for allocations is reserved out of larger block of `VkDeviceMemory`
 | 
						|
allocated from Vulkan internally. That is the main feature of this whole library.
 | 
						|
You can still request a separate memory block to be created for an allocation,
 | 
						|
just like you would do in a trivial solution without using any allocator.
 | 
						|
In that case, a buffer or image is always bound to that memory at offset 0.
 | 
						|
This is called a "dedicated allocation".
 | 
						|
You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | 
						|
The library can also internally decide to use dedicated allocation in some cases, e.g.:
 | 
						|
 | 
						|
- When the size of the allocation is large.
 | 
						|
- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled
 | 
						|
  and it reports that dedicated allocation is required or recommended for the resource.
 | 
						|
- When allocation of next big memory block fails due to not enough device memory,
 | 
						|
  but allocation with the exact requested size succeeds.
 | 
						|
 | 
						|
 | 
						|
\page memory_mapping Memory mapping
 | 
						|
 | 
						|
To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,
 | 
						|
to be able to read from it or write to it in CPU code.
 | 
						|
Mapping is possible only of memory allocated from a memory type that has
 | 
						|
`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
 | 
						|
Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.
 | 
						|
You can use them directly with memory allocated by this library,
 | 
						|
but it is not recommended because of following issue:
 | 
						|
Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.
 | 
						|
This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.
 | 
						|
It is also not thread-safe.
 | 
						|
Because of this, Vulkan Memory Allocator provides following facilities:
 | 
						|
 | 
						|
\note If you want to be able to map an allocation, you need to specify one of the flags
 | 
						|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
 | 
						|
in VmaAllocationCreateInfo::flags. These flags are required for an allocation to be mappable
 | 
						|
when using #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` enum values.
 | 
						|
For other usage values they are ignored and every such allocation made in `HOST_VISIBLE` memory type is mappable,
 | 
						|
but these flags can still be used for consistency.
 | 
						|
 | 
						|
\section memory_mapping_copy_functions Copy functions
 | 
						|
 | 
						|
The easiest way to copy data from a host pointer to an allocation is to use convenience function vmaCopyMemoryToAllocation().
 | 
						|
It automatically maps the Vulkan memory temporarily (if not already mapped), performs `memcpy`,
 | 
						|
and calls `vkFlushMappedMemoryRanges` (if required - if memory type is not `HOST_COHERENT`).
 | 
						|
 | 
						|
It is also the safest one, because using `memcpy` avoids a risk of accidentally introducing memory reads
 | 
						|
(e.g. by doing `pMappedVectors[i] += v`), which may be very slow on memory types that are not `HOST_CACHED`.
 | 
						|
 | 
						|
\code
 | 
						|
struct ConstantBuffer
 | 
						|
{
 | 
						|
    ...
 | 
						|
};
 | 
						|
ConstantBuffer constantBufferData = ...
 | 
						|
 | 
						|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
bufCreateInfo.size = sizeof(ConstantBuffer);
 | 
						|
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
 | 
						|
 | 
						|
VkBuffer buf;
 | 
						|
VmaAllocation alloc;
 | 
						|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr);
 | 
						|
 | 
						|
vmaCopyMemoryToAllocation(allocator, &constantBufferData, alloc, 0, sizeof(ConstantBuffer));
 | 
						|
\endcode
 | 
						|
 | 
						|
Copy in the other direction - from an allocation to a host pointer can be performed the same way using function vmaCopyAllocationToMemory().
 | 
						|
 | 
						|
\section memory_mapping_mapping_functions Mapping functions
 | 
						|
 | 
						|
The library provides following functions for mapping of a specific allocation: vmaMapMemory(), vmaUnmapMemory().
 | 
						|
They are safer and more convenient to use than standard Vulkan functions.
 | 
						|
You can map an allocation multiple times simultaneously - mapping is reference-counted internally.
 | 
						|
You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.
 | 
						|
The way it is implemented is that the library always maps entire memory block, not just region of the allocation.
 | 
						|
For further details, see description of vmaMapMemory() function.
 | 
						|
Example:
 | 
						|
 | 
						|
\code
 | 
						|
// Having these objects initialized:
 | 
						|
struct ConstantBuffer
 | 
						|
{
 | 
						|
    ...
 | 
						|
};
 | 
						|
ConstantBuffer constantBufferData = ...
 | 
						|
 | 
						|
VmaAllocator allocator = ...
 | 
						|
VkBuffer constantBuffer = ...
 | 
						|
VmaAllocation constantBufferAllocation = ...
 | 
						|
 | 
						|
// You can map and fill your buffer using following code:
 | 
						|
 | 
						|
void* mappedData;
 | 
						|
vmaMapMemory(allocator, constantBufferAllocation, &mappedData);
 | 
						|
memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
 | 
						|
vmaUnmapMemory(allocator, constantBufferAllocation);
 | 
						|
\endcode
 | 
						|
 | 
						|
When mapping, you may see a warning from Vulkan validation layer similar to this one:
 | 
						|
 | 
						|
<i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i>
 | 
						|
 | 
						|
It happens because the library maps entire `VkDeviceMemory` block, where different
 | 
						|
types of images and buffers may end up together, especially on GPUs with unified memory like Intel.
 | 
						|
You can safely ignore it if you are sure you access only memory of the intended
 | 
						|
object that you wanted to map.
 | 
						|
 | 
						|
 | 
						|
\section memory_mapping_persistently_mapped_memory Persistently mapped memory
 | 
						|
 | 
						|
Keeping your memory persistently mapped is generally OK in Vulkan.
 | 
						|
You don't need to unmap it before using its data on the GPU.
 | 
						|
The library provides a special feature designed for that:
 | 
						|
Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in
 | 
						|
VmaAllocationCreateInfo::flags stay mapped all the time,
 | 
						|
so you can just access CPU pointer to it any time
 | 
						|
without a need to call any "map" or "unmap" function.
 | 
						|
Example:
 | 
						|
 | 
						|
\code
 | 
						|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
bufCreateInfo.size = sizeof(ConstantBuffer);
 | 
						|
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
 | 
						|
    VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | 
						|
 | 
						|
VkBuffer buf;
 | 
						|
VmaAllocation alloc;
 | 
						|
VmaAllocationInfo allocInfo;
 | 
						|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | 
						|
 | 
						|
// Buffer is already mapped. You can access its memory.
 | 
						|
memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
 | 
						|
\endcode
 | 
						|
 | 
						|
\note #VMA_ALLOCATION_CREATE_MAPPED_BIT by itself doesn't guarantee that the allocation will end up
 | 
						|
in a mappable memory type.
 | 
						|
For this, you need to also specify #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or
 | 
						|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
 | 
						|
#VMA_ALLOCATION_CREATE_MAPPED_BIT only guarantees that if the memory is `HOST_VISIBLE`, the allocation will be mapped on creation.
 | 
						|
For an example of how to make use of this fact, see section \ref usage_patterns_advanced_data_uploading.
 | 
						|
 | 
						|
\section memory_mapping_cache_control Cache flush and invalidate
 | 
						|
 | 
						|
Memory in Vulkan doesn't need to be unmapped before using it on GPU,
 | 
						|
but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,
 | 
						|
you need to manually **invalidate** cache before reading of mapped pointer
 | 
						|
and **flush** cache after writing to mapped pointer.
 | 
						|
Map/unmap operations don't do that automatically.
 | 
						|
Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`,
 | 
						|
`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient
 | 
						|
functions that refer to given allocation object: vmaFlushAllocation(),
 | 
						|
vmaInvalidateAllocation(),
 | 
						|
or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations().
 | 
						|
 | 
						|
Regions of memory specified for flush/invalidate must be aligned to
 | 
						|
`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library.
 | 
						|
In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations
 | 
						|
within blocks are aligned to this value, so their offsets are always multiply of
 | 
						|
`nonCoherentAtomSize` and two different allocations never share same "line" of this size.
 | 
						|
 | 
						|
Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA)
 | 
						|
currently provide `HOST_COHERENT` flag on all memory types that are
 | 
						|
`HOST_VISIBLE`, so on PC you may not need to bother.
 | 
						|
 | 
						|
 | 
						|
\page staying_within_budget Staying within budget
 | 
						|
 | 
						|
When developing a graphics-intensive game or program, it is important to avoid allocating
 | 
						|
more GPU memory than it is physically available. When the memory is over-committed,
 | 
						|
various bad things can happen, depending on the specific GPU, graphics driver, and
 | 
						|
operating system:
 | 
						|
 | 
						|
- It may just work without any problems.
 | 
						|
- The application may slow down because some memory blocks are moved to system RAM
 | 
						|
  and the GPU has to access them through PCI Express bus.
 | 
						|
- A new allocation may take very long time to complete, even few seconds, and possibly
 | 
						|
  freeze entire system.
 | 
						|
- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | 
						|
- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST`
 | 
						|
  returned somewhere later.
 | 
						|
 | 
						|
\section staying_within_budget_querying_for_budget Querying for budget
 | 
						|
 | 
						|
To query for current memory usage and available budget, use function vmaGetHeapBudgets().
 | 
						|
Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap.
 | 
						|
 | 
						|
Please note that this function returns different information and works faster than
 | 
						|
vmaCalculateStatistics(). vmaGetHeapBudgets() can be called every frame or even before every
 | 
						|
allocation, while vmaCalculateStatistics() is intended to be used rarely,
 | 
						|
only to obtain statistical information, e.g. for debugging purposes.
 | 
						|
 | 
						|
It is recommended to use <b>VK_EXT_memory_budget</b> device extension to obtain information
 | 
						|
about the budget from Vulkan device. VMA is able to use this extension automatically.
 | 
						|
When not enabled, the allocator behaves same way, but then it estimates current usage
 | 
						|
and available budget based on its internal information and Vulkan memory heap sizes,
 | 
						|
which may be less precise. In order to use this extension:
 | 
						|
 | 
						|
1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2
 | 
						|
   required by it are available and enable them. Please note that the first is a device
 | 
						|
   extension and the second is instance extension!
 | 
						|
2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object.
 | 
						|
3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from
 | 
						|
   Vulkan inside of it to avoid overhead of querying it with every allocation.
 | 
						|
 | 
						|
\section staying_within_budget_controlling_memory_usage Controlling memory usage
 | 
						|
 | 
						|
There are many ways in which you can try to stay within the budget.
 | 
						|
 | 
						|
First, when making new allocation requires allocating a new memory block, the library
 | 
						|
tries not to exceed the budget automatically. If a block with default recommended size
 | 
						|
(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even
 | 
						|
dedicated memory for just this resource.
 | 
						|
 | 
						|
If the size of the requested resource plus current memory usage is more than the
 | 
						|
budget, by default the library still tries to create it, leaving it to the Vulkan
 | 
						|
implementation whether the allocation succeeds or fails. You can change this behavior
 | 
						|
by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is
 | 
						|
not made if it would exceed the budget or if the budget is already exceeded.
 | 
						|
VMA then tries to make the allocation from the next eligible Vulkan memory type.
 | 
						|
If all of them fail, the call then fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | 
						|
Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag
 | 
						|
when creating resources that are not essential for the application (e.g. the texture
 | 
						|
of a specific object) and not to pass it when creating critically important resources
 | 
						|
(e.g. render targets).
 | 
						|
 | 
						|
On AMD graphics cards there is a custom vendor extension available: <b>VK_AMD_memory_overallocation_behavior</b>
 | 
						|
that allows to control the behavior of the Vulkan implementation in out-of-memory cases -
 | 
						|
whether it should fail with an error code or still allow the allocation.
 | 
						|
Usage of this extension involves only passing extra structure on Vulkan device creation,
 | 
						|
so it is out of scope of this library.
 | 
						|
 | 
						|
Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure
 | 
						|
a new allocation is created only when it fits inside one of the existing memory blocks.
 | 
						|
If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | 
						|
This also ensures that the function call is very fast because it never goes to Vulkan
 | 
						|
to obtain a new block.
 | 
						|
 | 
						|
\note Creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount
 | 
						|
set to more than 0 will currently try to allocate memory blocks without checking whether they
 | 
						|
fit within budget.
 | 
						|
 | 
						|
 | 
						|
\page resource_aliasing Resource aliasing (overlap)
 | 
						|
 | 
						|
New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory
 | 
						|
management, give an opportunity to alias (overlap) multiple resources in the
 | 
						|
same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL).
 | 
						|
It can be useful to save video memory, but it must be used with caution.
 | 
						|
 | 
						|
For example, if you know the flow of your whole render frame in advance, you
 | 
						|
are going to use some intermediate textures or buffers only during a small range of render passes,
 | 
						|
and you know these ranges don't overlap in time, you can bind these resources to
 | 
						|
the same place in memory, even if they have completely different parameters (width, height, format etc.).
 | 
						|
 | 
						|

 | 
						|
 | 
						|
Such scenario is possible using VMA, but you need to create your images manually.
 | 
						|
Then you need to calculate parameters of an allocation to be made using formula:
 | 
						|
 | 
						|
- allocation size = max(size of each image)
 | 
						|
- allocation alignment = max(alignment of each image)
 | 
						|
- allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image)
 | 
						|
 | 
						|
Following example shows two different images bound to the same place in memory,
 | 
						|
allocated to fit largest of them.
 | 
						|
 | 
						|
\code
 | 
						|
// A 512x512 texture to be sampled.
 | 
						|
VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
 | 
						|
img1CreateInfo.imageType = VK_IMAGE_TYPE_2D;
 | 
						|
img1CreateInfo.extent.width = 512;
 | 
						|
img1CreateInfo.extent.height = 512;
 | 
						|
img1CreateInfo.extent.depth = 1;
 | 
						|
img1CreateInfo.mipLevels = 10;
 | 
						|
img1CreateInfo.arrayLayers = 1;
 | 
						|
img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;
 | 
						|
img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 | 
						|
img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
 | 
						|
img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
 | 
						|
img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
 | 
						|
 | 
						|
// A full screen texture to be used as color attachment.
 | 
						|
VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
 | 
						|
img2CreateInfo.imageType = VK_IMAGE_TYPE_2D;
 | 
						|
img2CreateInfo.extent.width = 1920;
 | 
						|
img2CreateInfo.extent.height = 1080;
 | 
						|
img2CreateInfo.extent.depth = 1;
 | 
						|
img2CreateInfo.mipLevels = 1;
 | 
						|
img2CreateInfo.arrayLayers = 1;
 | 
						|
img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
 | 
						|
img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 | 
						|
img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
 | 
						|
img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
 | 
						|
img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
 | 
						|
 | 
						|
VkImage img1;
 | 
						|
res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1);
 | 
						|
VkImage img2;
 | 
						|
res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2);
 | 
						|
 | 
						|
VkMemoryRequirements img1MemReq;
 | 
						|
vkGetImageMemoryRequirements(device, img1, &img1MemReq);
 | 
						|
VkMemoryRequirements img2MemReq;
 | 
						|
vkGetImageMemoryRequirements(device, img2, &img2MemReq);
 | 
						|
 | 
						|
VkMemoryRequirements finalMemReq = {};
 | 
						|
finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size);
 | 
						|
finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment);
 | 
						|
finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits;
 | 
						|
// Validate if(finalMemReq.memoryTypeBits != 0)
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | 
						|
 | 
						|
VmaAllocation alloc;
 | 
						|
res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr);
 | 
						|
 | 
						|
res = vmaBindImageMemory(allocator, alloc, img1);
 | 
						|
res = vmaBindImageMemory(allocator, alloc, img2);
 | 
						|
 | 
						|
// You can use img1, img2 here, but not at the same time!
 | 
						|
 | 
						|
vmaFreeMemory(allocator, alloc);
 | 
						|
vkDestroyImage(allocator, img2, nullptr);
 | 
						|
vkDestroyImage(allocator, img1, nullptr);
 | 
						|
\endcode
 | 
						|
 | 
						|
VMA also provides convenience functions that create a buffer or image and bind it to memory
 | 
						|
represented by an existing #VmaAllocation:
 | 
						|
vmaCreateAliasingBuffer(), vmaCreateAliasingBuffer2(),
 | 
						|
vmaCreateAliasingImage(), vmaCreateAliasingImage2().
 | 
						|
Versions with "2" offer additional parameter `allocationLocalOffset`.
 | 
						|
 | 
						|
Remember that using resources that alias in memory requires proper synchronization.
 | 
						|
You need to issue a memory barrier to make sure commands that use `img1` and `img2`
 | 
						|
don't overlap on GPU timeline.
 | 
						|
You also need to treat a resource after aliasing as uninitialized - containing garbage data.
 | 
						|
For example, if you use `img1` and then want to use `img2`, you need to issue
 | 
						|
an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`.
 | 
						|
 | 
						|
Additional considerations:
 | 
						|
 | 
						|
- Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases.
 | 
						|
See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag.
 | 
						|
- You can create more complex layout where different images and buffers are bound
 | 
						|
at different offsets inside one large allocation. For example, one can imagine
 | 
						|
a big texture used in some render passes, aliasing with a set of many small buffers
 | 
						|
used between in some further passes. To bind a resource at non-zero offset in an allocation,
 | 
						|
use vmaBindBufferMemory2() / vmaBindImageMemory2().
 | 
						|
- Before allocating memory for the resources you want to alias, check `memoryTypeBits`
 | 
						|
returned in memory requirements of each resource to make sure the bits overlap.
 | 
						|
Some GPUs may expose multiple memory types suitable e.g. only for buffers or
 | 
						|
images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your
 | 
						|
resources may be disjoint. Aliasing them is not possible in that case.
 | 
						|
 | 
						|
 | 
						|
\page custom_memory_pools Custom memory pools
 | 
						|
 | 
						|
A memory pool contains a number of `VkDeviceMemory` blocks.
 | 
						|
The library automatically creates and manages default pool for each memory type available on the device.
 | 
						|
Default memory pool automatically grows in size.
 | 
						|
Size of allocated blocks is also variable and managed automatically.
 | 
						|
You are using default pools whenever you leave VmaAllocationCreateInfo::pool = null.
 | 
						|
 | 
						|
You can create custom pool and allocate memory out of it.
 | 
						|
It can be useful if you want to:
 | 
						|
 | 
						|
- Keep certain kind of allocations separate from others.
 | 
						|
- Enforce particular, fixed size of Vulkan memory blocks.
 | 
						|
- Limit maximum amount of Vulkan memory allocated for that pool.
 | 
						|
- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.
 | 
						|
- Use extra parameters for a set of your allocations that are available in #VmaPoolCreateInfo but not in
 | 
						|
  #VmaAllocationCreateInfo - e.g., custom minimum alignment, custom `pNext` chain.
 | 
						|
- Perform defragmentation on a specific subset of your allocations.
 | 
						|
 | 
						|
To use custom memory pools:
 | 
						|
 | 
						|
-# Fill VmaPoolCreateInfo structure.
 | 
						|
-# Call vmaCreatePool() to obtain #VmaPool handle.
 | 
						|
-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
 | 
						|
   You don't need to specify any other parameters of this structure, like `usage`.
 | 
						|
 | 
						|
Example:
 | 
						|
 | 
						|
\code
 | 
						|
// Find memoryTypeIndex for the pool.
 | 
						|
VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
sampleBufCreateInfo.size = 0x10000; // Doesn't matter.
 | 
						|
sampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo sampleAllocCreateInfo = {};
 | 
						|
sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
 | 
						|
uint32_t memTypeIndex;
 | 
						|
VkResult res = vmaFindMemoryTypeIndexForBufferInfo(allocator,
 | 
						|
    &sampleBufCreateInfo, &sampleAllocCreateInfo, &memTypeIndex);
 | 
						|
// Check res...
 | 
						|
 | 
						|
// Create a pool that can have at most 2 blocks, 128 MiB each.
 | 
						|
VmaPoolCreateInfo poolCreateInfo = {};
 | 
						|
poolCreateInfo.memoryTypeIndex = memTypeIndex;
 | 
						|
poolCreateInfo.blockSize = 128ull * 1024 * 1024;
 | 
						|
poolCreateInfo.maxBlockCount = 2;
 | 
						|
 | 
						|
VmaPool pool;
 | 
						|
res = vmaCreatePool(allocator, &poolCreateInfo, &pool);
 | 
						|
// Check res...
 | 
						|
 | 
						|
// Allocate a buffer out of it.
 | 
						|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
bufCreateInfo.size = 1024;
 | 
						|
bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.pool = pool;
 | 
						|
 | 
						|
VkBuffer buf;
 | 
						|
VmaAllocation alloc;
 | 
						|
res = vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr);
 | 
						|
// Check res...
 | 
						|
\endcode
 | 
						|
 | 
						|
You have to free all allocations made from this pool before destroying it.
 | 
						|
 | 
						|
\code
 | 
						|
vmaDestroyBuffer(allocator, buf, alloc);
 | 
						|
vmaDestroyPool(allocator, pool);
 | 
						|
\endcode
 | 
						|
 | 
						|
New versions of this library support creating dedicated allocations in custom pools.
 | 
						|
It is supported only when VmaPoolCreateInfo::blockSize = 0.
 | 
						|
To use this feature, set VmaAllocationCreateInfo::pool to the pointer to your custom pool and
 | 
						|
VmaAllocationCreateInfo::flags to #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | 
						|
 | 
						|
 | 
						|
\section custom_memory_pools_MemTypeIndex Choosing memory type index
 | 
						|
 | 
						|
When creating a pool, you must explicitly specify memory type index.
 | 
						|
To find the one suitable for your buffers or images, you can use helper functions
 | 
						|
vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().
 | 
						|
You need to provide structures with example parameters of buffers or images
 | 
						|
that you are going to create in that pool.
 | 
						|
 | 
						|
\code
 | 
						|
VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
exampleBufCreateInfo.size = 1024; // Doesn't matter
 | 
						|
exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
 | 
						|
uint32_t memTypeIndex;
 | 
						|
vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);
 | 
						|
 | 
						|
VmaPoolCreateInfo poolCreateInfo = {};
 | 
						|
poolCreateInfo.memoryTypeIndex = memTypeIndex;
 | 
						|
// ...
 | 
						|
\endcode
 | 
						|
 | 
						|
When creating buffers/images allocated in that pool, provide following parameters:
 | 
						|
 | 
						|
- `VkBufferCreateInfo`: Prefer to pass same parameters as above.
 | 
						|
  Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.
 | 
						|
  Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers
 | 
						|
  or the other way around.
 | 
						|
- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.
 | 
						|
  Other members are ignored anyway.
 | 
						|
 | 
						|
 | 
						|
\section custom_memory_pools_when_not_use When not to use custom pools
 | 
						|
 | 
						|
Custom pools are commonly overused by VMA users.
 | 
						|
While it may feel natural to keep some logical groups of resources separate in memory,
 | 
						|
in most cases it does more harm than good.
 | 
						|
Using custom pool shouldn't be your first choice.
 | 
						|
Instead, please make all allocations from default pools first and only use custom pools
 | 
						|
if you can prove and measure that it is beneficial in some way,
 | 
						|
e.g. it results in lower memory usage, better performance, etc.
 | 
						|
 | 
						|
Using custom pools has disadvantages:
 | 
						|
 | 
						|
- Each pool has its own collection of `VkDeviceMemory` blocks.
 | 
						|
  Some of them may be partially or even completely empty.
 | 
						|
  Spreading allocations across multiple pools increases the amount of wasted (allocated but unbound) memory.
 | 
						|
- You must manually choose specific memory type to be used by a custom pool (set as VmaPoolCreateInfo::memoryTypeIndex).
 | 
						|
  When using default pools, best memory type for each of your allocations can be selected automatically
 | 
						|
  using a carefully design algorithm that works across all kinds of GPUs.
 | 
						|
- If an allocation from a custom pool at specific memory type fails, entire allocation operation returns failure.
 | 
						|
  When using default pools, VMA tries another compatible memory type.
 | 
						|
- If you set VmaPoolCreateInfo::blockSize != 0, each memory block has the same size,
 | 
						|
  while default pools start from small blocks and only allocate next blocks larger and larger
 | 
						|
  up to the preferred block size.
 | 
						|
 | 
						|
Many of the common concerns can be addressed in a different way than using custom pools:
 | 
						|
 | 
						|
- If you want to keep your allocations of certain size (small versus large) or certain lifetime (transient versus long lived)
 | 
						|
  separate, you likely don't need to.
 | 
						|
  VMA uses a high quality allocation algorithm that manages memory well in various cases.
 | 
						|
  Please measure and check if using custom pools provides a benefit.
 | 
						|
- If you want to keep your images and buffers separate, you don't need to.
 | 
						|
  VMA respects `bufferImageGranularity` limit automatically.
 | 
						|
- If you want to keep your mapped and not mapped allocations separate, you don't need to.
 | 
						|
  VMA respects `nonCoherentAtomSize` limit automatically.
 | 
						|
  It also maps only those `VkDeviceMemory` blocks that need to map any allocation.
 | 
						|
  It even tries to keep mappable and non-mappable allocations in separate blocks to minimize the amount of mapped memory.
 | 
						|
- If you want to choose a custom size for the default memory block, you can set it globally instead
 | 
						|
  using VmaAllocatorCreateInfo::preferredLargeHeapBlockSize.
 | 
						|
- If you want to select specific memory type for your allocation,
 | 
						|
  you can set VmaAllocationCreateInfo::memoryTypeBits to `(1u << myMemoryTypeIndex)` instead.
 | 
						|
- If you need to create a buffer with certain minimum alignment, you can still do it
 | 
						|
  using default pools with dedicated function vmaCreateBufferWithAlignment().
 | 
						|
 | 
						|
 | 
						|
\section linear_algorithm Linear allocation algorithm
 | 
						|
 | 
						|
Each Vulkan memory block managed by this library has accompanying metadata that
 | 
						|
keeps track of used and unused regions. By default, the metadata structure and
 | 
						|
algorithm tries to find best place for new allocations among free regions to
 | 
						|
optimize memory usage. This way you can allocate and free objects in any order.
 | 
						|
 | 
						|

 | 
						|
 | 
						|
Sometimes there is a need to use simpler, linear allocation algorithm. You can
 | 
						|
create custom pool that uses such algorithm by adding flag
 | 
						|
#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
 | 
						|
#VmaPool object. Then an alternative metadata management is used. It always
 | 
						|
creates new allocations after last one and doesn't reuse free regions after
 | 
						|
allocations freed in the middle. It results in better allocation performance and
 | 
						|
less memory consumed by metadata.
 | 
						|
 | 
						|

 | 
						|
 | 
						|
With this one flag, you can create a custom pool that can be used in many ways:
 | 
						|
free-at-once, stack, double stack, and ring buffer. See below for details.
 | 
						|
You don't need to specify explicitly which of these options you are going to use - it is detected automatically.
 | 
						|
 | 
						|
\subsection linear_algorithm_free_at_once Free-at-once
 | 
						|
 | 
						|
In a pool that uses linear algorithm, you still need to free all the allocations
 | 
						|
individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free
 | 
						|
them in any order. New allocations are always made after last one - free space
 | 
						|
in the middle is not reused. However, when you release all the allocation and
 | 
						|
the pool becomes empty, allocation starts from the beginning again. This way you
 | 
						|
can use linear algorithm to speed up creation of allocations that you are going
 | 
						|
to release all at once.
 | 
						|
 | 
						|

 | 
						|
 | 
						|
This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
 | 
						|
value that allows multiple memory blocks.
 | 
						|
 | 
						|
\subsection linear_algorithm_stack Stack
 | 
						|
 | 
						|
When you free an allocation that was created last, its space can be reused.
 | 
						|
Thanks to this, if you always release allocations in the order opposite to their
 | 
						|
creation (LIFO - Last In First Out), you can achieve behavior of a stack.
 | 
						|
 | 
						|

 | 
						|
 | 
						|
This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
 | 
						|
value that allows multiple memory blocks.
 | 
						|
 | 
						|
\subsection linear_algorithm_double_stack Double stack
 | 
						|
 | 
						|
The space reserved by a custom pool with linear algorithm may be used by two
 | 
						|
stacks:
 | 
						|
 | 
						|
- First, default one, growing up from offset 0.
 | 
						|
- Second, "upper" one, growing down from the end towards lower offsets.
 | 
						|
 | 
						|
To make allocation from the upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT
 | 
						|
to VmaAllocationCreateInfo::flags.
 | 
						|
 | 
						|

 | 
						|
 | 
						|
Double stack is available only in pools with one memory block -
 | 
						|
VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
 | 
						|
 | 
						|
When the two stacks' ends meet so there is not enough space between them for a
 | 
						|
new allocation, such allocation fails with usual
 | 
						|
`VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
 | 
						|
 | 
						|
\subsection linear_algorithm_ring_buffer Ring buffer
 | 
						|
 | 
						|
When you free some allocations from the beginning and there is not enough free space
 | 
						|
for a new one at the end of a pool, allocator's "cursor" wraps around to the
 | 
						|
beginning and starts allocation there. Thanks to this, if you always release
 | 
						|
allocations in the same order as you created them (FIFO - First In First Out),
 | 
						|
you can achieve behavior of a ring buffer / queue.
 | 
						|
 | 
						|

 | 
						|
 | 
						|
Ring buffer is available only in pools with one memory block -
 | 
						|
VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
 | 
						|
 | 
						|
\note \ref defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT.
 | 
						|
 | 
						|
 | 
						|
\page defragmentation Defragmentation
 | 
						|
 | 
						|
Interleaved allocations and deallocations of many objects of varying size can
 | 
						|
cause fragmentation over time, which can lead to a situation where the library is unable
 | 
						|
to find a continuous range of free memory for a new allocation despite there is
 | 
						|
enough free space, just scattered across many small free ranges between existing
 | 
						|
allocations.
 | 
						|
 | 
						|
To mitigate this problem, you can use defragmentation feature.
 | 
						|
It doesn't happen automatically though and needs your cooperation,
 | 
						|
because VMA is a low level library that only allocates memory.
 | 
						|
It cannot recreate buffers and images in a new place as it doesn't remember the contents of `VkBufferCreateInfo` / `VkImageCreateInfo` structures.
 | 
						|
It cannot copy their contents as it doesn't record any commands to a command buffer.
 | 
						|
 | 
						|
Example:
 | 
						|
 | 
						|
\code
 | 
						|
VmaDefragmentationInfo defragInfo = {};
 | 
						|
defragInfo.pool = myPool;
 | 
						|
defragInfo.flags = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT;
 | 
						|
 | 
						|
VmaDefragmentationContext defragCtx;
 | 
						|
VkResult res = vmaBeginDefragmentation(allocator, &defragInfo, &defragCtx);
 | 
						|
// Check res...
 | 
						|
 | 
						|
for(;;)
 | 
						|
{
 | 
						|
    VmaDefragmentationPassMoveInfo pass;
 | 
						|
    res = vmaBeginDefragmentationPass(allocator, defragCtx, &pass);
 | 
						|
    if(res == VK_SUCCESS)
 | 
						|
        break;
 | 
						|
    else if(res != VK_INCOMPLETE)
 | 
						|
        // Handle error...
 | 
						|
 | 
						|
    for(uint32_t i = 0; i < pass.moveCount; ++i)
 | 
						|
    {
 | 
						|
        // Inspect pass.pMoves[i].srcAllocation, identify what buffer/image it represents.
 | 
						|
        VmaAllocationInfo allocInfo;
 | 
						|
        vmaGetAllocationInfo(allocator, pass.pMoves[i].srcAllocation, &allocInfo);
 | 
						|
        MyEngineResourceData* resData = (MyEngineResourceData*)allocInfo.pUserData;
 | 
						|
 | 
						|
        // Recreate and bind this buffer/image at: pass.pMoves[i].dstMemory, pass.pMoves[i].dstOffset.
 | 
						|
        VkImageCreateInfo imgCreateInfo = ...
 | 
						|
        VkImage newImg;
 | 
						|
        res = vkCreateImage(device, &imgCreateInfo, nullptr, &newImg);
 | 
						|
        // Check res...
 | 
						|
        res = vmaBindImageMemory(allocator, pass.pMoves[i].dstTmpAllocation, newImg);
 | 
						|
        // Check res...
 | 
						|
 | 
						|
        // Issue a vkCmdCopyBuffer/vkCmdCopyImage to copy its content to the new place.
 | 
						|
        vkCmdCopyImage(cmdBuf, resData->img, ..., newImg, ...);
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure the copy commands finished executing.
 | 
						|
    vkWaitForFences(...);
 | 
						|
 | 
						|
    // Destroy old buffers/images bound with pass.pMoves[i].srcAllocation.
 | 
						|
    for(uint32_t i = 0; i < pass.moveCount; ++i)
 | 
						|
    {
 | 
						|
        // ...
 | 
						|
        vkDestroyImage(device, resData->img, nullptr);
 | 
						|
    }
 | 
						|
 | 
						|
    // Update appropriate descriptors to point to the new places...
 | 
						|
 | 
						|
    res = vmaEndDefragmentationPass(allocator, defragCtx, &pass);
 | 
						|
    if(res == VK_SUCCESS)
 | 
						|
        break;
 | 
						|
    else if(res != VK_INCOMPLETE)
 | 
						|
        // Handle error...
 | 
						|
}
 | 
						|
 | 
						|
vmaEndDefragmentation(allocator, defragCtx, nullptr);
 | 
						|
\endcode
 | 
						|
 | 
						|
Although functions like vmaCreateBuffer(), vmaCreateImage(), vmaDestroyBuffer(), vmaDestroyImage()
 | 
						|
create/destroy an allocation and a buffer/image at once, these are just a shortcut for
 | 
						|
creating the resource, allocating memory, and binding them together.
 | 
						|
Defragmentation works on memory allocations only. You must handle the rest manually.
 | 
						|
Defragmentation is an iterative process that should repreat "passes" as long as related functions
 | 
						|
return `VK_INCOMPLETE` not `VK_SUCCESS`.
 | 
						|
In each pass:
 | 
						|
 | 
						|
1. vmaBeginDefragmentationPass() function call:
 | 
						|
   - Calculates and returns the list of allocations to be moved in this pass.
 | 
						|
     Note this can be a time-consuming process.
 | 
						|
   - Reserves destination memory for them by creating temporary destination allocations
 | 
						|
     that you can query for their `VkDeviceMemory` + offset using vmaGetAllocationInfo().
 | 
						|
2. Inside the pass, **you should**:
 | 
						|
   - Inspect the returned list of allocations to be moved.
 | 
						|
   - Create new buffers/images and bind them at the returned destination temporary allocations.
 | 
						|
   - Copy data from source to destination resources if necessary.
 | 
						|
   - Destroy the source buffers/images, but NOT their allocations.
 | 
						|
3. vmaEndDefragmentationPass() function call:
 | 
						|
   - Frees the source memory reserved for the allocations that are moved.
 | 
						|
   - Modifies source #VmaAllocation objects that are moved to point to the destination reserved memory.
 | 
						|
   - Frees `VkDeviceMemory` blocks that became empty.
 | 
						|
 | 
						|
Unlike in previous iterations of the defragmentation API, there is no list of "movable" allocations passed as a parameter.
 | 
						|
Defragmentation algorithm tries to move all suitable allocations.
 | 
						|
You can, however, refuse to move some of them inside a defragmentation pass, by setting
 | 
						|
`pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
 | 
						|
This is not recommended and may result in suboptimal packing of the allocations after defragmentation.
 | 
						|
If you cannot ensure any allocation can be moved, it is better to keep movable allocations separate in a custom pool.
 | 
						|
 | 
						|
Inside a pass, for each allocation that should be moved:
 | 
						|
 | 
						|
- You should copy its data from the source to the destination place by calling e.g. `vkCmdCopyBuffer()`, `vkCmdCopyImage()`.
 | 
						|
  - You need to make sure these commands finished executing before destroying the source buffers/images and before calling vmaEndDefragmentationPass().
 | 
						|
- If a resource doesn't contain any meaningful data, e.g. it is a transient color attachment image to be cleared,
 | 
						|
  filled, and used temporarily in each rendering frame, you can just recreate this image
 | 
						|
  without copying its data.
 | 
						|
- If the resource is in `HOST_VISIBLE` and `HOST_CACHED` memory, you can copy its data on the CPU
 | 
						|
  using `memcpy()`.
 | 
						|
- If you cannot move the allocation, you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
 | 
						|
  This will cancel the move.
 | 
						|
  - vmaEndDefragmentationPass() will then free the destination memory
 | 
						|
    not the source memory of the allocation, leaving it unchanged.
 | 
						|
- If you decide the allocation is unimportant and can be destroyed instead of moved (e.g. it wasn't used for long time),
 | 
						|
  you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY.
 | 
						|
  - vmaEndDefragmentationPass() will then free both source and destination memory, and will destroy the source #VmaAllocation object.
 | 
						|
 | 
						|
You can defragment a specific custom pool by setting VmaDefragmentationInfo::pool
 | 
						|
(like in the example above) or all the default pools by setting this member to null.
 | 
						|
 | 
						|
Defragmentation is always performed in each pool separately.
 | 
						|
Allocations are never moved between different Vulkan memory types.
 | 
						|
The size of the destination memory reserved for a moved allocation is the same as the original one.
 | 
						|
Alignment of an allocation as it was determined using `vkGetBufferMemoryRequirements()` etc. is also respected after defragmentation.
 | 
						|
Buffers/images should be recreated with the same `VkBufferCreateInfo` / `VkImageCreateInfo` parameters as the original ones.
 | 
						|
 | 
						|
You can perform the defragmentation incrementally to limit the number of allocations and bytes to be moved
 | 
						|
in each pass, e.g. to call it in sync with render frames and not to experience too big hitches.
 | 
						|
See members: VmaDefragmentationInfo::maxBytesPerPass, VmaDefragmentationInfo::maxAllocationsPerPass.
 | 
						|
 | 
						|
It is also safe to perform the defragmentation asynchronously to render frames and other Vulkan and VMA
 | 
						|
usage, possibly from multiple threads, with the exception that allocations
 | 
						|
returned in VmaDefragmentationPassMoveInfo::pMoves shouldn't be destroyed until the defragmentation pass is ended.
 | 
						|
 | 
						|
<b>Mapping</b> is preserved on allocations that are moved during defragmentation.
 | 
						|
Whether through #VMA_ALLOCATION_CREATE_MAPPED_BIT or vmaMapMemory(), the allocations
 | 
						|
are mapped at their new place. Of course, pointer to the mapped data changes, so it needs to be queried
 | 
						|
using VmaAllocationInfo::pMappedData.
 | 
						|
 | 
						|
\note Defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT.
 | 
						|
 | 
						|
 | 
						|
\page statistics Statistics
 | 
						|
 | 
						|
This library contains several functions that return information about its internal state,
 | 
						|
especially the amount of memory allocated from Vulkan.
 | 
						|
 | 
						|
\section statistics_numeric_statistics Numeric statistics
 | 
						|
 | 
						|
If you need to obtain basic statistics about memory usage per heap, together with current budget,
 | 
						|
you can call function vmaGetHeapBudgets() and inspect structure #VmaBudget.
 | 
						|
This is useful to keep track of memory usage and stay within budget
 | 
						|
(see also \ref staying_within_budget).
 | 
						|
Example:
 | 
						|
 | 
						|
\code
 | 
						|
uint32_t heapIndex = ...
 | 
						|
 | 
						|
VmaBudget budgets[VK_MAX_MEMORY_HEAPS];
 | 
						|
vmaGetHeapBudgets(allocator, budgets);
 | 
						|
 | 
						|
printf("My heap currently has %u allocations taking %llu B,\n",
 | 
						|
    budgets[heapIndex].statistics.allocationCount,
 | 
						|
    budgets[heapIndex].statistics.allocationBytes);
 | 
						|
printf("allocated out of %u Vulkan device memory blocks taking %llu B,\n",
 | 
						|
    budgets[heapIndex].statistics.blockCount,
 | 
						|
    budgets[heapIndex].statistics.blockBytes);
 | 
						|
printf("Vulkan reports total usage %llu B with budget %llu B.\n",
 | 
						|
    budgets[heapIndex].usage,
 | 
						|
    budgets[heapIndex].budget);
 | 
						|
\endcode
 | 
						|
 | 
						|
You can query for more detailed statistics per memory heap, type, and totals,
 | 
						|
including minimum and maximum allocation size and unused range size,
 | 
						|
by calling function vmaCalculateStatistics() and inspecting structure #VmaTotalStatistics.
 | 
						|
This function is slower though, as it has to traverse all the internal data structures,
 | 
						|
so it should be used only for debugging purposes.
 | 
						|
 | 
						|
You can query for statistics of a custom pool using function vmaGetPoolStatistics()
 | 
						|
or vmaCalculatePoolStatistics().
 | 
						|
 | 
						|
You can query for information about a specific allocation using function vmaGetAllocationInfo().
 | 
						|
It fill structure #VmaAllocationInfo.
 | 
						|
 | 
						|
\section statistics_json_dump JSON dump
 | 
						|
 | 
						|
You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().
 | 
						|
The result is guaranteed to be correct JSON.
 | 
						|
It uses ANSI encoding.
 | 
						|
Any strings provided by user (see [Allocation names](@ref allocation_names))
 | 
						|
are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,
 | 
						|
this JSON string can be treated as using this encoding.
 | 
						|
It must be freed using function vmaFreeStatsString().
 | 
						|
 | 
						|
The format of this JSON string is not part of official documentation of the library,
 | 
						|
but it will not change in backward-incompatible way without increasing library major version number
 | 
						|
and appropriate mention in changelog.
 | 
						|
 | 
						|
The JSON string contains all the data that can be obtained using vmaCalculateStatistics().
 | 
						|
It can also contain detailed map of allocated memory blocks and their regions -
 | 
						|
free and occupied by allocations.
 | 
						|
This allows e.g. to visualize the memory or assess fragmentation.
 | 
						|
 | 
						|
 | 
						|
\page allocation_annotation Allocation names and user data
 | 
						|
 | 
						|
\section allocation_user_data Allocation user data
 | 
						|
 | 
						|
You can annotate allocations with your own information, e.g. for debugging purposes.
 | 
						|
To do that, fill VmaAllocationCreateInfo::pUserData field when creating
 | 
						|
an allocation. It is an opaque `void*` pointer. You can use it e.g. as a pointer,
 | 
						|
some handle, index, key, ordinal number or any other value that would associate
 | 
						|
the allocation with your custom metadata.
 | 
						|
It is useful to identify appropriate data structures in your engine given #VmaAllocation,
 | 
						|
e.g. when doing \ref defragmentation.
 | 
						|
 | 
						|
\code
 | 
						|
VkBufferCreateInfo bufCreateInfo = ...
 | 
						|
 | 
						|
MyBufferMetadata* pMetadata = CreateBufferMetadata();
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
allocCreateInfo.pUserData = pMetadata;
 | 
						|
 | 
						|
VkBuffer buffer;
 | 
						|
VmaAllocation allocation;
 | 
						|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
 | 
						|
\endcode
 | 
						|
 | 
						|
The pointer may be later retrieved as VmaAllocationInfo::pUserData:
 | 
						|
 | 
						|
\code
 | 
						|
VmaAllocationInfo allocInfo;
 | 
						|
vmaGetAllocationInfo(allocator, allocation, &allocInfo);
 | 
						|
MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
 | 
						|
\endcode
 | 
						|
 | 
						|
It can also be changed using function vmaSetAllocationUserData().
 | 
						|
 | 
						|
Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
 | 
						|
vmaBuildStatsString() in hexadecimal form.
 | 
						|
 | 
						|
\section allocation_names Allocation names
 | 
						|
 | 
						|
An allocation can also carry a null-terminated string, giving a name to the allocation.
 | 
						|
To set it, call vmaSetAllocationName().
 | 
						|
The library creates internal copy of the string, so the pointer you pass doesn't need
 | 
						|
to be valid for whole lifetime of the allocation. You can free it after the call.
 | 
						|
 | 
						|
\code
 | 
						|
std::string imageName = "Texture: ";
 | 
						|
imageName += fileName;
 | 
						|
vmaSetAllocationName(allocator, allocation, imageName.c_str());
 | 
						|
\endcode
 | 
						|
 | 
						|
The string can be later retrieved by inspecting VmaAllocationInfo::pName.
 | 
						|
It is also printed in JSON report created by vmaBuildStatsString().
 | 
						|
 | 
						|
\note Setting string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it.
 | 
						|
You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library.
 | 
						|
 | 
						|
 | 
						|
\page virtual_allocator Virtual allocator
 | 
						|
 | 
						|
As an extra feature, the core allocation algorithm of the library is exposed through a simple and convenient API of "virtual allocator".
 | 
						|
It doesn't allocate any real GPU memory. It just keeps track of used and free regions of a "virtual block".
 | 
						|
You can use it to allocate your own memory or other objects, even completely unrelated to Vulkan.
 | 
						|
A common use case is sub-allocation of pieces of one large GPU buffer.
 | 
						|
 | 
						|
\section virtual_allocator_creating_virtual_block Creating virtual block
 | 
						|
 | 
						|
To use this functionality, there is no main "allocator" object.
 | 
						|
You don't need to have #VmaAllocator object created.
 | 
						|
All you need to do is to create a separate #VmaVirtualBlock object for each block of memory you want to be managed by the allocator:
 | 
						|
 | 
						|
-# Fill in #VmaVirtualBlockCreateInfo structure.
 | 
						|
-# Call vmaCreateVirtualBlock(). Get new #VmaVirtualBlock object.
 | 
						|
 | 
						|
Example:
 | 
						|
 | 
						|
\code
 | 
						|
VmaVirtualBlockCreateInfo blockCreateInfo = {};
 | 
						|
blockCreateInfo.size = 1048576; // 1 MB
 | 
						|
 | 
						|
VmaVirtualBlock block;
 | 
						|
VkResult res = vmaCreateVirtualBlock(&blockCreateInfo, &block);
 | 
						|
\endcode
 | 
						|
 | 
						|
\section virtual_allocator_making_virtual_allocations Making virtual allocations
 | 
						|
 | 
						|
#VmaVirtualBlock object contains internal data structure that keeps track of free and occupied regions
 | 
						|
using the same code as the main Vulkan memory allocator.
 | 
						|
Similarly to #VmaAllocation for standard GPU allocations, there is #VmaVirtualAllocation type
 | 
						|
that represents an opaque handle to an allocation within the virtual block.
 | 
						|
 | 
						|
In order to make such allocation:
 | 
						|
 | 
						|
-# Fill in #VmaVirtualAllocationCreateInfo structure.
 | 
						|
-# Call vmaVirtualAllocate(). Get new #VmaVirtualAllocation object that represents the allocation.
 | 
						|
   You can also receive `VkDeviceSize offset` that was assigned to the allocation.
 | 
						|
 | 
						|
Example:
 | 
						|
 | 
						|
\code
 | 
						|
VmaVirtualAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.size = 4096; // 4 KB
 | 
						|
 | 
						|
VmaVirtualAllocation alloc;
 | 
						|
VkDeviceSize offset;
 | 
						|
res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, &offset);
 | 
						|
if(res == VK_SUCCESS)
 | 
						|
{
 | 
						|
    // Use the 4 KB of your memory starting at offset.
 | 
						|
}
 | 
						|
else
 | 
						|
{
 | 
						|
    // Allocation failed - no space for it could be found. Handle this error!
 | 
						|
}
 | 
						|
\endcode
 | 
						|
 | 
						|
\section virtual_allocator_deallocation Deallocation
 | 
						|
 | 
						|
When no longer needed, an allocation can be freed by calling vmaVirtualFree().
 | 
						|
You can only pass to this function an allocation that was previously returned by vmaVirtualAllocate()
 | 
						|
called for the same #VmaVirtualBlock.
 | 
						|
 | 
						|
When whole block is no longer needed, the block object can be released by calling vmaDestroyVirtualBlock().
 | 
						|
All allocations must be freed before the block is destroyed, which is checked internally by an assert.
 | 
						|
However, if you don't want to call vmaVirtualFree() for each allocation, you can use vmaClearVirtualBlock() to free them all at once -
 | 
						|
a feature not available in normal Vulkan memory allocator. Example:
 | 
						|
 | 
						|
\code
 | 
						|
vmaVirtualFree(block, alloc);
 | 
						|
vmaDestroyVirtualBlock(block);
 | 
						|
\endcode
 | 
						|
 | 
						|
\section virtual_allocator_allocation_parameters Allocation parameters
 | 
						|
 | 
						|
You can attach a custom pointer to each allocation by using vmaSetVirtualAllocationUserData().
 | 
						|
Its default value is null.
 | 
						|
It can be used to store any data that needs to be associated with that allocation - e.g. an index, a handle, or a pointer to some
 | 
						|
larger data structure containing more information. Example:
 | 
						|
 | 
						|
\code
 | 
						|
struct CustomAllocData
 | 
						|
{
 | 
						|
    std::string m_AllocName;
 | 
						|
};
 | 
						|
CustomAllocData* allocData = new CustomAllocData();
 | 
						|
allocData->m_AllocName = "My allocation 1";
 | 
						|
vmaSetVirtualAllocationUserData(block, alloc, allocData);
 | 
						|
\endcode
 | 
						|
 | 
						|
The pointer can later be fetched, along with allocation offset and size, by passing the allocation handle to function
 | 
						|
vmaGetVirtualAllocationInfo() and inspecting returned structure #VmaVirtualAllocationInfo.
 | 
						|
If you allocated a new object to be used as the custom pointer, don't forget to delete that object before freeing the allocation!
 | 
						|
Example:
 | 
						|
 | 
						|
\code
 | 
						|
VmaVirtualAllocationInfo allocInfo;
 | 
						|
vmaGetVirtualAllocationInfo(block, alloc, &allocInfo);
 | 
						|
delete (CustomAllocData*)allocInfo.pUserData;
 | 
						|
 | 
						|
vmaVirtualFree(block, alloc);
 | 
						|
\endcode
 | 
						|
 | 
						|
\section virtual_allocator_alignment_and_units Alignment and units
 | 
						|
 | 
						|
It feels natural to express sizes and offsets in bytes.
 | 
						|
If an offset of an allocation needs to be aligned to a multiply of some number (e.g. 4 bytes), you can fill optional member
 | 
						|
VmaVirtualAllocationCreateInfo::alignment to request it. Example:
 | 
						|
 | 
						|
\code
 | 
						|
VmaVirtualAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.size = 4096; // 4 KB
 | 
						|
allocCreateInfo.alignment = 4; // Returned offset must be a multiply of 4 B
 | 
						|
 | 
						|
VmaVirtualAllocation alloc;
 | 
						|
res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, nullptr);
 | 
						|
\endcode
 | 
						|
 | 
						|
Alignments of different allocations made from one block may vary.
 | 
						|
However, if all alignments and sizes are always multiply of some size e.g. 4 B or `sizeof(MyDataStruct)`,
 | 
						|
you can express all sizes, alignments, and offsets in multiples of that size instead of individual bytes.
 | 
						|
It might be more convenient, but you need to make sure to use this new unit consistently in all the places:
 | 
						|
 | 
						|
- VmaVirtualBlockCreateInfo::size
 | 
						|
- VmaVirtualAllocationCreateInfo::size and VmaVirtualAllocationCreateInfo::alignment
 | 
						|
- Using offset returned by vmaVirtualAllocate() or in VmaVirtualAllocationInfo::offset
 | 
						|
 | 
						|
\section virtual_allocator_statistics Statistics
 | 
						|
 | 
						|
You can obtain statistics of a virtual block using vmaGetVirtualBlockStatistics()
 | 
						|
(to get brief statistics that are fast to calculate)
 | 
						|
or vmaCalculateVirtualBlockStatistics() (to get more detailed statistics, slower to calculate).
 | 
						|
The functions fill structures #VmaStatistics, #VmaDetailedStatistics respectively - same as used by the normal Vulkan memory allocator.
 | 
						|
Example:
 | 
						|
 | 
						|
\code
 | 
						|
VmaStatistics stats;
 | 
						|
vmaGetVirtualBlockStatistics(block, &stats);
 | 
						|
printf("My virtual block has %llu bytes used by %u virtual allocations\n",
 | 
						|
    stats.allocationBytes, stats.allocationCount);
 | 
						|
\endcode
 | 
						|
 | 
						|
You can also request a full list of allocations and free regions as a string in JSON format by calling
 | 
						|
vmaBuildVirtualBlockStatsString().
 | 
						|
Returned string must be later freed using vmaFreeVirtualBlockStatsString().
 | 
						|
The format of this string differs from the one returned by the main Vulkan allocator, but it is similar.
 | 
						|
 | 
						|
\section virtual_allocator_additional_considerations Additional considerations
 | 
						|
 | 
						|
The "virtual allocator" functionality is implemented on a level of individual memory blocks.
 | 
						|
Keeping track of a whole collection of blocks, allocating new ones when out of free space,
 | 
						|
deleting empty ones, and deciding which one to try first for a new allocation must be implemented by the user.
 | 
						|
 | 
						|
Alternative allocation algorithms are supported, just like in custom pools of the real GPU memory.
 | 
						|
See enum #VmaVirtualBlockCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT).
 | 
						|
You can find their description in chapter \ref custom_memory_pools.
 | 
						|
Allocation strategies are also supported.
 | 
						|
See enum #VmaVirtualAllocationCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT).
 | 
						|
 | 
						|
Following features are supported only by the allocator of the real GPU memory and not by virtual allocations:
 | 
						|
buffer-image granularity, `VMA_DEBUG_MARGIN`, `VMA_MIN_ALIGNMENT`.
 | 
						|
 | 
						|
 | 
						|
\page debugging_memory_usage Debugging incorrect memory usage
 | 
						|
 | 
						|
If you suspect a bug with memory usage, like usage of uninitialized memory or
 | 
						|
memory being overwritten out of bounds of an allocation,
 | 
						|
you can use debug features of this library to verify this.
 | 
						|
 | 
						|
\section debugging_memory_usage_initialization Memory initialization
 | 
						|
 | 
						|
If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used,
 | 
						|
you can enable automatic memory initialization to verify this.
 | 
						|
To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1.
 | 
						|
 | 
						|
\code
 | 
						|
#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1
 | 
						|
#include "vk_mem_alloc.h"
 | 
						|
\endcode
 | 
						|
 | 
						|
It makes memory of new allocations initialized to bit pattern `0xDCDCDCDC`.
 | 
						|
Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`.
 | 
						|
Memory is automatically mapped and unmapped if necessary.
 | 
						|
 | 
						|
If you find these values while debugging your program, good chances are that you incorrectly
 | 
						|
read Vulkan memory that is allocated but not initialized, or already freed, respectively.
 | 
						|
 | 
						|
Memory initialization works only with memory types that are `HOST_VISIBLE` and with allocations that can be mapped.
 | 
						|
It works also with dedicated allocations.
 | 
						|
 | 
						|
\section debugging_memory_usage_margins Margins
 | 
						|
 | 
						|
By default, allocations are laid out in memory blocks next to each other if possible
 | 
						|
(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`).
 | 
						|
 | 
						|

 | 
						|
 | 
						|
Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified
 | 
						|
number of bytes as a margin after every allocation.
 | 
						|
 | 
						|
\code
 | 
						|
#define VMA_DEBUG_MARGIN 16
 | 
						|
#include "vk_mem_alloc.h"
 | 
						|
\endcode
 | 
						|
 | 
						|

 | 
						|
 | 
						|
If your bug goes away after enabling margins, it means it may be caused by memory
 | 
						|
being overwritten outside of allocation boundaries. It is not 100% certain though.
 | 
						|
Change in application behavior may also be caused by different order and distribution
 | 
						|
of allocations across memory blocks after margins are applied.
 | 
						|
 | 
						|
Margins work with all types of memory.
 | 
						|
 | 
						|
Margin is applied only to allocations made out of memory blocks and not to dedicated
 | 
						|
allocations, which have their own memory block of specific size.
 | 
						|
It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag
 | 
						|
or those automatically decided to put into dedicated allocations, e.g. due to its
 | 
						|
large size or recommended by VK_KHR_dedicated_allocation extension.
 | 
						|
 | 
						|
Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space.
 | 
						|
 | 
						|
Note that enabling margins increases memory usage and fragmentation.
 | 
						|
 | 
						|
Margins do not apply to \ref virtual_allocator.
 | 
						|
 | 
						|
\section debugging_memory_usage_corruption_detection Corruption detection
 | 
						|
 | 
						|
You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation
 | 
						|
of contents of the margins.
 | 
						|
 | 
						|
\code
 | 
						|
#define VMA_DEBUG_MARGIN 16
 | 
						|
#define VMA_DEBUG_DETECT_CORRUPTION 1
 | 
						|
#include "vk_mem_alloc.h"
 | 
						|
\endcode
 | 
						|
 | 
						|
When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN`
 | 
						|
(it must be multiply of 4) after every allocation is filled with a magic number.
 | 
						|
This idea is also know as "canary".
 | 
						|
Memory is automatically mapped and unmapped if necessary.
 | 
						|
 | 
						|
This number is validated automatically when the allocation is destroyed.
 | 
						|
If it is not equal to the expected value, `VMA_ASSERT()` is executed.
 | 
						|
It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation,
 | 
						|
which indicates a serious bug.
 | 
						|
 | 
						|
You can also explicitly request checking margins of all allocations in all memory blocks
 | 
						|
that belong to specified memory types by using function vmaCheckCorruption(),
 | 
						|
or in memory blocks that belong to specified custom pool, by using function
 | 
						|
vmaCheckPoolCorruption().
 | 
						|
 | 
						|
Margin validation (corruption detection) works only for memory types that are
 | 
						|
`HOST_VISIBLE` and `HOST_COHERENT`.
 | 
						|
 | 
						|
 | 
						|
\section debugging_memory_usage_leak_detection Leak detection features
 | 
						|
 | 
						|
At allocation and allocator destruction time VMA checks for unfreed and unmapped blocks using
 | 
						|
`VMA_ASSERT_LEAK()`. This macro defaults to an assertion, triggering a typically fatal error in Debug
 | 
						|
builds, and doing nothing in Release builds. You can provide your own definition of `VMA_ASSERT_LEAK()`
 | 
						|
to change this behavior.
 | 
						|
 | 
						|
At memory block destruction time VMA lists out all unfreed allocations using the `VMA_LEAK_LOG_FORMAT()`
 | 
						|
macro, which defaults to `VMA_DEBUG_LOG_FORMAT`, which in turn defaults to a no-op.
 | 
						|
If you're having trouble with leaks - for example, the aforementioned assertion triggers, but you don't
 | 
						|
quite know \em why -, overriding this macro to print out the the leaking blocks, combined with assigning
 | 
						|
individual names to allocations using vmaSetAllocationName(), can greatly aid in fixing them.
 | 
						|
 | 
						|
\page other_api_interop Interop with other graphics APIs
 | 
						|
 | 
						|
VMA provides some features that help with interoperability with other graphics APIs, e.g. OpenGL.
 | 
						|
 | 
						|
\section opengl_interop_exporting_memory Exporting memory
 | 
						|
 | 
						|
If you want to attach `VkExportMemoryAllocateInfoKHR` or other structure to `pNext` chain of memory allocations made by the library:
 | 
						|
 | 
						|
You can create \ref custom_memory_pools for such allocations.
 | 
						|
Define and fill in your `VkExportMemoryAllocateInfoKHR` structure and attach it to VmaPoolCreateInfo::pMemoryAllocateNext
 | 
						|
while creating the custom pool.
 | 
						|
Please note that the structure must remain alive and unchanged for the whole lifetime of the #VmaPool,
 | 
						|
not only while creating it, as no copy of the structure is made,
 | 
						|
but its original pointer is used for each allocation instead.
 | 
						|
 | 
						|
If you want to export all memory allocated by VMA from certain memory types,
 | 
						|
also dedicated allocations or other allocations made from default pools,
 | 
						|
an alternative solution is to fill in VmaAllocatorCreateInfo::pTypeExternalMemoryHandleTypes.
 | 
						|
It should point to an array with `VkExternalMemoryHandleTypeFlagsKHR` to be automatically passed by the library
 | 
						|
through `VkExportMemoryAllocateInfoKHR` on each allocation made from a specific memory type.
 | 
						|
Please note that new versions of the library also support dedicated allocations created in custom pools.
 | 
						|
 | 
						|
You should not mix these two methods in a way that allows to apply both to the same memory type.
 | 
						|
Otherwise, `VkExportMemoryAllocateInfoKHR` structure would be attached twice to the `pNext` chain of `VkMemoryAllocateInfo`.
 | 
						|
 | 
						|
 | 
						|
\section opengl_interop_custom_alignment Custom alignment
 | 
						|
 | 
						|
Buffers or images exported to a different API like OpenGL may require a different alignment,
 | 
						|
higher than the one used by the library automatically, queried from functions like `vkGetBufferMemoryRequirements`.
 | 
						|
To impose such alignment:
 | 
						|
 | 
						|
You can create \ref custom_memory_pools for such allocations.
 | 
						|
Set VmaPoolCreateInfo::minAllocationAlignment member to the minimum alignment required for each allocation
 | 
						|
to be made out of this pool.
 | 
						|
The alignment actually used will be the maximum of this member and the alignment returned for the specific buffer or image
 | 
						|
from a function like `vkGetBufferMemoryRequirements`, which is called by VMA automatically.
 | 
						|
 | 
						|
If you want to create a buffer with a specific minimum alignment out of default pools,
 | 
						|
use special function vmaCreateBufferWithAlignment(), which takes additional parameter `minAlignment`.
 | 
						|
 | 
						|
Note the problem of alignment affects only resources placed inside bigger `VkDeviceMemory` blocks and not dedicated
 | 
						|
allocations, as these, by definition, always have alignment = 0 because the resource is bound to the beginning of its dedicated block.
 | 
						|
You can ensure that an allocation is created as dedicated by using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | 
						|
Contrary to Direct3D 12, Vulkan doesn't have a concept of alignment of the entire memory block passed on its allocation.
 | 
						|
 | 
						|
\section opengl_interop_extended_allocation_information Extended allocation information
 | 
						|
 | 
						|
If you want to rely on VMA to allocate your buffers and images inside larger memory blocks,
 | 
						|
but you need to know the size of the entire block and whether the allocation was made
 | 
						|
with its own dedicated memory, use function vmaGetAllocationInfo2() to retrieve
 | 
						|
extended allocation information in structure #VmaAllocationInfo2.
 | 
						|
 | 
						|
 | 
						|
 | 
						|
\page usage_patterns Recommended usage patterns
 | 
						|
 | 
						|
Vulkan gives great flexibility in memory allocation.
 | 
						|
This chapter shows the most common patterns.
 | 
						|
 | 
						|
See also slides from talk:
 | 
						|
[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New)
 | 
						|
 | 
						|
 | 
						|
\section usage_patterns_gpu_only GPU-only resource
 | 
						|
 | 
						|
<b>When:</b>
 | 
						|
Any resources that you frequently write and read on GPU,
 | 
						|
e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,
 | 
						|
images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").
 | 
						|
 | 
						|
<b>What to do:</b>
 | 
						|
Let the library select the optimal memory type, which will likely have `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
 | 
						|
 | 
						|
\code
 | 
						|
VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
 | 
						|
imgCreateInfo.imageType = VK_IMAGE_TYPE_2D;
 | 
						|
imgCreateInfo.extent.width = 3840;
 | 
						|
imgCreateInfo.extent.height = 2160;
 | 
						|
imgCreateInfo.extent.depth = 1;
 | 
						|
imgCreateInfo.mipLevels = 1;
 | 
						|
imgCreateInfo.arrayLayers = 1;
 | 
						|
imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
 | 
						|
imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 | 
						|
imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
 | 
						|
imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
 | 
						|
imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
 | 
						|
allocCreateInfo.priority = 1.0f;
 | 
						|
 | 
						|
VkImage img;
 | 
						|
VmaAllocation alloc;
 | 
						|
vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr);
 | 
						|
\endcode
 | 
						|
 | 
						|
<b>Also consider:</b>
 | 
						|
Consider creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,
 | 
						|
especially if they are large or if you plan to destroy and recreate them with different sizes
 | 
						|
e.g. when display resolution changes.
 | 
						|
Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.
 | 
						|
When VK_EXT_memory_priority extension is enabled, it is also worth setting high priority to such allocation
 | 
						|
to decrease chances to be evicted to system memory by the operating system.
 | 
						|
 | 
						|
\section usage_patterns_staging_copy_upload Staging copy for upload
 | 
						|
 | 
						|
<b>When:</b>
 | 
						|
A "staging" buffer than you want to map and fill from CPU code, then use as a source of transfer
 | 
						|
to some GPU resource.
 | 
						|
 | 
						|
<b>What to do:</b>
 | 
						|
Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT.
 | 
						|
Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`.
 | 
						|
 | 
						|
\code
 | 
						|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
bufCreateInfo.size = 65536;
 | 
						|
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
 | 
						|
    VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | 
						|
 | 
						|
VkBuffer buf;
 | 
						|
VmaAllocation alloc;
 | 
						|
VmaAllocationInfo allocInfo;
 | 
						|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | 
						|
 | 
						|
...
 | 
						|
 | 
						|
memcpy(allocInfo.pMappedData, myData, myDataSize);
 | 
						|
\endcode
 | 
						|
 | 
						|
<b>Also consider:</b>
 | 
						|
You can map the allocation using vmaMapMemory() or you can create it as persistenly mapped
 | 
						|
using #VMA_ALLOCATION_CREATE_MAPPED_BIT, as in the example above.
 | 
						|
 | 
						|
 | 
						|
\section usage_patterns_readback Readback
 | 
						|
 | 
						|
<b>When:</b>
 | 
						|
Buffers for data written by or transferred from the GPU that you want to read back on the CPU,
 | 
						|
e.g. results of some computations.
 | 
						|
 | 
						|
<b>What to do:</b>
 | 
						|
Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
 | 
						|
Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
 | 
						|
and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`.
 | 
						|
 | 
						|
\code
 | 
						|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
bufCreateInfo.size = 65536;
 | 
						|
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT |
 | 
						|
    VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | 
						|
 | 
						|
VkBuffer buf;
 | 
						|
VmaAllocation alloc;
 | 
						|
VmaAllocationInfo allocInfo;
 | 
						|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | 
						|
 | 
						|
...
 | 
						|
 | 
						|
const float* downloadedData = (const float*)allocInfo.pMappedData;
 | 
						|
\endcode
 | 
						|
 | 
						|
 | 
						|
\section usage_patterns_advanced_data_uploading Advanced data uploading
 | 
						|
 | 
						|
For resources that you frequently write on CPU via mapped pointer and
 | 
						|
frequently read on GPU e.g. as a uniform buffer (also called "dynamic"), multiple options are possible:
 | 
						|
 | 
						|
-# Easiest solution is to have one copy of the resource in `HOST_VISIBLE` memory,
 | 
						|
   even if it means system RAM (not `DEVICE_LOCAL`) on systems with a discrete graphics card,
 | 
						|
   and make the device reach out to that resource directly.
 | 
						|
   - Reads performed by the device will then go through PCI Express bus.
 | 
						|
     The performance of this access may be limited, but it may be fine depending on the size
 | 
						|
     of this resource (whether it is small enough to quickly end up in GPU cache) and the sparsity
 | 
						|
     of access.
 | 
						|
-# On systems with unified memory (e.g. AMD APU or Intel integrated graphics, mobile chips),
 | 
						|
   a memory type may be available that is both `HOST_VISIBLE` (available for mapping) and `DEVICE_LOCAL`
 | 
						|
   (fast to access from the GPU). Then, it is likely the best choice for such type of resource.
 | 
						|
-# Systems with a discrete graphics card and separate video memory may or may not expose
 | 
						|
   a memory type that is both `HOST_VISIBLE` and `DEVICE_LOCAL`, also known as Base Address Register (BAR).
 | 
						|
   If they do, it represents a piece of VRAM (or entire VRAM, if ReBAR is enabled in the motherboard BIOS)
 | 
						|
   that is available to CPU for mapping.
 | 
						|
   - Writes performed by the host to that memory go through PCI Express bus.
 | 
						|
     The performance of these writes may be limited, but it may be fine, especially on PCIe 4.0,
 | 
						|
     as long as rules of using uncached and write-combined memory are followed - only sequential writes and no reads.
 | 
						|
-# Finally, you may need or prefer to create a separate copy of the resource in `DEVICE_LOCAL` memory,
 | 
						|
   a separate "staging" copy in `HOST_VISIBLE` memory and perform an explicit transfer command between them.
 | 
						|
 | 
						|
Thankfully, VMA offers an aid to create and use such resources in the the way optimal
 | 
						|
for the current Vulkan device. To help the library make the best choice,
 | 
						|
use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT together with
 | 
						|
#VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT.
 | 
						|
It will then prefer a memory type that is both `DEVICE_LOCAL` and `HOST_VISIBLE` (integrated memory or BAR),
 | 
						|
but if no such memory type is available or allocation from it fails
 | 
						|
(PC graphics cards have only 256 MB of BAR by default, unless ReBAR is supported and enabled in BIOS),
 | 
						|
it will fall back to `DEVICE_LOCAL` memory for fast GPU access.
 | 
						|
It is then up to you to detect that the allocation ended up in a memory type that is not `HOST_VISIBLE`,
 | 
						|
so you need to create another "staging" allocation and perform explicit transfers.
 | 
						|
 | 
						|
\code
 | 
						|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
bufCreateInfo.size = 65536;
 | 
						|
bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
 | 
						|
    VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT |
 | 
						|
    VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | 
						|
 | 
						|
VkBuffer buf;
 | 
						|
VmaAllocation alloc;
 | 
						|
VmaAllocationInfo allocInfo;
 | 
						|
VkResult result = vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | 
						|
// Check result...
 | 
						|
 | 
						|
VkMemoryPropertyFlags memPropFlags;
 | 
						|
vmaGetAllocationMemoryProperties(allocator, alloc, &memPropFlags);
 | 
						|
 | 
						|
if(memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
 | 
						|
{
 | 
						|
    // Allocation ended up in a mappable memory and is already mapped - write to it directly.
 | 
						|
 | 
						|
    // [Executed in runtime]:
 | 
						|
    memcpy(allocInfo.pMappedData, myData, myDataSize);
 | 
						|
    result = vmaFlushAllocation(allocator, alloc, 0, VK_WHOLE_SIZE);
 | 
						|
    // Check result...
 | 
						|
 | 
						|
    VkBufferMemoryBarrier bufMemBarrier = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER };
 | 
						|
    bufMemBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
 | 
						|
    bufMemBarrier.dstAccessMask = VK_ACCESS_UNIFORM_READ_BIT;
 | 
						|
    bufMemBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
 | 
						|
    bufMemBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
 | 
						|
    bufMemBarrier.buffer = buf;
 | 
						|
    bufMemBarrier.offset = 0;
 | 
						|
    bufMemBarrier.size = VK_WHOLE_SIZE;
 | 
						|
 | 
						|
    vkCmdPipelineBarrier(cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
 | 
						|
        0, 0, nullptr, 1, &bufMemBarrier, 0, nullptr);
 | 
						|
}
 | 
						|
else
 | 
						|
{
 | 
						|
    // Allocation ended up in a non-mappable memory - a transfer using a staging buffer is required.
 | 
						|
    VkBufferCreateInfo stagingBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
    stagingBufCreateInfo.size = 65536;
 | 
						|
    stagingBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
 | 
						|
 | 
						|
    VmaAllocationCreateInfo stagingAllocCreateInfo = {};
 | 
						|
    stagingAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
    stagingAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
 | 
						|
        VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | 
						|
 | 
						|
    VkBuffer stagingBuf;
 | 
						|
    VmaAllocation stagingAlloc;
 | 
						|
    VmaAllocationInfo stagingAllocInfo;
 | 
						|
    result = vmaCreateBuffer(allocator, &stagingBufCreateInfo, &stagingAllocCreateInfo,
 | 
						|
        &stagingBuf, &stagingAlloc, &stagingAllocInfo);
 | 
						|
    // Check result...
 | 
						|
 | 
						|
    // [Executed in runtime]:
 | 
						|
    memcpy(stagingAllocInfo.pMappedData, myData, myDataSize);
 | 
						|
    result = vmaFlushAllocation(allocator, stagingAlloc, 0, VK_WHOLE_SIZE);
 | 
						|
    // Check result...
 | 
						|
 | 
						|
    VkBufferMemoryBarrier bufMemBarrier = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER };
 | 
						|
    bufMemBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
 | 
						|
    bufMemBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
 | 
						|
    bufMemBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
 | 
						|
    bufMemBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
 | 
						|
    bufMemBarrier.buffer = stagingBuf;
 | 
						|
    bufMemBarrier.offset = 0;
 | 
						|
    bufMemBarrier.size = VK_WHOLE_SIZE;
 | 
						|
 | 
						|
    vkCmdPipelineBarrier(cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
 | 
						|
        0, 0, nullptr, 1, &bufMemBarrier, 0, nullptr);
 | 
						|
 | 
						|
    VkBufferCopy bufCopy = {
 | 
						|
        0, // srcOffset
 | 
						|
        0, // dstOffset,
 | 
						|
        myDataSize, // size
 | 
						|
    };
 | 
						|
 | 
						|
    vkCmdCopyBuffer(cmdBuf, stagingBuf, buf, 1, &bufCopy);
 | 
						|
 | 
						|
    VkBufferMemoryBarrier bufMemBarrier2 = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER };
 | 
						|
    bufMemBarrier2.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
 | 
						|
    bufMemBarrier2.dstAccessMask = VK_ACCESS_UNIFORM_READ_BIT; // We created a uniform buffer
 | 
						|
    bufMemBarrier2.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
 | 
						|
    bufMemBarrier2.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
 | 
						|
    bufMemBarrier2.buffer = buf;
 | 
						|
    bufMemBarrier2.offset = 0;
 | 
						|
    bufMemBarrier2.size = VK_WHOLE_SIZE;
 | 
						|
 | 
						|
    vkCmdPipelineBarrier(cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
 | 
						|
        0, 0, nullptr, 1, &bufMemBarrier2, 0, nullptr);
 | 
						|
}
 | 
						|
\endcode
 | 
						|
 | 
						|
\section usage_patterns_other_use_cases Other use cases
 | 
						|
 | 
						|
Here are some other, less obvious use cases and their recommended settings:
 | 
						|
 | 
						|
- An image that is used only as transfer source and destination, but it should stay on the device,
 | 
						|
  as it is used to temporarily store a copy of some texture, e.g. from the current to the next frame,
 | 
						|
  for temporal antialiasing or other temporal effects.
 | 
						|
  - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT`
 | 
						|
  - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO
 | 
						|
- An image that is used only as transfer source and destination, but it should be placed
 | 
						|
  in the system RAM despite it doesn't need to be mapped, because it serves as a "swap" copy to evict
 | 
						|
  least recently used textures from VRAM.
 | 
						|
  - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT`
 | 
						|
  - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_HOST,
 | 
						|
    as VMA needs a hint here to differentiate from the previous case.
 | 
						|
- A buffer that you want to map and write from the CPU, directly read from the GPU
 | 
						|
  (e.g. as a uniform or vertex buffer), but you have a clear preference to place it in device or
 | 
						|
  host memory due to its large size.
 | 
						|
  - Use `VkBufferCreateInfo::usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT`
 | 
						|
  - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST
 | 
						|
  - Use VmaAllocationCreateInfo::flags = #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT
 | 
						|
 | 
						|
 | 
						|
\page configuration Configuration
 | 
						|
 | 
						|
Please check "CONFIGURATION SECTION" in the code to find macros that you can define
 | 
						|
before each include of this file or change directly in this file to provide
 | 
						|
your own implementation of basic facilities like assert, `min()` and `max()` functions,
 | 
						|
mutex, atomic etc.
 | 
						|
 | 
						|
For example, define `VMA_ASSERT(expr)` before including the library to provide
 | 
						|
custom implementation of the assertion, compatible with your project.
 | 
						|
By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration
 | 
						|
and empty otherwise.
 | 
						|
 | 
						|
Similarly, you can define `VMA_LEAK_LOG_FORMAT` macro to enable printing of leaked (unfreed) allocations,
 | 
						|
including their names and other parameters. Example:
 | 
						|
 | 
						|
\code
 | 
						|
#define VMA_LEAK_LOG_FORMAT(format, ...) do { \
 | 
						|
        printf((format), __VA_ARGS__); \
 | 
						|
        printf("\n"); \
 | 
						|
    } while(false)
 | 
						|
\endcode
 | 
						|
 | 
						|
\section config_Vulkan_functions Pointers to Vulkan functions
 | 
						|
 | 
						|
There are multiple ways to import pointers to Vulkan functions in the library.
 | 
						|
In the simplest case you don't need to do anything.
 | 
						|
If the compilation or linking of your program or the initialization of the #VmaAllocator
 | 
						|
doesn't work for you, you can try to reconfigure it.
 | 
						|
 | 
						|
First, the allocator tries to fetch pointers to Vulkan functions linked statically,
 | 
						|
like this:
 | 
						|
 | 
						|
\code
 | 
						|
m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
 | 
						|
\endcode
 | 
						|
 | 
						|
If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`.
 | 
						|
 | 
						|
Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions.
 | 
						|
You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or
 | 
						|
by using a helper library like [volk](https://github.com/zeux/volk).
 | 
						|
 | 
						|
Third, VMA tries to fetch remaining pointers that are still null by calling
 | 
						|
`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own.
 | 
						|
You need to only fill in VmaVulkanFunctions::vkGetInstanceProcAddr and VmaVulkanFunctions::vkGetDeviceProcAddr.
 | 
						|
Other pointers will be fetched automatically.
 | 
						|
If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`.
 | 
						|
 | 
						|
Finally, all the function pointers required by the library (considering selected
 | 
						|
Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null.
 | 
						|
 | 
						|
 | 
						|
\section custom_memory_allocator Custom host memory allocator
 | 
						|
 | 
						|
If you use custom allocator for CPU memory rather than default operator `new`
 | 
						|
and `delete` from C++, you can make this library using your allocator as well
 | 
						|
by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
 | 
						|
functions will be passed to Vulkan, as well as used by the library itself to
 | 
						|
make any CPU-side allocations.
 | 
						|
 | 
						|
\section allocation_callbacks Device memory allocation callbacks
 | 
						|
 | 
						|
The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
 | 
						|
You can setup callbacks to be informed about these calls, e.g. for the purpose
 | 
						|
of gathering some statistics. To do it, fill optional member
 | 
						|
VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
 | 
						|
 | 
						|
\section heap_memory_limit Device heap memory limit
 | 
						|
 | 
						|
When device memory of certain heap runs out of free space, new allocations may
 | 
						|
fail (returning error code) or they may succeed, silently pushing some existing_
 | 
						|
memory blocks from GPU VRAM to system RAM (which degrades performance). This
 | 
						|
behavior is implementation-dependent - it depends on GPU vendor and graphics
 | 
						|
driver.
 | 
						|
 | 
						|
On AMD cards it can be controlled while creating Vulkan device object by using
 | 
						|
VK_AMD_memory_overallocation_behavior extension, if available.
 | 
						|
 | 
						|
Alternatively, if you want to test how your program behaves with limited amount of Vulkan device
 | 
						|
memory available without switching your graphics card to one that really has
 | 
						|
smaller VRAM, you can use a feature of this library intended for this purpose.
 | 
						|
To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
 | 
						|
 | 
						|
 | 
						|
 | 
						|
\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
 | 
						|
 | 
						|
VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
 | 
						|
performance on some GPUs. It augments Vulkan API with possibility to query
 | 
						|
driver whether it prefers particular buffer or image to have its own, dedicated
 | 
						|
allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
 | 
						|
to do some internal optimizations. The extension is supported by this library.
 | 
						|
It will be used automatically when enabled.
 | 
						|
 | 
						|
It has been promoted to core Vulkan 1.1, so if you use eligible Vulkan version
 | 
						|
and inform VMA about it by setting VmaAllocatorCreateInfo::vulkanApiVersion,
 | 
						|
you are all set.
 | 
						|
 | 
						|
Otherwise, if you want to use it as an extension:
 | 
						|
 | 
						|
1 . When creating Vulkan device, check if following 2 device extensions are
 | 
						|
supported (call `vkEnumerateDeviceExtensionProperties()`).
 | 
						|
If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
 | 
						|
 | 
						|
- VK_KHR_get_memory_requirements2
 | 
						|
- VK_KHR_dedicated_allocation
 | 
						|
 | 
						|
If you enabled these extensions:
 | 
						|
 | 
						|
2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating
 | 
						|
your #VmaAllocator to inform the library that you enabled required extensions
 | 
						|
and you want the library to use them.
 | 
						|
 | 
						|
\code
 | 
						|
allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
 | 
						|
 | 
						|
vmaCreateAllocator(&allocatorInfo, &allocator);
 | 
						|
\endcode
 | 
						|
 | 
						|
That is all. The extension will be automatically used whenever you create a
 | 
						|
buffer using vmaCreateBuffer() or image using vmaCreateImage().
 | 
						|
 | 
						|
When using the extension together with Vulkan Validation Layer, you will receive
 | 
						|
warnings like this:
 | 
						|
 | 
						|
_vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer._
 | 
						|
 | 
						|
It is OK, you should just ignore it. It happens because you use function
 | 
						|
`vkGetBufferMemoryRequirements2KHR()` instead of standard
 | 
						|
`vkGetBufferMemoryRequirements()`, while the validation layer seems to be
 | 
						|
unaware of it.
 | 
						|
 | 
						|
To learn more about this extension, see:
 | 
						|
 | 
						|
- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation)
 | 
						|
- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
 | 
						|
 | 
						|
 | 
						|
 | 
						|
\page vk_ext_memory_priority VK_EXT_memory_priority
 | 
						|
 | 
						|
VK_EXT_memory_priority is a device extension that allows to pass additional "priority"
 | 
						|
value to Vulkan memory allocations that the implementation may use prefer certain
 | 
						|
buffers and images that are critical for performance to stay in device-local memory
 | 
						|
in cases when the memory is over-subscribed, while some others may be moved to the system memory.
 | 
						|
 | 
						|
VMA offers convenient usage of this extension.
 | 
						|
If you enable it, you can pass "priority" parameter when creating allocations or custom pools
 | 
						|
and the library automatically passes the value to Vulkan using this extension.
 | 
						|
 | 
						|
If you want to use this extension in connection with VMA, follow these steps:
 | 
						|
 | 
						|
\section vk_ext_memory_priority_initialization Initialization
 | 
						|
 | 
						|
1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
 | 
						|
Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_EXT_memory_priority".
 | 
						|
 | 
						|
2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
 | 
						|
Attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
 | 
						|
Check if the device feature is really supported - check if `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority` is true.
 | 
						|
 | 
						|
3) While creating device with `vkCreateDevice`, enable this extension - add "VK_EXT_memory_priority"
 | 
						|
to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
 | 
						|
 | 
						|
4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
 | 
						|
Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
 | 
						|
Enable this device feature - attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to
 | 
						|
`VkPhysicalDeviceFeatures2::pNext` chain and set its member `memoryPriority` to `VK_TRUE`.
 | 
						|
 | 
						|
5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
 | 
						|
have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT
 | 
						|
to VmaAllocatorCreateInfo::flags.
 | 
						|
 | 
						|
\section vk_ext_memory_priority_usage Usage
 | 
						|
 | 
						|
When using this extension, you should initialize following member:
 | 
						|
 | 
						|
- VmaAllocationCreateInfo::priority when creating a dedicated allocation with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | 
						|
- VmaPoolCreateInfo::priority when creating a custom pool.
 | 
						|
 | 
						|
It should be a floating-point value between `0.0f` and `1.0f`, where recommended default is `0.5f`.
 | 
						|
Memory allocated with higher value can be treated by the Vulkan implementation as higher priority
 | 
						|
and so it can have lower chances of being pushed out to system memory, experiencing degraded performance.
 | 
						|
 | 
						|
It might be a good idea to create performance-critical resources like color-attachment or depth-stencil images
 | 
						|
as dedicated and set high priority to them. For example:
 | 
						|
 | 
						|
\code
 | 
						|
VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
 | 
						|
imgCreateInfo.imageType = VK_IMAGE_TYPE_2D;
 | 
						|
imgCreateInfo.extent.width = 3840;
 | 
						|
imgCreateInfo.extent.height = 2160;
 | 
						|
imgCreateInfo.extent.depth = 1;
 | 
						|
imgCreateInfo.mipLevels = 1;
 | 
						|
imgCreateInfo.arrayLayers = 1;
 | 
						|
imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
 | 
						|
imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 | 
						|
imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
 | 
						|
imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
 | 
						|
imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
 | 
						|
allocCreateInfo.priority = 1.0f;
 | 
						|
 | 
						|
VkImage img;
 | 
						|
VmaAllocation alloc;
 | 
						|
vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr);
 | 
						|
\endcode
 | 
						|
 | 
						|
`priority` member is ignored in the following situations:
 | 
						|
 | 
						|
- Allocations created in custom pools: They inherit the priority, along with all other allocation parameters
 | 
						|
  from the parameters passed in #VmaPoolCreateInfo when the pool was created.
 | 
						|
- Allocations created in default pools: They inherit the priority from the parameters
 | 
						|
  VMA used when creating default pools, which means `priority == 0.5f`.
 | 
						|
 | 
						|
 | 
						|
\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory
 | 
						|
 | 
						|
VK_AMD_device_coherent_memory is a device extension that enables access to
 | 
						|
additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and
 | 
						|
`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for
 | 
						|
allocation of buffers intended for writing "breadcrumb markers" in between passes
 | 
						|
or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases.
 | 
						|
 | 
						|
When the extension is available but has not been enabled, Vulkan physical device
 | 
						|
still exposes those memory types, but their usage is forbidden. VMA automatically
 | 
						|
takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt
 | 
						|
to allocate memory of such type is made.
 | 
						|
 | 
						|
If you want to use this extension in connection with VMA, follow these steps:
 | 
						|
 | 
						|
\section vk_amd_device_coherent_memory_initialization Initialization
 | 
						|
 | 
						|
1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
 | 
						|
Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory".
 | 
						|
 | 
						|
2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
 | 
						|
Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
 | 
						|
Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true.
 | 
						|
 | 
						|
3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory"
 | 
						|
to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
 | 
						|
 | 
						|
4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
 | 
						|
Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
 | 
						|
Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to
 | 
						|
`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`.
 | 
						|
 | 
						|
5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
 | 
						|
have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT
 | 
						|
to VmaAllocatorCreateInfo::flags.
 | 
						|
 | 
						|
\section vk_amd_device_coherent_memory_usage Usage
 | 
						|
 | 
						|
After following steps described above, you can create VMA allocations and custom pools
 | 
						|
out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible
 | 
						|
devices. There are multiple ways to do it, for example:
 | 
						|
 | 
						|
- You can request or prefer to allocate out of such memory types by adding
 | 
						|
  `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags
 | 
						|
  or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with
 | 
						|
  other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage.
 | 
						|
- If you manually found memory type index to use for this purpose, force allocation
 | 
						|
  from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`.
 | 
						|
 | 
						|
\section vk_amd_device_coherent_memory_more_information More information
 | 
						|
 | 
						|
To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_AMD_device_coherent_memory.html)
 | 
						|
 | 
						|
Example use of this extension can be found in the code of the sample and test suite
 | 
						|
accompanying this library.
 | 
						|
 | 
						|
 | 
						|
\page vk_khr_external_memory_win32 VK_KHR_external_memory_win32
 | 
						|
 | 
						|
On Windows, the VK_KHR_external_memory_win32 device extension allows exporting a Win32 `HANDLE`
 | 
						|
of a `VkDeviceMemory` block, to be able to reference the memory on other Vulkan logical devices or instances,
 | 
						|
in multiple processes, and/or in multiple APIs.
 | 
						|
VMA offers support for it.
 | 
						|
 | 
						|
\section vk_khr_external_memory_win32_initialization Initialization
 | 
						|
 | 
						|
1) Make sure the extension is defined in the code by including following header before including VMA:
 | 
						|
 | 
						|
\code
 | 
						|
#include <vulkan/vulkan_win32.h>
 | 
						|
\endcode
 | 
						|
 | 
						|
2) Check if "VK_KHR_external_memory_win32" is available among device extensions.
 | 
						|
Enable it when creating the `VkDevice` object.
 | 
						|
 | 
						|
3) Enable the usage of this extension in VMA by setting flag #VMA_ALLOCATOR_CREATE_KHR_EXTERNAL_MEMORY_WIN32_BIT
 | 
						|
when calling vmaCreateAllocator().
 | 
						|
 | 
						|
4) Make sure that VMA has access to the `vkGetMemoryWin32HandleKHR` function by either enabling `VMA_DYNAMIC_VULKAN_FUNCTIONS` macro
 | 
						|
or setting VmaVulkanFunctions::vkGetMemoryWin32HandleKHR explicitly.
 | 
						|
For more information, see \ref quick_start_initialization_importing_vulkan_functions.
 | 
						|
 | 
						|
\section vk_khr_external_memory_win32_preparations Preparations
 | 
						|
 | 
						|
You can find example usage among tests, in file "Tests.cpp", function `TestWin32Handles()`.
 | 
						|
 | 
						|
To use the extenion, buffers need to be created with `VkExternalMemoryBufferCreateInfoKHR` attached to their `pNext` chain,
 | 
						|
and memory allocations need to be made with `VkExportMemoryAllocateInfoKHR` attached to their `pNext` chain.
 | 
						|
To make use of them, you need to use \ref custom_memory_pools. Example:
 | 
						|
 | 
						|
\code
 | 
						|
// Define an example buffer and allocation parameters.
 | 
						|
VkExternalMemoryBufferCreateInfoKHR externalMemBufCreateInfo = {
 | 
						|
    VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR,
 | 
						|
    nullptr,
 | 
						|
    VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT
 | 
						|
};
 | 
						|
VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
exampleBufCreateInfo.size = 0x10000; // Doesn't matter here.
 | 
						|
exampleBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | 
						|
exampleBufCreateInfo.pNext = &externalMemBufCreateInfo;
 | 
						|
 | 
						|
VmaAllocationCreateInfo exampleAllocCreateInfo = {};
 | 
						|
exampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | 
						|
 | 
						|
// Find memory type index to use for the custom pool.
 | 
						|
uint32_t memTypeIndex;
 | 
						|
VkResult res = vmaFindMemoryTypeIndexForBufferInfo(g_Allocator,
 | 
						|
    &exampleBufCreateInfo, &exampleAllocCreateInfo, &memTypeIndex);
 | 
						|
// Check res...
 | 
						|
 | 
						|
// Create a custom pool.
 | 
						|
constexpr static VkExportMemoryAllocateInfoKHR exportMemAllocInfo = {
 | 
						|
    VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR,
 | 
						|
    nullptr,
 | 
						|
    VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT
 | 
						|
};
 | 
						|
VmaPoolCreateInfo poolCreateInfo = {};
 | 
						|
poolCreateInfo.memoryTypeIndex = memTypeIndex;
 | 
						|
poolCreateInfo.pMemoryAllocateNext = (void*)&exportMemAllocInfo;
 | 
						|
 | 
						|
VmaPool pool;
 | 
						|
res = vmaCreatePool(g_Allocator, &poolCreateInfo, &pool);
 | 
						|
// Check res...
 | 
						|
 | 
						|
// YOUR OTHER CODE COMES HERE....
 | 
						|
 | 
						|
// At the end, don't forget to destroy it!
 | 
						|
vmaDestroyPool(g_Allocator, pool);
 | 
						|
\endcode
 | 
						|
 | 
						|
Note that the structure passed as VmaPoolCreateInfo::pMemoryAllocateNext must remain alive and unchanged
 | 
						|
for the whole lifetime of the custom pool, because it will be used when the pool allocates a new device memory block.
 | 
						|
No copy is made internally. This is why variable `exportMemAllocInfo` is defined as `static`.
 | 
						|
 | 
						|
\section vk_khr_external_memory_win32_memory_allocation Memory allocation
 | 
						|
 | 
						|
Finally, you can create a buffer with an allocation out of the custom pool.
 | 
						|
The buffer should use same flags as the sample buffer used to find the memory type.
 | 
						|
It should also specify `VkExternalMemoryBufferCreateInfoKHR` in its `pNext` chain.
 | 
						|
 | 
						|
\code
 | 
						|
VkExternalMemoryBufferCreateInfoKHR externalMemBufCreateInfo = {
 | 
						|
    VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR,
 | 
						|
    nullptr,
 | 
						|
    VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT
 | 
						|
};
 | 
						|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | 
						|
bufCreateInfo.size = // Your desired buffer size.
 | 
						|
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | 
						|
bufCreateInfo.pNext = &externalMemBufCreateInfo;
 | 
						|
 | 
						|
VmaAllocationCreateInfo allocCreateInfo = {};
 | 
						|
allocCreateInfo.pool = pool;  // It is enough to set this one member.
 | 
						|
 | 
						|
VkBuffer buf;
 | 
						|
VmaAllocation alloc;
 | 
						|
res = vmaCreateBuffer(g_Allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr);
 | 
						|
// Check res...
 | 
						|
 | 
						|
// YOUR OTHER CODE COMES HERE....
 | 
						|
 | 
						|
// At the end, don't forget to destroy it!
 | 
						|
vmaDestroyBuffer(g_Allocator, buf, alloc);
 | 
						|
\endcode
 | 
						|
 | 
						|
If you need each allocation to have its own device memory block and start at offset 0, you can still do 
 | 
						|
by using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag. It works also with custom pools.
 | 
						|
 | 
						|
\section vk_khr_external_memory_win32_exporting_win32_handle Exporting Win32 handle
 | 
						|
 | 
						|
After the allocation is created, you can acquire a Win32 `HANDLE` to the `VkDeviceMemory` block it belongs to.
 | 
						|
VMA function vmaGetMemoryWin32Handle() is a replacement of the Vulkan function `vkGetMemoryWin32HandleKHR`.
 | 
						|
 | 
						|
\code
 | 
						|
HANDLE handle;
 | 
						|
res = vmaGetMemoryWin32Handle(g_Allocator, alloc, nullptr, &handle);
 | 
						|
// Check res...
 | 
						|
 | 
						|
// YOUR OTHER CODE COMES HERE....
 | 
						|
 | 
						|
// At the end, you must close the handle.
 | 
						|
CloseHandle(handle);
 | 
						|
\endcode
 | 
						|
 | 
						|
Documentation of the VK_KHR_external_memory_win32 extension states that:
 | 
						|
 | 
						|
> If handleType is defined as an NT handle, vkGetMemoryWin32HandleKHR must be called no more than once for each valid unique combination of memory and handleType.
 | 
						|
 | 
						|
This is ensured automatically inside VMA.
 | 
						|
The library fetches the handle on first use, remembers it internally, and closes it when the memory block or dedicated allocation is destroyed.
 | 
						|
Every time you call vmaGetMemoryWin32Handle(), VMA calls `DuplicateHandle` and returns a new handle that you need to close.
 | 
						|
 | 
						|
For further information, please check documentation of the vmaGetMemoryWin32Handle() function.
 | 
						|
 | 
						|
 | 
						|
\page enabling_buffer_device_address Enabling buffer device address
 | 
						|
 | 
						|
Device extension VK_KHR_buffer_device_address
 | 
						|
allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code.
 | 
						|
It has been promoted to core Vulkan 1.2.
 | 
						|
 | 
						|
If you want to use this feature in connection with VMA, follow these steps:
 | 
						|
 | 
						|
\section enabling_buffer_device_address_initialization Initialization
 | 
						|
 | 
						|
1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
 | 
						|
Check if the extension is supported - if returned array of `VkExtensionProperties` contains
 | 
						|
"VK_KHR_buffer_device_address".
 | 
						|
 | 
						|
2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
 | 
						|
Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
 | 
						|
Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress` is true.
 | 
						|
 | 
						|
3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add
 | 
						|
"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
 | 
						|
 | 
						|
4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
 | 
						|
Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
 | 
						|
Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to
 | 
						|
`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`.
 | 
						|
 | 
						|
5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
 | 
						|
have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT
 | 
						|
to VmaAllocatorCreateInfo::flags.
 | 
						|
 | 
						|
\section enabling_buffer_device_address_usage Usage
 | 
						|
 | 
						|
After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA.
 | 
						|
The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to
 | 
						|
allocated memory blocks wherever it might be needed.
 | 
						|
 | 
						|
Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`.
 | 
						|
The second part of this functionality related to "capture and replay" is not supported,
 | 
						|
as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage.
 | 
						|
 | 
						|
\section enabling_buffer_device_address_more_information More information
 | 
						|
 | 
						|
To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address)
 | 
						|
 | 
						|
Example use of this extension can be found in the code of the sample and test suite
 | 
						|
accompanying this library.
 | 
						|
 | 
						|
\page general_considerations General considerations
 | 
						|
 | 
						|
\section general_considerations_thread_safety Thread safety
 | 
						|
 | 
						|
- The library has no global state, so separate #VmaAllocator objects can be used
 | 
						|
  independently.
 | 
						|
  There should be no need to create multiple such objects though - one per `VkDevice` is enough.
 | 
						|
- By default, all calls to functions that take #VmaAllocator as first parameter
 | 
						|
  are safe to call from multiple threads simultaneously because they are
 | 
						|
  synchronized internally when needed.
 | 
						|
  This includes allocation and deallocation from default memory pool, as well as custom #VmaPool.
 | 
						|
- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT
 | 
						|
  flag, calls to functions that take such #VmaAllocator object must be
 | 
						|
  synchronized externally.
 | 
						|
- Access to a #VmaAllocation object must be externally synchronized. For example,
 | 
						|
  you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
 | 
						|
  threads at the same time if you pass the same #VmaAllocation object to these
 | 
						|
  functions.
 | 
						|
- #VmaVirtualBlock is not safe to be used from multiple threads simultaneously.
 | 
						|
 | 
						|
\section general_considerations_versioning_and_compatibility Versioning and compatibility
 | 
						|
 | 
						|
The library uses [**Semantic Versioning**](https://semver.org/),
 | 
						|
which means version numbers follow convention: Major.Minor.Patch (e.g. 2.3.0), where:
 | 
						|
 | 
						|
- Incremented Patch version means a release is backward- and forward-compatible,
 | 
						|
  introducing only some internal improvements, bug fixes, optimizations etc.
 | 
						|
  or changes that are out of scope of the official API described in this documentation.
 | 
						|
- Incremented Minor version means a release is backward-compatible,
 | 
						|
  so existing code that uses the library should continue to work, while some new
 | 
						|
  symbols could have been added: new structures, functions, new values in existing
 | 
						|
  enums and bit flags, new structure members, but not new function parameters.
 | 
						|
- Incrementing Major version means a release could break some backward compatibility.
 | 
						|
 | 
						|
All changes between official releases are documented in file "CHANGELOG.md".
 | 
						|
 | 
						|
\warning Backward compatibility is considered on the level of C++ source code, not binary linkage.
 | 
						|
Adding new members to existing structures is treated as backward compatible if initializing
 | 
						|
the new members to binary zero results in the old behavior.
 | 
						|
You should always fully initialize all library structures to zeros and not rely on their
 | 
						|
exact binary size.
 | 
						|
 | 
						|
\section general_considerations_validation_layer_warnings Validation layer warnings
 | 
						|
 | 
						|
When using this library, you can meet following types of warnings issued by
 | 
						|
Vulkan validation layer. They don't necessarily indicate a bug, so you may need
 | 
						|
to just ignore them.
 | 
						|
 | 
						|
- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.*
 | 
						|
  - It happens when VK_KHR_dedicated_allocation extension is enabled.
 | 
						|
    `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it.
 | 
						|
- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.*
 | 
						|
  - It happens when you map a buffer or image, because the library maps entire
 | 
						|
    `VkDeviceMemory` block, where different types of images and buffers may end
 | 
						|
    up together, especially on GPUs with unified memory like Intel.
 | 
						|
- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.*
 | 
						|
  - It may happen when you use [defragmentation](@ref defragmentation).
 | 
						|
 | 
						|
\section general_considerations_allocation_algorithm Allocation algorithm
 | 
						|
 | 
						|
The library uses following algorithm for allocation, in order:
 | 
						|
 | 
						|
-# Try to find free range of memory in existing blocks.
 | 
						|
-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
 | 
						|
-# If failed, try to create such block with size / 2, size / 4, size / 8.
 | 
						|
-# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
 | 
						|
   just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | 
						|
-# If failed, choose other memory type that meets the requirements specified in
 | 
						|
   VmaAllocationCreateInfo and go to point 1.
 | 
						|
-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | 
						|
 | 
						|
\section general_considerations_features_not_supported Features not supported
 | 
						|
 | 
						|
Features deliberately excluded from the scope of this library:
 | 
						|
 | 
						|
-# **Data transfer.** Uploading (streaming) and downloading data of buffers and images
 | 
						|
   between CPU and GPU memory and related synchronization is responsibility of the user.
 | 
						|
   Defining some "texture" object that would automatically stream its data from a
 | 
						|
   staging copy in CPU memory to GPU memory would rather be a feature of another,
 | 
						|
   higher-level library implemented on top of VMA.
 | 
						|
   VMA doesn't record any commands to a `VkCommandBuffer`. It just allocates memory.
 | 
						|
-# **Recreation of buffers and images.** Although the library has functions for
 | 
						|
   buffer and image creation: vmaCreateBuffer(), vmaCreateImage(), you need to
 | 
						|
   recreate these objects yourself after defragmentation. That is because the big
 | 
						|
   structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in
 | 
						|
   #VmaAllocation object.
 | 
						|
-# **Handling CPU memory allocation failures.** When dynamically creating small C++
 | 
						|
   objects in CPU memory (not Vulkan memory), allocation failures are not checked
 | 
						|
   and handled gracefully, because that would complicate code significantly and
 | 
						|
   is usually not needed in desktop PC applications anyway.
 | 
						|
   Success of an allocation is just checked with an assert.
 | 
						|
-# **Code free of any compiler warnings.** Maintaining the library to compile and
 | 
						|
   work correctly on so many different platforms is hard enough. Being free of
 | 
						|
   any warnings, on any version of any compiler, is simply not feasible.
 | 
						|
   There are many preprocessor macros that make some variables unused, function parameters unreferenced,
 | 
						|
   or conditional expressions constant in some configurations.
 | 
						|
   The code of this library should not be bigger or more complicated just to silence these warnings.
 | 
						|
   It is recommended to disable such warnings instead.
 | 
						|
-# This is a C++ library with C interface. **Bindings or ports to any other programming languages** are welcome as external projects but
 | 
						|
   are not going to be included into this repository.
 | 
						|
*/
 |