UnleashedRecomp/UnleashedRecomp/gpu/video.cpp

2538 lines
88 KiB
C++

#include <stdafx.h>
#include <kernel/function.h>
#include <kernel/heap.h>
#include <cpu/code_cache.h>
#include <cpu/guest_code.h>
#include <kernel/memory.h>
#include <xxHashMap.h>
#include "video.h"
#include "window.h"
namespace RT64
{
extern std::unique_ptr<RenderInterface> CreateD3D12Interface();
extern std::unique_ptr<RenderInterface> CreateVulkanInterface();
}
struct PipelineState
{
GuestShader* vertexShader = nullptr;
GuestShader* pixelShader = nullptr;
GuestVertexDeclaration* vertexDeclaration = nullptr;
bool instancing = false;
bool zEnable = true;
bool zWriteEnable = true;
RenderBlend srcBlend = RenderBlend::ONE;
RenderBlend destBlend = RenderBlend::ZERO;
RenderCullMode cullMode = RenderCullMode::NONE;
RenderComparisonFunction zFunc = RenderComparisonFunction::LESS;
bool alphaBlendEnable = false;
RenderBlendOperation blendOp = RenderBlendOperation::ADD;
float slopeScaledDepthBias = 0.0f;
int32_t depthBias = 0;
RenderBlend srcBlendAlpha = RenderBlend::ONE;
RenderBlend destBlendAlpha = RenderBlend::ZERO;
RenderBlendOperation blendOpAlpha = RenderBlendOperation::ADD;
uint32_t colorWriteEnable{};
RenderPrimitiveTopology primitiveTopology = RenderPrimitiveTopology::TRIANGLE_LIST;
uint8_t vertexStrides[16]{};
RenderFormat renderTargetFormat{};
RenderFormat depthStencilFormat{};
RenderSampleCounts sampleCount = RenderSampleCount::COUNT_1;
};
struct SharedConstants
{
uint32_t textureIndices[16]{};
uint32_t samplerIndices[16]{};
uint32_t alphaTestMode{};
float alphaThreshold{};
uint32_t booleans{};
uint32_t swappedTexcoords{};
uint32_t inputLayoutFlags{};
};
static GuestSurface* g_renderTarget;
static GuestSurface* g_depthStencil;
static RenderViewport g_viewport(0.0f, 0.0f, 1280.0f, 720.0f);
static PipelineState g_pipelineState;
static SharedConstants g_sharedConstants;
static RenderSamplerDesc g_samplerDescs[16];
static bool g_scissorTestEnable = false;
static RenderRect g_scissorRect;
static RenderVertexBufferView g_vertexBufferViews[16];
static RenderInputSlot g_inputSlots[16];
static RenderIndexBufferView g_indexBufferView({}, 0, RenderFormat::R16_UINT);
struct DirtyStates
{
bool renderTargetAndDepthStencil;
bool viewport;
bool pipelineState;
bool sharedConstants;
bool scissorRect;
bool vertexShaderConstants;
uint8_t vertexStreamFirst;
uint8_t vertexStreamLast;
bool indices;
bool pixelShaderConstants;
DirtyStates(bool value)
: renderTargetAndDepthStencil(value)
, viewport(value)
, pipelineState(value)
, sharedConstants(value)
, scissorRect(value)
, vertexShaderConstants(value)
, vertexStreamFirst(value ? 0 : 255)
, vertexStreamLast(value ? 15 : 0)
, indices(value)
, pixelShaderConstants(value)
{
}
};
static DirtyStates g_dirtyStates(true);
template<typename T>
static void SetDirtyValue(bool& dirtyState, T& dest, const T& src)
{
if (dest != src)
{
dest = src;
dirtyState = true;
}
}
static bool g_vulkan = false;
static std::unique_ptr<RenderInterface> g_interface;
static std::unique_ptr<RenderDevice> g_device;
static constexpr size_t NUM_FRAMES = 2;
static uint32_t g_frame = 0;
static uint32_t g_nextFrame = 1;
static std::unique_ptr<RenderCommandQueue> g_queue;
static std::unique_ptr<RenderCommandList> g_commandLists[NUM_FRAMES];
static std::unique_ptr<RenderCommandFence> g_commandFences[NUM_FRAMES];
static bool g_commandListStates[NUM_FRAMES];
static Mutex g_copyMutex;
static std::unique_ptr<RenderCommandQueue> g_copyQueue;
static std::unique_ptr<RenderCommandList> g_copyCommandList;
static std::unique_ptr<RenderCommandFence> g_copyCommandFence;
static std::unique_ptr<RenderSwapChain> g_swapChain;
static bool g_swapChainValid;
static std::unique_ptr<RenderCommandSemaphore> g_acquireSemaphores[NUM_FRAMES];
static std::unique_ptr<RenderCommandSemaphore> g_renderSemaphores[NUM_FRAMES];
static uint32_t g_backBufferIndex;
static GuestSurface* g_backBuffer;
struct std::unique_ptr<RenderDescriptorSet> g_textureDescriptorSet;
struct std::unique_ptr<RenderDescriptorSet> g_samplerDescriptorSet;
struct TextureDescriptorAllocator
{
Mutex mutex;
uint32_t capacity = 0;
std::vector<uint32_t> freed;
uint32_t allocate()
{
std::lock_guard lock(mutex);
uint32_t value;
if (!freed.empty())
{
value = freed.back();
freed.pop_back();
}
else
{
value = ++capacity;
}
return value;
}
void free(uint32_t value)
{
assert(value != NULL);
std::lock_guard lock(mutex);
freed.push_back(value);
}
};
static TextureDescriptorAllocator g_textureDescriptorAllocator;
static std::unique_ptr<RenderPipelineLayout> g_pipelineLayout;
static xxHashMap<std::unique_ptr<RenderPipeline>> g_pipelines;
static xxHashMap<std::pair<uint32_t, std::unique_ptr<RenderSampler>>> g_samplerStates;
static Mutex g_vertexDeclarationMutex;
static xxHashMap<GuestVertexDeclaration*> g_vertexDeclarations;
struct UploadBuffer
{
static constexpr size_t SIZE = 16 * 1024 * 1024;
std::unique_ptr<RenderBuffer> buffer;
uint8_t* memory = nullptr;
uint64_t deviceAddress = 0;
};
struct UploadAllocation
{
RenderBufferReference bufferReference;
uint8_t* memory = nullptr;
uint64_t deviceAddress = 0;
};
struct UploadAllocator
{
std::vector<UploadBuffer> buffers;
uint32_t index = 0;
uint32_t offset = 0;
UploadAllocation allocate(uint32_t size, uint32_t alignment)
{
assert(size <= UploadBuffer::SIZE);
offset = (offset + alignment - 1) & ~(alignment - 1);
if (offset + size > UploadBuffer::SIZE)
{
++index;
offset = 0;
}
if (buffers.size() <= index)
buffers.resize(index + 1);
auto& buffer = buffers[index];
if (buffer.buffer == nullptr)
{
buffer.buffer = g_device->createBuffer(RenderBufferDesc::UploadBuffer(UploadBuffer::SIZE, RenderBufferFlag::CONSTANT | RenderBufferFlag::VERTEX | RenderBufferFlag::INDEX));
buffer.memory = reinterpret_cast<uint8_t*>(buffer.buffer->map());
buffer.deviceAddress = buffer.buffer->getDeviceAddress();
}
auto ref = buffer.buffer->at(offset);
offset += size;
return { ref, buffer.memory + ref.offset, buffer.deviceAddress + ref.offset };
}
template<bool TByteSwap, typename T>
UploadAllocation allocate(const T* memory, uint32_t size, uint32_t alignment)
{
auto result = allocate(size, alignment);
if constexpr (TByteSwap)
{
auto destination = reinterpret_cast<T*>(result.memory);
for (size_t i = 0; i < size; i += sizeof(T))
{
*destination = std::byteswap(*memory);
++destination;
++memory;
}
}
else
{
memcpy(result.memory, memory, size);
}
return result;
}
void reset()
{
index = 0;
offset = 0;
}
};
static UploadAllocator g_uploadAllocators[NUM_FRAMES];
static Mutex g_tempMutex;
static std::vector<std::unique_ptr<RenderTexture>> g_tempTextures[NUM_FRAMES];
static std::vector<std::unique_ptr<RenderBuffer>> g_tempBuffers[NUM_FRAMES];
static std::vector<uint32_t> g_tempDescriptorIndices[NUM_FRAMES];
static RenderBufferReference g_quadIndexBuffer;
static uint32_t g_quadCount;
static std::vector<RenderTextureBarrier> g_barriers;
static void FlushBarriers()
{
if (!g_barriers.empty())
{
g_commandLists[g_frame]->barriers(RenderBarrierStage::GRAPHICS | RenderBarrierStage::COPY, g_barriers);
g_barriers.clear();
}
}
struct ShaderCacheHeader
{
uint32_t version;
uint32_t shaderCount;
uint32_t reserved0;
uint32_t reserved1;
};
struct ShaderCacheEntry
{
XXH64_hash_t hash;
uint32_t dxilOffset;
uint32_t dxilSize;
uint32_t spirvOffset;
uint32_t spirvSize;
GuestShader* shader = nullptr;
};
static std::unique_ptr<uint8_t[]> g_shaderCache;
static void LoadShaderCache()
{
FILE* file = fopen("ShaderCache.bin", "rb");
if (file)
{
fseek(file, 0, SEEK_END);
long fileSize = ftell(file);
fseek(file, 0, SEEK_SET);
g_shaderCache = std::make_unique<uint8_t[]>(fileSize);
fread(g_shaderCache.get(), 1, fileSize, file);
fclose(file);
}
else
{
MessageBox(nullptr, TEXT("Unable to locate ShaderCache.bin in root directory."), TEXT("SWA"), MB_ICONERROR);
}
}
static void SetRenderState(GuestDevice* device, uint32_t value)
{
}
static void SetRenderStateZEnable(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.zEnable, value != 0);
}
static void SetRenderStateZWriteEnable(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.zWriteEnable, value != 0);
}
static void SetRenderStateAlphaTestEnable(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.sharedConstants, g_sharedConstants.alphaTestMode, value ? 1u : 0);
}
static RenderBlend ConvertBlendMode(uint32_t blendMode)
{
switch (blendMode)
{
case D3DBLEND_ZERO:
return RenderBlend::ZERO;
case D3DBLEND_ONE:
return RenderBlend::ONE;
case D3DBLEND_SRCCOLOR:
return RenderBlend::SRC_COLOR;
case D3DBLEND_INVSRCCOLOR:
return RenderBlend::INV_SRC_COLOR;
case D3DBLEND_SRCALPHA:
return RenderBlend::SRC_ALPHA;
case D3DBLEND_INVSRCALPHA:
return RenderBlend::INV_SRC_ALPHA;
case D3DBLEND_DESTCOLOR:
return RenderBlend::DEST_COLOR;
case D3DBLEND_INVDESTCOLOR:
return RenderBlend::INV_DEST_COLOR;
case D3DBLEND_DESTALPHA:
return RenderBlend::DEST_ALPHA;
case D3DBLEND_INVDESTALPHA:
return RenderBlend::INV_DEST_ALPHA;
default:
assert(false && "Invalid blend mode");
return RenderBlend::ZERO;
}
}
static void SetRenderStateSrcBlend(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.srcBlend, ConvertBlendMode(value));
}
static void SetRenderStateDestBlend(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.destBlend, ConvertBlendMode(value));
}
static void SetRenderStateCullMode(GuestDevice* device, uint32_t value)
{
RenderCullMode cullMode;
switch (value) {
case D3DCULL_NONE:
case D3DCULL_NONE_2:
cullMode = RenderCullMode::NONE;
break;
case D3DCULL_CW:
cullMode = RenderCullMode::FRONT;
break;
case D3DCULL_CCW:
cullMode = RenderCullMode::BACK;
break;
default:
assert(false && "Invalid cull mode");
cullMode = RenderCullMode::NONE;
break;
}
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.cullMode, cullMode);
}
static void SetRenderStateZFunc(GuestDevice* device, uint32_t value)
{
RenderComparisonFunction comparisonFunc;
switch (value)
{
case D3DCMP_NEVER:
comparisonFunc = RenderComparisonFunction::NEVER;
break;
case D3DCMP_LESS:
comparisonFunc = RenderComparisonFunction::LESS;
break;
case D3DCMP_EQUAL:
comparisonFunc = RenderComparisonFunction::EQUAL;
break;
case D3DCMP_LESSEQUAL:
comparisonFunc = RenderComparisonFunction::LESS_EQUAL;
break;
case D3DCMP_GREATER:
comparisonFunc = RenderComparisonFunction::GREATER;
break;
case D3DCMP_NOTEQUAL:
comparisonFunc = RenderComparisonFunction::NOT_EQUAL;
break;
case D3DCMP_GREATEREQUAL:
comparisonFunc = RenderComparisonFunction::GREATER_EQUAL;
break;
case D3DCMP_ALWAYS:
comparisonFunc = RenderComparisonFunction::ALWAYS;
break;
default:
assert(false && "Unknown comparison function");
comparisonFunc = RenderComparisonFunction::NEVER;
break;
}
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.zFunc, comparisonFunc);
}
static void SetRenderStateAlphaRef(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_sharedConstants.alphaThreshold, float(value) / 256.0f);
}
static void SetRenderStateAlphaBlendEnable(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.alphaBlendEnable, value != 0);
}
static RenderBlendOperation ConvertBlendOp(uint32_t blendOp)
{
switch (blendOp)
{
case D3DBLENDOP_ADD:
return RenderBlendOperation::ADD;
case D3DBLENDOP_SUBTRACT:
return RenderBlendOperation::SUBTRACT;
case D3DBLENDOP_REVSUBTRACT:
return RenderBlendOperation::REV_SUBTRACT;
case D3DBLENDOP_MIN:
return RenderBlendOperation::MIN;
case D3DBLENDOP_MAX:
return RenderBlendOperation::MAX;
default:
assert(false && "Unknown blend operation");
return RenderBlendOperation::ADD;
}
}
static void SetRenderStateBlendOp(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.blendOp, ConvertBlendOp(value));
}
static void SetRenderStateScissorTestEnable(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.scissorRect, g_scissorTestEnable, value != 0);
}
static void SetRenderStateSlopeScaledDepthBias(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.slopeScaledDepthBias, *reinterpret_cast<float*>(&value));
}
static void SetRenderStateDepthBias(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.depthBias, int32_t(*reinterpret_cast<float*>(&value) * (1 << 24)));
}
static void SetRenderStateSrcBlendAlpha(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.srcBlendAlpha, ConvertBlendMode(value));
}
static void SetRenderStateDestBlendAlpha(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.destBlendAlpha, ConvertBlendMode(value));
}
static void SetRenderStateBlendOpAlpha(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.blendOpAlpha, ConvertBlendOp(value));
}
static void SetRenderStateColorWriteEnable(GuestDevice* device, uint32_t value)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.colorWriteEnable, value);
}
static const std::pair<GuestRenderState, void*> g_setRenderStateFunctions[] =
{
{ D3DRS_ZENABLE, GuestFunction<SetRenderStateZEnable> },
{ D3DRS_ZWRITEENABLE, GuestFunction<SetRenderStateZWriteEnable> },
{ D3DRS_ALPHATESTENABLE, GuestFunction<SetRenderStateAlphaTestEnable> },
{ D3DRS_SRCBLEND, GuestFunction<SetRenderStateSrcBlend> },
{ D3DRS_DESTBLEND, GuestFunction<SetRenderStateDestBlend> },
{ D3DRS_CULLMODE, GuestFunction<SetRenderStateCullMode> },
{ D3DRS_ZFUNC, GuestFunction<SetRenderStateZFunc> },
{ D3DRS_ALPHAREF, GuestFunction<SetRenderStateAlphaRef> },
{ D3DRS_ALPHABLENDENABLE, GuestFunction<SetRenderStateAlphaBlendEnable> },
{ D3DRS_BLENDOP, GuestFunction<SetRenderStateBlendOp> },
{ D3DRS_SCISSORTESTENABLE, GuestFunction<SetRenderStateScissorTestEnable> },
{ D3DRS_SLOPESCALEDEPTHBIAS, GuestFunction<SetRenderStateSlopeScaledDepthBias> },
{ D3DRS_DEPTHBIAS, GuestFunction<SetRenderStateDepthBias> },
{ D3DRS_SRCBLENDALPHA, GuestFunction<SetRenderStateSrcBlendAlpha> },
{ D3DRS_DESTBLENDALPHA, GuestFunction<SetRenderStateDestBlendAlpha> },
{ D3DRS_BLENDOPALPHA, GuestFunction<SetRenderStateBlendOpAlpha> },
{ D3DRS_COLORWRITEENABLE, GuestFunction<SetRenderStateColorWriteEnable> }
};
static void CreateHostDevice()
{
for (uint32_t i = 0; i < 16; i++)
g_inputSlots[i].index = i;
Window::Init();
LoadShaderCache();
g_interface = g_vulkan ? CreateVulkanInterface() : CreateD3D12Interface();
g_device = g_interface->createDevice();
g_queue = g_device->createCommandQueue(RenderCommandListType::DIRECT);
for (auto& commandList : g_commandLists)
commandList = g_device->createCommandList(RenderCommandListType::DIRECT);
for (auto& commandFence : g_commandFences)
commandFence = g_device->createCommandFence();
g_copyQueue = g_device->createCommandQueue(RenderCommandListType::COPY);
g_copyCommandList = g_device->createCommandList(RenderCommandListType::COPY);
g_copyCommandFence = g_device->createCommandFence();
g_swapChain = g_queue->createSwapChain(Window::s_windowHandle, 2, RenderFormat::R8G8B8A8_UNORM);
for (auto& acquireSemaphore : g_acquireSemaphores)
acquireSemaphore = g_device->createCommandSemaphore();
for (auto& renderSemaphore : g_renderSemaphores)
renderSemaphore = g_device->createCommandSemaphore();
RenderPipelineLayoutBuilder pipelineLayoutBuilder;
pipelineLayoutBuilder.begin(false, true);
constexpr size_t TEXTURE_DESCRIPTOR_SIZE = 65536;
constexpr size_t SAMPLER_DESCRIPTOR_SIZE = 1024;
RenderDescriptorSetBuilder descriptorSetBuilder;
descriptorSetBuilder.begin();
descriptorSetBuilder.addTexture(0, TEXTURE_DESCRIPTOR_SIZE);
descriptorSetBuilder.end(true, TEXTURE_DESCRIPTOR_SIZE);
g_textureDescriptorSet = descriptorSetBuilder.create(g_device.get());
pipelineLayoutBuilder.addDescriptorSet(descriptorSetBuilder);
pipelineLayoutBuilder.addDescriptorSet(descriptorSetBuilder);
pipelineLayoutBuilder.addDescriptorSet(descriptorSetBuilder);
descriptorSetBuilder.begin();
descriptorSetBuilder.addSampler(0, SAMPLER_DESCRIPTOR_SIZE);
descriptorSetBuilder.end(true, SAMPLER_DESCRIPTOR_SIZE);
g_samplerDescriptorSet = descriptorSetBuilder.create(g_device.get());
pipelineLayoutBuilder.addDescriptorSet(descriptorSetBuilder);
if (g_vulkan)
{
pipelineLayoutBuilder.addPushConstant(0, 4, 24, RenderShaderStageFlag::VERTEX | RenderShaderStageFlag::PIXEL);
}
else
{
pipelineLayoutBuilder.addRootDescriptor(0, 4, RenderRootDescriptorType::CONSTANT_BUFFER);
pipelineLayoutBuilder.addRootDescriptor(1, 4, RenderRootDescriptorType::CONSTANT_BUFFER);
pipelineLayoutBuilder.addRootDescriptor(2, 4, RenderRootDescriptorType::CONSTANT_BUFFER);
}
pipelineLayoutBuilder.end();
g_pipelineLayout = pipelineLayoutBuilder.create(g_device.get());
}
static void WaitForGPU()
{
if (g_vulkan)
{
g_device->waitIdle();
}
else
{
for (size_t i = 0; i < NUM_FRAMES; i++)
{
if (g_commandListStates[i])
{
g_queue->waitForCommandFence(g_commandFences[i].get());
g_commandListStates[i] = false;
}
}
g_queue->executeCommandLists(nullptr, g_commandFences[0].get());
g_queue->waitForCommandFence(g_commandFences[0].get());
}
}
static PPCRegister g_r3;
static PPCRegister g_r4;
static PPCRegister g_r5;
PPC_FUNC_IMPL(__imp__sub_8258C8A0);
PPC_FUNC(sub_8258C8A0)
{
g_r3 = ctx.r3;
g_r4 = ctx.r4;
g_r5 = ctx.r5;
__imp__sub_8258C8A0(ctx, base);
}
static void ResizeSwapChain()
{
WaitForGPU();
g_backBuffer->framebuffers.clear();
if (g_swapChain->resize() && g_r3.u32 != NULL)
{
auto ctx = GetPPCContext();
ctx->r3 = g_r3;
ctx->r4 = g_r4;
ctx->r5 = g_r5;
GuestCode::Run(__imp__sub_8258C8A0, ctx);
}
}
static void BeginCommandList()
{
g_renderTarget = g_backBuffer;
g_depthStencil = nullptr;
g_pipelineState.renderTargetFormat = g_backBuffer->format;
g_pipelineState.depthStencilFormat = RenderFormat::UNKNOWN;
g_swapChainValid = !g_swapChain->needsResize();
if (g_swapChainValid)
{
g_swapChainValid = g_swapChain->acquireTexture(g_acquireSemaphores[g_frame].get(), &g_backBufferIndex);
if (g_swapChainValid)
g_backBuffer->texture = g_swapChain->getTexture(g_backBufferIndex);
}
else
{
ResizeSwapChain();
}
if (!g_swapChainValid)
g_backBuffer->texture = g_backBuffer->textureHolder.get();
g_backBuffer->pendingBarrier = true;
auto& commandList = g_commandLists[g_frame];
commandList->begin();
commandList->setGraphicsPipelineLayout(g_pipelineLayout.get());
commandList->setGraphicsDescriptorSet(g_textureDescriptorSet.get(), 0);
commandList->setGraphicsDescriptorSet(g_textureDescriptorSet.get(), 1);
commandList->setGraphicsDescriptorSet(g_textureDescriptorSet.get(), 2);
commandList->setGraphicsDescriptorSet(g_samplerDescriptorSet.get(), 3);
}
static uint32_t CreateDevice(uint32_t a1, uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5, be<uint32_t>* a6)
{
CreateHostDevice();
g_backBuffer = g_userHeap.AllocPhysical<GuestSurface>(ResourceType::RenderTarget);
g_backBuffer->width = 1280;
g_backBuffer->height = 720;
g_backBuffer->format = RenderFormat::R8G8B8A8_UNORM;
g_backBuffer->textureHolder = g_device->createTexture(RenderTextureDesc::Texture2D(16, 16, 1, g_backBuffer->format, RenderTextureFlag::RENDER_TARGET));
BeginCommandList();
auto device = g_userHeap.AllocPhysical<GuestDevice>();
memset(device, 0, sizeof(*device));
uint32_t functionOffset = 'D3D';
g_codeCache.Insert(functionOffset, reinterpret_cast<void*>(GuestFunction<SetRenderState>));
for (size_t i = 0; i < _countof(device->setRenderStateFunctions); i++)
device->setRenderStateFunctions[i] = functionOffset;
for (auto& [state, function] : g_setRenderStateFunctions)
{
functionOffset += 4;
g_codeCache.Insert(functionOffset, function);
device->setRenderStateFunctions[state / 4] = functionOffset;
}
for (size_t i = 0; i < _countof(device->setSamplerStateFunctions); i++)
device->setSamplerStateFunctions[i] = *reinterpret_cast<uint32_t*>(g_memory.Translate(0x8330F3DC + i * 0xC));
*a6 = g_memory.MapVirtual(device);
return 0;
}
static void DestructResource(GuestResource* resource)
{
switch (resource->type)
{
case ResourceType::Texture:
case ResourceType::VolumeTexture:
{
const auto texture = reinterpret_cast<GuestTexture*>(resource);
if (texture->mappedMemory != nullptr)
g_userHeap.Free(texture->mappedMemory);
{
std::lock_guard lock(g_tempMutex);
g_tempTextures[g_frame].emplace_back(std::move(texture->texture));
g_tempDescriptorIndices[g_frame].push_back(texture->descriptorIndex);
}
texture->~GuestTexture();
break;
}
case ResourceType::VertexBuffer:
case ResourceType::IndexBuffer:
{
const auto buffer = reinterpret_cast<GuestBuffer*>(resource);
if (buffer->mappedMemory != nullptr)
g_userHeap.Free(buffer->mappedMemory);
{
std::lock_guard lock(g_tempMutex);
g_tempBuffers[g_frame].emplace_back(std::move(buffer->buffer));
}
buffer->~GuestBuffer();
break;
}
case ResourceType::RenderTarget:
case ResourceType::DepthStencil:
{
const auto surface = reinterpret_cast<GuestSurface*>(resource);
{
std::lock_guard lock(g_tempMutex);
g_tempTextures[g_frame].emplace_back(std::move(surface->textureHolder));
}
surface->~GuestSurface();
break;
}
case ResourceType::VertexDeclaration:
reinterpret_cast<GuestVertexDeclaration*>(resource)->~GuestVertexDeclaration();
break;
case ResourceType::VertexShader:
case ResourceType::PixelShader:
reinterpret_cast<GuestShader*>(resource)->~GuestShader();
break;
}
g_userHeap.Free(resource);
}
static constexpr uint32_t PITCH_ALIGNMENT = 0x100;
static constexpr uint32_t PLACEMENT_ALIGNMENT = 0x200;
static void LockTextureRect(GuestTexture* texture, uint32_t, GuestLockedRect* lockedRect)
{
uint32_t pitch = (texture->width * RenderFormatSize(texture->format) + PITCH_ALIGNMENT - 1) & ~(PITCH_ALIGNMENT - 1);
if (texture->mappedMemory == nullptr)
texture->mappedMemory = g_userHeap.AllocPhysical(pitch * texture->height, 0x10);
lockedRect->pitch = pitch;
lockedRect->bits = g_memory.MapVirtual(texture->mappedMemory);
}
template<typename T>
static void ExecuteCopyCommandList(const T& function)
{
std::lock_guard lock(g_copyMutex);
g_copyCommandList->begin();
function();
g_copyCommandList->end();
g_copyQueue->executeCommandLists(g_copyCommandList.get(), g_copyCommandFence.get());
g_copyQueue->waitForCommandFence(g_copyCommandFence.get());
}
static void UnlockTextureRect(GuestTexture* texture)
{
}
static void* LockBuffer(GuestBuffer* buffer, uint32_t flags)
{
buffer->lockedReadOnly = (flags & 0x10) != 0;
if (buffer->mappedMemory == nullptr)
buffer->mappedMemory = g_userHeap.AllocPhysical(buffer->dataSize, 0x10);
return buffer->mappedMemory;
}
static void* LockVertexBuffer(GuestBuffer* buffer, uint32_t, uint32_t, uint32_t flags)
{
return LockBuffer(buffer, flags);
}
template<typename T>
static void UnlockBuffer(GuestBuffer* buffer)
{
if (!buffer->lockedReadOnly)
{
auto uploadBuffer = g_device->createBuffer(RenderBufferDesc::UploadBuffer(buffer->dataSize));
auto dest = reinterpret_cast<T*>(uploadBuffer->map());
auto src = reinterpret_cast<const T*>(buffer->mappedMemory);
for (size_t i = 0; i < buffer->dataSize; i += sizeof(T))
{
*dest = std::byteswap(*src);
++dest;
++src;
}
uploadBuffer->unmap();
ExecuteCopyCommandList([&]
{
g_copyCommandList->copyBufferRegion(buffer->buffer->at(0), uploadBuffer->at(0), buffer->dataSize);
});
}
}
static void UnlockVertexBuffer(GuestBuffer* buffer)
{
UnlockBuffer<uint32_t>(buffer);
}
static void GetVertexBufferDesc(GuestBuffer* buffer, GuestBufferDesc* desc)
{
desc->size = buffer->dataSize;
}
static void* LockIndexBuffer(GuestBuffer* buffer, uint32_t, uint32_t, uint32_t flags)
{
return LockBuffer(buffer, flags);
}
static void UnlockIndexBuffer(GuestBuffer* buffer)
{
UnlockBuffer<uint16_t>(buffer);
}
static void GetIndexBufferDesc(GuestBuffer* buffer, GuestBufferDesc* desc)
{
desc->format = buffer->guestFormat;
desc->size = buffer->dataSize;
}
static void GetSurfaceDesc(GuestSurface* surface, GuestSurfaceDesc* desc)
{
desc->width = surface->width;
desc->height = surface->height;
}
static void GetVertexDeclaration(GuestVertexDeclaration* vertexDeclaration, GuestVertexElement* vertexElements, be<uint32_t>* count)
{
memcpy(vertexElements, vertexDeclaration->vertexElements.get(), vertexDeclaration->vertexElementCount * sizeof(GuestVertexElement));
*count = vertexDeclaration->vertexElementCount;
}
static uint32_t HashVertexDeclaration(uint32_t vertexDeclaration)
{
// Vertex declarations are cached on host side, so the pointer itself can be used.
return vertexDeclaration;
}
static void Present()
{
if (g_swapChainValid)
g_barriers.emplace_back(g_backBuffer->texture, RenderTextureLayout::PRESENT);
FlushBarriers();
auto& commandList = g_commandLists[g_frame];
commandList->end();
if (g_swapChainValid)
{
const RenderCommandList* commandLists[] = { commandList.get() };
RenderCommandSemaphore* waitSemaphores[] = { g_acquireSemaphores[g_frame].get() };
RenderCommandSemaphore* signalSemaphores[] = { g_renderSemaphores[g_frame].get() };
g_queue->executeCommandLists(
commandLists, std::size(commandLists),
waitSemaphores, std::size(waitSemaphores),
signalSemaphores, std::size(signalSemaphores),
g_commandFences[g_frame].get());
g_swapChainValid = g_swapChain->present(g_backBufferIndex, signalSemaphores, std::size(signalSemaphores));
}
else
{
g_queue->executeCommandLists(commandList.get(), g_commandFences[g_frame].get());
}
g_commandListStates[g_frame] = true;
g_frame = g_nextFrame;
g_nextFrame = (g_frame + 1) % NUM_FRAMES;
if (g_commandListStates[g_frame])
{
g_queue->waitForCommandFence(g_commandFences[g_frame].get());
g_commandListStates[g_frame] = false;
}
{
std::lock_guard lock(g_tempMutex);
g_tempBuffers[g_frame].clear();
g_tempTextures[g_frame].clear();
for (auto index : g_tempDescriptorIndices[g_frame])
g_textureDescriptorAllocator.free(index);
g_tempDescriptorIndices[g_frame].clear();
}
g_dirtyStates = DirtyStates(true);
g_uploadAllocators[g_frame].reset();
g_quadIndexBuffer = {};
g_quadCount = 0;
BeginCommandList();
}
static GuestSurface* GetBackBuffer()
{
g_backBuffer->AddRef();
return g_backBuffer;
}
static RenderFormat ConvertFormat(uint32_t format)
{
switch (format)
{
case D3DFMT_A16B16G16R16F:
case D3DFMT_A16B16G16R16F_2:
return RenderFormat::R16G16B16A16_FLOAT;
case D3DFMT_A8B8G8R8:
case D3DFMT_A8R8G8B8:
case D3DFMT_X8R8G8B8:
return RenderFormat::R8G8B8A8_UNORM;
case D3DFMT_D24FS8:
case D3DFMT_D24S8:
return RenderFormat::D32_FLOAT;
case D3DFMT_G16R16F:
case D3DFMT_G16R16F_2:
return RenderFormat::R16G16_FLOAT;
case D3DFMT_INDEX16:
return RenderFormat::R16_UINT;
case D3DFMT_INDEX32:
return RenderFormat::R32_UINT;
case D3DFMT_L8:
case D3DFMT_L8_2:
return RenderFormat::R8_UNORM;
default:
assert(false && "Unknown format");
return RenderFormat::R16G16B16A16_FLOAT;
}
}
static GuestTexture* CreateTexture(uint32_t width, uint32_t height, uint32_t depth, uint32_t levels, uint32_t usage, uint32_t format, uint32_t pool, uint32_t type)
{
const auto texture = g_userHeap.AllocPhysical<GuestTexture>(type == 17 ? ResourceType::VolumeTexture : ResourceType::Texture);
RenderTextureDesc desc;
desc.dimension = texture->type == ResourceType::VolumeTexture ? RenderTextureDimension::TEXTURE_3D : RenderTextureDimension::TEXTURE_2D;
desc.width = width;
desc.height = height;
desc.depth = depth;
desc.mipLevels = levels;
desc.arraySize = 1;
desc.format = ConvertFormat(format);
desc.flags = (desc.format == RenderFormat::D32_FLOAT) ? RenderTextureFlag::DEPTH_TARGET : RenderTextureFlag::NONE;
texture->texture = g_device->createTexture(desc);
RenderTextureViewDesc viewDesc;
viewDesc.format = desc.format;
viewDesc.dimension = texture->type == ResourceType::VolumeTexture ? RenderTextureViewDimension::TEXTURE_3D : RenderTextureViewDimension::TEXTURE_2D;
viewDesc.mipLevels = levels;
texture->textureView = texture->texture->createTextureView(viewDesc);
texture->width = width;
texture->height = height;
texture->depth = depth;
texture->format = desc.format;
texture->descriptorIndex = g_textureDescriptorAllocator.allocate();
g_textureDescriptorSet->setTexture(texture->descriptorIndex, texture->texture.get(), RenderTextureLayout::SHADER_READ, texture->textureView.get());
return texture;
}
static GuestBuffer* CreateVertexBuffer(uint32_t length)
{
auto buffer = g_userHeap.AllocPhysical<GuestBuffer>(ResourceType::VertexBuffer);
buffer->buffer = g_device->createBuffer(RenderBufferDesc::VertexBuffer(length, RenderHeapType::DEFAULT, RenderBufferFlag::INDEX));
buffer->dataSize = length;
#ifdef _DEBUG
buffer->buffer->setName(std::format("Vertex Buffer {:X}", g_memory.MapVirtual(buffer)));
#endif
return buffer;
}
static GuestBuffer* CreateIndexBuffer(uint32_t length, uint32_t, uint32_t format)
{
auto buffer = g_userHeap.AllocPhysical<GuestBuffer>(ResourceType::IndexBuffer);
buffer->buffer = g_device->createBuffer(RenderBufferDesc::IndexBuffer(length, RenderHeapType::DEFAULT));
buffer->dataSize = length;
buffer->format = ConvertFormat(format);
buffer->guestFormat = format;
#ifdef _DEBUG
buffer->buffer->setName(std::format("Index Buffer {:X}", g_memory.MapVirtual(buffer)));
#endif
return buffer;
}
static GuestSurface* CreateSurface(uint32_t width, uint32_t height, uint32_t format, uint32_t multiSample)
{
RenderTextureDesc desc;
desc.dimension = RenderTextureDimension::TEXTURE_2D;
desc.width = width;
desc.height = height;
desc.depth = 1;
desc.mipLevels = 1;
desc.arraySize = 1;
//desc.multisampling.sampleCount = (desc.format != RenderFormat::D32_FLOAT && multiSample != 0) ? RenderSampleCount::COUNT_2 : RenderSampleCount::COUNT_1;
desc.format = ConvertFormat(format);
desc.flags = desc.format == RenderFormat::D32_FLOAT ? RenderTextureFlag::DEPTH_TARGET : RenderTextureFlag::RENDER_TARGET;
auto surface = g_userHeap.AllocPhysical<GuestSurface>(desc.format == RenderFormat::D32_FLOAT ?
ResourceType::DepthStencil : ResourceType::RenderTarget);
surface->textureHolder = g_device->createTexture(desc);
surface->texture = surface->textureHolder.get();
surface->width = width;
surface->height = height;
surface->format = desc.format;
surface->sampleCount = desc.multisampling.sampleCount;
return surface;
}
static void StretchRect(GuestDevice* device, uint32_t flags, uint32_t, GuestTexture* texture)
{
const bool isDepthStencil = (flags & 0x4) != 0;
const auto surface = isDepthStencil ? g_depthStencil : g_renderTarget;
const bool multiSampling = surface->sampleCount != RenderSampleCount::COUNT_1;
g_barriers.emplace_back(surface->texture, multiSampling ? RenderTextureLayout::RESOLVE_SOURCE : RenderTextureLayout::COPY_SOURCE);
g_barriers.emplace_back(texture->texture.get(), multiSampling ? RenderTextureLayout::RESOLVE_DEST : RenderTextureLayout::COPY_DEST);
FlushBarriers();
auto& commandList = g_commandLists[g_frame];
if (multiSampling)
commandList->resolveTexture(texture->texture.get(), surface->texture);
else
commandList->copyTexture(texture->texture.get(), surface->texture);
surface->pendingBarrier = true;
texture->pendingBarrier = true;
}
static void SetRenderTarget(GuestDevice* device, uint32_t index, GuestSurface* renderTarget)
{
SetDirtyValue(g_dirtyStates.renderTargetAndDepthStencil, g_renderTarget, renderTarget);
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.renderTargetFormat, renderTarget != nullptr ? renderTarget->format : RenderFormat::UNKNOWN);
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.sampleCount, renderTarget != nullptr ? renderTarget->sampleCount : RenderSampleCount::COUNT_1);
}
static GuestSurface* GetDepthStencilSurface(GuestDevice* device)
{
return nullptr;
}
static void SetDepthStencilSurface(GuestDevice* device, GuestSurface* depthStencil)
{
SetDirtyValue(g_dirtyStates.renderTargetAndDepthStencil, g_depthStencil, depthStencil);
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.depthStencilFormat, depthStencil != nullptr ? depthStencil->format : RenderFormat::UNKNOWN);
}
static void FlushFramebuffer()
{
auto& commandList = g_commandLists[g_frame];
if (g_renderTarget != nullptr && g_renderTarget->pendingBarrier)
{
g_barriers.emplace_back(g_renderTarget->texture, RenderTextureLayout::COLOR_WRITE);
g_renderTarget->pendingBarrier = false;
}
if (g_depthStencil != nullptr && g_depthStencil->pendingBarrier)
{
g_barriers.emplace_back(g_depthStencil->texture, RenderTextureLayout::DEPTH_WRITE);
g_depthStencil->pendingBarrier = false;
}
FlushBarriers();
if (g_dirtyStates.renderTargetAndDepthStencil)
{
GuestSurface* framebufferContainer = nullptr;
RenderTexture* framebufferKey = nullptr;
if (g_renderTarget != nullptr && g_depthStencil != nullptr)
{
framebufferContainer = g_depthStencil; // Backbuffer texture changes per frame so we can't use the depth stencil as the key.
framebufferKey = g_renderTarget->texture;
}
else if (g_renderTarget != nullptr && g_depthStencil == nullptr)
{
framebufferContainer = g_renderTarget;
framebufferKey = g_renderTarget->texture; // Backbuffer texture changes per frame so we can't assume nullptr for it.
}
else if (g_renderTarget == nullptr && g_depthStencil != nullptr)
{
framebufferContainer = g_depthStencil;
framebufferKey = nullptr;
}
if (framebufferContainer != nullptr)
{
auto& framebuffer = framebufferContainer->framebuffers[framebufferKey];
if (framebuffer == nullptr)
{
RenderFramebufferDesc desc;
if (g_renderTarget != nullptr)
{
desc.colorAttachments = const_cast<const RenderTexture**>(&g_renderTarget->texture);
desc.colorAttachmentsCount = 1;
}
if (g_depthStencil != nullptr)
desc.depthAttachment = g_depthStencil->texture;
framebuffer = g_device->createFramebuffer(desc);
}
commandList->setFramebuffer(framebuffer.get());
}
else
{
commandList->setFramebuffer(nullptr);
}
g_dirtyStates.renderTargetAndDepthStencil = false;
}
}
static void Clear(GuestDevice* device, uint32_t flags, uint32_t, be<float>* color, double z)
{
FlushFramebuffer();
auto& commandList = g_commandLists[g_frame];
if (g_renderTarget != nullptr && (flags & D3DCLEAR_TARGET) != 0)
commandList->clearColor(0, RenderColor(color[0], color[1], color[2], color[3]));
if (g_depthStencil != nullptr && (flags & D3DCLEAR_ZBUFFER) != 0)
commandList->clearDepth(true, float(z));
}
static void SetViewport(GuestDevice* device, GuestViewport* viewport)
{
SetDirtyValue<float>(g_dirtyStates.viewport, g_viewport.x, viewport->x);
SetDirtyValue<float>(g_dirtyStates.viewport, g_viewport.y, viewport->y);
SetDirtyValue<float>(g_dirtyStates.viewport, g_viewport.width, viewport->width);
SetDirtyValue<float>(g_dirtyStates.viewport, g_viewport.height, viewport->height);
SetDirtyValue<float>(g_dirtyStates.viewport, g_viewport.minDepth, viewport->minZ);
SetDirtyValue<float>(g_dirtyStates.viewport, g_viewport.maxDepth, viewport->maxZ);
g_dirtyStates.scissorRect |= g_dirtyStates.viewport;
}
static void GetViewport(GuestDevice* device, GuestViewport* viewport)
{
viewport->x = g_viewport.x;
viewport->y = g_viewport.y;
viewport->width = g_viewport.width;
viewport->height = g_viewport.height;
viewport->minZ = g_viewport.minDepth;
viewport->maxZ = g_viewport.maxDepth;
}
static void SetTexture(GuestDevice* device, uint32_t index, GuestTexture* texture)
{
if (texture != nullptr && texture->pendingBarrier)
{
g_barriers.emplace_back(texture->texture.get(), RenderTextureLayout::SHADER_READ);
texture->pendingBarrier = false;
}
SetDirtyValue(g_dirtyStates.sharedConstants, g_sharedConstants.textureIndices[index], texture != nullptr ? texture->descriptorIndex : NULL);
}
static void SetScissorRect(GuestDevice* device, GuestRect* rect)
{
SetDirtyValue<int32_t>(g_dirtyStates.scissorRect, g_scissorRect.top, rect->top);
SetDirtyValue<int32_t>(g_dirtyStates.scissorRect, g_scissorRect.left, rect->left);
SetDirtyValue<int32_t>(g_dirtyStates.scissorRect, g_scissorRect.bottom, rect->bottom);
SetDirtyValue<int32_t>(g_dirtyStates.scissorRect, g_scissorRect.right, rect->right);
}
static RenderPipeline* CreateGraphicsPipeline(const PipelineState& pipelineState)
{
auto& pipeline = g_pipelines[XXH3_64bits(&pipelineState, sizeof(PipelineState))];
if (pipeline == nullptr)
{
RenderGraphicsPipelineDesc desc;
desc.pipelineLayout = g_pipelineLayout.get();
desc.vertexShader = pipelineState.vertexShader->shader.get();
desc.pixelShader = pipelineState.pixelShader != nullptr ? pipelineState.pixelShader->shader.get() : nullptr;
desc.depthFunction = pipelineState.zFunc;
desc.depthEnabled = pipelineState.zEnable;
desc.depthWriteEnabled = pipelineState.zWriteEnable;
desc.depthBias = pipelineState.depthBias;
desc.slopeScaledDepthBias = pipelineState.slopeScaledDepthBias;
desc.depthClipEnabled = true;
desc.primitiveTopology = pipelineState.primitiveTopology;
desc.cullMode = pipelineState.cullMode;
desc.renderTargetFormat[0] = pipelineState.renderTargetFormat;
desc.renderTargetBlend[0].blendEnabled = pipelineState.alphaBlendEnable;
desc.renderTargetBlend[0].srcBlend = pipelineState.srcBlend;
desc.renderTargetBlend[0].dstBlend = pipelineState.destBlend;
desc.renderTargetBlend[0].blendOp = pipelineState.blendOp;
desc.renderTargetBlend[0].srcBlendAlpha = pipelineState.srcBlendAlpha;
desc.renderTargetBlend[0].dstBlendAlpha = pipelineState.destBlendAlpha;
desc.renderTargetBlend[0].blendOpAlpha = pipelineState.blendOpAlpha;
desc.renderTargetBlend[0].renderTargetWriteMask = pipelineState.colorWriteEnable;
desc.renderTargetCount = pipelineState.renderTargetFormat != RenderFormat::UNKNOWN ? 1 : 0;
desc.depthTargetFormat = pipelineState.depthStencilFormat;
desc.multisampling.sampleCount = pipelineState.sampleCount;
desc.inputElements = pipelineState.vertexDeclaration->inputElements.get();
desc.inputElementsCount = pipelineState.vertexDeclaration->inputElementCount;
RenderInputSlot inputSlots[16]{};
uint32_t inputSlotIndices[16]{};
uint32_t inputSlotCount = 0;
for (size_t i = 0; i < pipelineState.vertexDeclaration->inputElementCount; i++)
{
auto& inputElement = pipelineState.vertexDeclaration->inputElements[i];
auto& inputSlotIndex = inputSlotIndices[inputElement.slotIndex];
if (inputSlotIndex == NULL)
inputSlotIndex = ++inputSlotCount;
auto& inputSlot = inputSlots[inputSlotIndex - 1];
inputSlot.index = inputElement.slotIndex;
inputSlot.stride = pipelineState.vertexStrides[inputElement.slotIndex];
if (pipelineState.instancing && inputElement.slotIndex != 0 && inputElement.slotIndex != 15)
inputSlot.classification = RenderInputSlotClassification::PER_INSTANCE_DATA;
else
inputSlot.classification = RenderInputSlotClassification::PER_VERTEX_DATA;
}
desc.inputSlots = inputSlots;
desc.inputSlotsCount = inputSlotCount;
pipeline = g_device->createGraphicsPipeline(desc);
}
return pipeline.get();
}
static RenderTextureAddressMode ConvertTextureAddressMode(size_t value)
{
switch (value)
{
case D3DTADDRESS_WRAP:
return RenderTextureAddressMode::WRAP;
case D3DTADDRESS_MIRROR:
return RenderTextureAddressMode::MIRROR;
case D3DTADDRESS_CLAMP:
return RenderTextureAddressMode::CLAMP;
case D3DTADDRESS_MIRRORONCE:
return RenderTextureAddressMode::MIRROR_ONCE;
case D3DTADDRESS_BORDER:
return RenderTextureAddressMode::BORDER;
default:
assert(false && "Unknown texture address mode");
return RenderTextureAddressMode::UNKNOWN;
}
}
static RenderFilter ConvertTextureFilter(uint32_t value)
{
switch (value)
{
case D3DTEXF_POINT:
case D3DTEXF_NONE:
return RenderFilter::NEAREST;
case D3DTEXF_LINEAR:
return RenderFilter::LINEAR;
default:
assert(false && "Unknown texture filter");
return RenderFilter::UNKNOWN;
}
}
static RenderBorderColor ConvertBorderColor(uint32_t value)
{
switch (value)
{
case 0:
return RenderBorderColor::TRANSPARENT_BLACK;
case 1:
return RenderBorderColor::OPAQUE_WHITE;
default:
assert(false && "Unknown border color");
return RenderBorderColor::UNKNOWN;
}
}
static void FlushRenderState(GuestDevice* device)
{
FlushFramebuffer();
auto& commandList = g_commandLists[g_frame];
bool renderingToBackBuffer = g_renderTarget == g_backBuffer &&
g_backBuffer->texture != g_backBuffer->textureHolder.get();
if (g_dirtyStates.viewport)
{
if (renderingToBackBuffer)
{
uint32_t width = g_swapChain->getWidth();
uint32_t height = g_swapChain->getHeight();
commandList->setViewports(RenderViewport(
g_viewport.x * width / 1280.0f,
g_viewport.y * height / 720.0f,
g_viewport.width * width / 1280.0f,
g_viewport.height * height / 720.0f,
g_viewport.minDepth,
g_viewport.maxDepth));
}
else
{
commandList->setViewports(g_viewport);
}
}
if (g_dirtyStates.pipelineState)
commandList->setPipeline(CreateGraphicsPipeline(g_pipelineState));
constexpr size_t BOOL_MASK = 0x100000000000000ull;
if ((device->dirtyFlags[4].get() & BOOL_MASK) != 0)
{
uint32_t booleans = device->vertexShaderBoolConstants[0].get() & 0xFF;
booleans |= (device->pixelShaderBoolConstants[0].get() & 0xFF) << 16;
SetDirtyValue(g_dirtyStates.sharedConstants, g_sharedConstants.booleans, booleans);
device->dirtyFlags[4] = device->dirtyFlags[4].get() & ~BOOL_MASK;
}
for (size_t i = 0; i < 16; i++)
{
const size_t mask = 0x8000000000000000ull >> (i + 32);
if (device->dirtyFlags[3].get() & mask)
{
const auto addressU = ConvertTextureAddressMode((device->samplerStates[i].data[0].get() >> 10) & 0x7);
const auto addressV = ConvertTextureAddressMode((device->samplerStates[i].data[0].get() >> 13) & 0x7);
const auto addressW = ConvertTextureAddressMode((device->samplerStates[i].data[0].get() >> 16) & 0x7);
auto magFilter = ConvertTextureFilter((device->samplerStates[i].data[3].get() >> 19) & 0x3);
auto minFilter = ConvertTextureFilter((device->samplerStates[i].data[3].get() >> 21) & 0x3);
auto mipFilter = ConvertTextureFilter((device->samplerStates[i].data[3].get() >> 23) & 0x3);
const auto borderColor = ConvertBorderColor(device->samplerStates[i].data[5].get() & 0x3);
bool anisotropyEnabled = mipFilter == RenderFilter::LINEAR;
if (anisotropyEnabled)
{
magFilter = RenderFilter::LINEAR;
minFilter = RenderFilter::LINEAR;
}
auto& samplerDesc = g_samplerDescs[i];
bool dirty = false;
SetDirtyValue(dirty, samplerDesc.addressU, addressU);
SetDirtyValue(dirty, samplerDesc.addressV, addressV);
SetDirtyValue(dirty, samplerDesc.addressW, addressW);
SetDirtyValue(dirty, samplerDesc.minFilter, minFilter);
SetDirtyValue(dirty, samplerDesc.magFilter, magFilter);
SetDirtyValue(dirty, samplerDesc.mipmapMode, RenderMipmapMode(mipFilter));
SetDirtyValue(dirty, samplerDesc.anisotropyEnabled, anisotropyEnabled);
SetDirtyValue(dirty, samplerDesc.borderColor, borderColor);
if (dirty)
{
auto& [descriptorIndex, sampler] = g_samplerStates[XXH3_64bits(&samplerDesc, sizeof(RenderSamplerDesc))];
if (descriptorIndex == NULL)
{
descriptorIndex = g_samplerStates.size();
sampler = g_device->createSampler(samplerDesc);
g_samplerDescriptorSet->setSampler(descriptorIndex, sampler.get());
}
SetDirtyValue(g_dirtyStates.sharedConstants, g_sharedConstants.samplerIndices[i], descriptorIndex);
}
device->dirtyFlags[3] = device->dirtyFlags[3].get() & ~mask;
}
}
auto& uploadAllocator = g_uploadAllocators[g_frame];
auto setRootDescriptor = [&](const UploadAllocation& allocation, size_t index)
{
if (g_vulkan)
commandList->setGraphicsPushConstants(0, &allocation.deviceAddress, 8 * index, 8);
else
commandList->setGraphicsRootDescriptor(allocation.bufferReference, index);
};
if (g_dirtyStates.sharedConstants)
{
auto sharedConstants = uploadAllocator.allocate<false>(&g_sharedConstants, sizeof(g_sharedConstants), 0x100);
setRootDescriptor(sharedConstants, 2);
}
if (g_dirtyStates.scissorRect)
{
auto scissorRect = g_scissorTestEnable ? g_scissorRect : RenderRect(
g_viewport.x,
g_viewport.y,
g_viewport.x + g_viewport.width,
g_viewport.y + g_viewport.height);
if (renderingToBackBuffer)
{
uint32_t width = g_swapChain->getWidth();
uint32_t height = g_swapChain->getHeight();
scissorRect.left = scissorRect.left * width / 1280;
scissorRect.top = scissorRect.top * height / 720;
scissorRect.right = scissorRect.right * width / 1280;
scissorRect.bottom = scissorRect.bottom * height / 720;
}
commandList->setScissors(scissorRect);
}
if (g_dirtyStates.vertexShaderConstants || device->dirtyFlags[0] != 0)
{
auto vertexShaderConstants = uploadAllocator.allocate<true>(device->vertexShaderFloatConstants, 0x1000, 0x100);
setRootDescriptor(vertexShaderConstants, 0);
device->dirtyFlags[0] = 0;
}
if (g_dirtyStates.vertexStreamFirst <= g_dirtyStates.vertexStreamLast)
{
commandList->setVertexBuffers(
g_dirtyStates.vertexStreamFirst,
g_vertexBufferViews + g_dirtyStates.vertexStreamFirst,
g_dirtyStates.vertexStreamLast - g_dirtyStates.vertexStreamFirst + 1,
g_inputSlots + g_dirtyStates.vertexStreamFirst);
}
if (g_dirtyStates.indices && (!g_vulkan || g_indexBufferView.buffer.ref != nullptr))
commandList->setIndexBuffer(&g_indexBufferView);
if (g_dirtyStates.pixelShaderConstants || device->dirtyFlags[1] != 0)
{
auto pixelShaderConstants = uploadAllocator.allocate<true>(device->pixelShaderFloatConstants, 0xE00, 0x100);
setRootDescriptor(pixelShaderConstants, 1);
device->dirtyFlags[1] = 0;
}
g_dirtyStates = DirtyStates(false);
}
static RenderPrimitiveTopology ConvertPrimitiveType(uint32_t primitiveType)
{
switch (primitiveType)
{
case D3DPT_POINTLIST:
return RenderPrimitiveTopology::POINT_LIST;
case D3DPT_LINELIST:
return RenderPrimitiveTopology::LINE_LIST;
case D3DPT_LINESTRIP:
return RenderPrimitiveTopology::LINE_STRIP;
case D3DPT_TRIANGLELIST:
case D3DPT_QUADLIST:
return RenderPrimitiveTopology::TRIANGLE_LIST;
case D3DPT_TRIANGLESTRIP:
return RenderPrimitiveTopology::TRIANGLE_STRIP;
default:
assert(false && "Unknown primitive type");
return RenderPrimitiveTopology::UNKNOWN;
}
}
static void SetPrimitiveType(uint32_t primitiveType)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.primitiveTopology, ConvertPrimitiveType(primitiveType));
}
static bool TemporarySkipRendering(uint32_t primitiveType)
{
return primitiveType == D3DPT_TRIANGLEFAN ||
g_pipelineState.vertexShader == nullptr ||
g_pipelineState.vertexShader->shader == nullptr;
}
static uint32_t CheckInstancing()
{
uint32_t indexCount = 0;
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.instancing, g_pipelineState.vertexDeclaration->indexVertexStream != 0);
if (g_pipelineState.instancing)
{
// Index buffer is passed as a vertex stream
indexCount = g_vertexBufferViews[g_pipelineState.vertexDeclaration->indexVertexStream].size / 4;
}
return indexCount;
}
static void DrawPrimitive(GuestDevice* device, uint32_t primitiveType, uint32_t startVertex, uint32_t primitiveCount)
{
if (TemporarySkipRendering(primitiveType))
return;
SetPrimitiveType(primitiveType);
uint32_t indexCount = CheckInstancing();
if (indexCount > 0)
{
auto& vertexBufferView = g_vertexBufferViews[g_pipelineState.vertexDeclaration->indexVertexStream];
SetDirtyValue(g_dirtyStates.indices, g_indexBufferView.buffer, vertexBufferView.buffer);
SetDirtyValue(g_dirtyStates.indices, g_indexBufferView.size, vertexBufferView.size);
SetDirtyValue(g_dirtyStates.indices, g_indexBufferView.format, RenderFormat::R32_UINT);
}
FlushRenderState(device);
auto& commandList = g_commandLists[g_frame];
if (indexCount > 0)
commandList->drawIndexedInstanced(indexCount, primitiveCount / indexCount, 0, 0, 0);
else
commandList->drawInstanced(primitiveCount, 1, startVertex, 0);
}
static void DrawIndexedPrimitive(GuestDevice* device, uint32_t primitiveType, int32_t baseVertexIndex, uint32_t startIndex, uint32_t primCount)
{
if (TemporarySkipRendering(primitiveType))
return;
CheckInstancing();
SetPrimitiveType(primitiveType);
FlushRenderState(device);
g_commandLists[g_frame]->drawIndexedInstanced(primCount, 1, startIndex, baseVertexIndex, 0);
}
static void DrawPrimitiveUP(GuestDevice* device, uint32_t primitiveType, uint32_t primitiveCount, void* vertexStreamZeroData, uint32_t vertexStreamZeroStride)
{
if (TemporarySkipRendering(primitiveType))
return;
CheckInstancing();
SetPrimitiveType(primitiveType);
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.vertexStrides[0], uint8_t(vertexStreamZeroStride));
auto& vertexBufferView = g_vertexBufferViews[0];
vertexBufferView.size = primitiveCount * vertexStreamZeroStride;
vertexBufferView.buffer = g_uploadAllocators[g_frame].allocate<true>(reinterpret_cast<uint32_t*>(vertexStreamZeroData), vertexBufferView.size, 0x4).bufferReference;
g_inputSlots[0].stride = vertexStreamZeroStride;
g_dirtyStates.vertexStreamFirst = 0;
if (primitiveType == D3DPT_QUADLIST)
{
static std::vector<uint16_t> quadIndexData;
const uint32_t quadCount = primitiveCount / 4;
const uint32_t triangleCount = quadCount * 6;
if (quadIndexData.size() < triangleCount)
{
const size_t oldQuadCount = quadIndexData.size() / 6;
quadIndexData.resize(triangleCount);
for (size_t i = oldQuadCount; i < quadCount; i++)
{
quadIndexData[i * 6 + 0] = static_cast<uint16_t>(i * 4 + 0);
quadIndexData[i * 6 + 1] = static_cast<uint16_t>(i * 4 + 1);
quadIndexData[i * 6 + 2] = static_cast<uint16_t>(i * 4 + 2);
quadIndexData[i * 6 + 3] = static_cast<uint16_t>(i * 4 + 0);
quadIndexData[i * 6 + 4] = static_cast<uint16_t>(i * 4 + 2);
quadIndexData[i * 6 + 5] = static_cast<uint16_t>(i * 4 + 3);
}
}
if (g_quadIndexBuffer == NULL || g_quadCount < quadCount)
{
g_quadIndexBuffer = g_uploadAllocators[g_frame].allocate<false>(quadIndexData.data(), triangleCount * 2, 2).bufferReference;
g_quadCount = quadCount;
}
SetDirtyValue(g_dirtyStates.indices, g_indexBufferView.buffer, g_quadIndexBuffer);
SetDirtyValue(g_dirtyStates.indices, g_indexBufferView.size, g_quadCount * 12);
SetDirtyValue(g_dirtyStates.indices, g_indexBufferView.format, RenderFormat::R16_UINT);
FlushRenderState(device);
g_commandLists[g_frame]->drawIndexedInstanced(triangleCount, 1, 0, 0, 0);
}
else
{
FlushRenderState(device);
g_commandLists[g_frame]->drawInstanced(primitiveCount, 1, 0, 0);
}
}
static const char* ConvertDeclUsage(uint32_t usage)
{
switch (usage)
{
case D3DDECLUSAGE_POSITION:
return "POSITION";
case D3DDECLUSAGE_BLENDWEIGHT:
return "BLENDWEIGHT";
case D3DDECLUSAGE_BLENDINDICES:
return "BLENDINDICES";
case D3DDECLUSAGE_NORMAL:
return "NORMAL";
case D3DDECLUSAGE_PSIZE:
return "PSIZE";
case D3DDECLUSAGE_TEXCOORD:
return "TEXCOORD";
case D3DDECLUSAGE_TANGENT:
return "TANGENT";
case D3DDECLUSAGE_BINORMAL:
return "BINORMAL";
case D3DDECLUSAGE_TESSFACTOR:
return "TESSFACTOR";
case D3DDECLUSAGE_POSITIONT:
return "POSITIONT";
case D3DDECLUSAGE_COLOR:
return "COLOR";
case D3DDECLUSAGE_FOG:
return "FOG";
case D3DDECLUSAGE_DEPTH:
return "DEPTH";
case D3DDECLUSAGE_SAMPLE:
return "SAMPLE";
default:
assert(false && "Unknown usage");
return "UNKNOWN";
}
}
static RenderFormat ConvertDeclType(uint32_t type)
{
switch (type)
{
case D3DDECLTYPE_FLOAT1:
return RenderFormat::R32_FLOAT;
case D3DDECLTYPE_FLOAT2:
return RenderFormat::R32G32_FLOAT;
case D3DDECLTYPE_FLOAT3:
return RenderFormat::R32G32B32_FLOAT;
case D3DDECLTYPE_FLOAT4:
return RenderFormat::R32G32B32A32_FLOAT;
case D3DDECLTYPE_D3DCOLOR:
return RenderFormat::B8G8R8A8_UNORM;
case D3DDECLTYPE_UBYTE4:
case D3DDECLTYPE_UBYTE4_2:
return RenderFormat::R8G8B8A8_UINT;
case D3DDECLTYPE_SHORT2:
return RenderFormat::R16G16_SINT;
case D3DDECLTYPE_SHORT4:
return RenderFormat::R16G16B16A16_SINT;
case D3DDECLTYPE_UBYTE4N:
case D3DDECLTYPE_UBYTE4N_2:
return RenderFormat::R8G8B8A8_UNORM;
case D3DDECLTYPE_SHORT2N:
return RenderFormat::R16G16_SNORM;
case D3DDECLTYPE_SHORT4N:
return RenderFormat::R16G16B16A16_SNORM;
case D3DDECLTYPE_USHORT2N:
return RenderFormat::R16G16_UNORM;
case D3DDECLTYPE_USHORT4N:
return RenderFormat::R16G16B16A16_UNORM;
case D3DDECLTYPE_UINT1:
return RenderFormat::R32_UINT;
case D3DDECLTYPE_DEC3N_2:
case D3DDECLTYPE_DEC3N_3:
return RenderFormat::R32_UINT;
case D3DDECLTYPE_FLOAT16_2:
return RenderFormat::R16G16_FLOAT;
case D3DDECLTYPE_FLOAT16_4:
return RenderFormat::R16G16B16A16_FLOAT;
default:
assert(false && "Unknown type");
return RenderFormat::UNKNOWN;
}
}
static GuestVertexDeclaration* CreateVertexDeclaration(GuestVertexElement* vertexElements)
{
size_t vertexElementCount = 0;
auto vertexElement = vertexElements;
while (vertexElement->stream != 0xFF && vertexElement->type != D3DDECLTYPE_UNUSED)
{
vertexElement->padding = 0;
++vertexElement;
++vertexElementCount;
}
std::lock_guard lock(g_vertexDeclarationMutex);
auto& vertexDeclaration = g_vertexDeclarations[
XXH3_64bits(vertexElements, vertexElementCount * sizeof(GuestVertexElement))];
if (vertexDeclaration == nullptr)
{
vertexDeclaration = g_userHeap.AllocPhysical<GuestVertexDeclaration>(ResourceType::VertexDeclaration);
static std::vector<RenderInputElement> inputElements;
inputElements.clear();
struct Location
{
uint32_t usage;
uint32_t usageIndex;
uint32_t location;
};
constexpr Location locations[] =
{
{ D3DDECLUSAGE_POSITION, 0, 0 },
{ D3DDECLUSAGE_NORMAL, 0, 1 },
{ D3DDECLUSAGE_TANGENT, 0, 2 },
{ D3DDECLUSAGE_BINORMAL, 0, 3 },
{ D3DDECLUSAGE_TEXCOORD, 0, 4 },
{ D3DDECLUSAGE_TEXCOORD, 1, 5 },
{ D3DDECLUSAGE_TEXCOORD, 2, 6 },
{ D3DDECLUSAGE_TEXCOORD, 3, 7 },
{ D3DDECLUSAGE_COLOR, 0, 8 },
{ D3DDECLUSAGE_BLENDINDICES, 0, 9 },
{ D3DDECLUSAGE_BLENDWEIGHT, 0, 10 },
{ D3DDECLUSAGE_COLOR, 1, 11 },
{ D3DDECLUSAGE_TEXCOORD, 4, 12 },
{ D3DDECLUSAGE_TEXCOORD, 5, 13 },
{ D3DDECLUSAGE_TEXCOORD, 6, 14 },
{ D3DDECLUSAGE_TEXCOORD, 7, 15 },
{ D3DDECLUSAGE_POSITION, 1, 15 }
};
vertexElement = vertexElements;
while (vertexElement->stream != 0xFF && vertexElement->type != D3DDECLTYPE_UNUSED)
{
if (vertexElement->usage == D3DDECLUSAGE_POSITION && vertexElement->usageIndex == 2)
{
++vertexElement;
continue;
}
auto& inputElement = inputElements.emplace_back();
inputElement.semanticName = ConvertDeclUsage(vertexElement->usage);
inputElement.semanticIndex = vertexElement->usageIndex;
inputElement.location = ~0;
for (auto& location : locations)
{
if (location.usage == vertexElement->usage && location.usageIndex == vertexElement->usageIndex)
{
inputElement.location = location.location;
break;
}
}
assert(inputElement.location != ~0);
inputElement.format = ConvertDeclType(vertexElement->type);
inputElement.slotIndex = vertexElement->stream;
inputElement.alignedByteOffset = vertexElement->offset;
switch (vertexElement->usage)
{
case D3DDECLUSAGE_POSITION:
if (vertexElement->usageIndex == 1)
vertexDeclaration->indexVertexStream = vertexElement->stream;
break;
case D3DDECLUSAGE_BLENDWEIGHT:
case D3DDECLUSAGE_BLENDINDICES:
vertexDeclaration->inputLayoutFlags |= INPUT_LAYOUT_FLAG_HAS_BONE_WEIGHTS;
break;
case D3DDECLUSAGE_NORMAL:
case D3DDECLUSAGE_TANGENT:
case D3DDECLUSAGE_BINORMAL:
if (vertexElement->type == D3DDECLTYPE_FLOAT3)
inputElement.format = RenderFormat::R32G32B32_UINT;
else
vertexDeclaration->inputLayoutFlags |= INPUT_LAYOUT_FLAG_HAS_R11G11B10_NORMAL;
break;
case D3DDECLUSAGE_TEXCOORD:
switch (vertexElement->type)
{
case D3DDECLTYPE_SHORT2:
case D3DDECLTYPE_SHORT4:
case D3DDECLTYPE_SHORT2N:
case D3DDECLTYPE_SHORT4N:
case D3DDECLTYPE_USHORT2N:
case D3DDECLTYPE_USHORT4N:
case D3DDECLTYPE_FLOAT16_2:
case D3DDECLTYPE_FLOAT16_4:
vertexDeclaration->swappedTexcoords |= 1 << vertexElement->usageIndex;
break;
}
break;
}
++vertexElement;
}
auto addInputElement = [&](uint32_t usage, uint32_t usageIndex)
{
uint32_t location = ~0;
for (auto& alsoLocation : locations)
{
if (alsoLocation.usage == usage && alsoLocation.usageIndex == usageIndex)
{
location = alsoLocation.location;
break;
}
}
assert(location != ~0);
for (auto& inputElement : inputElements)
{
if (inputElement.location == location)
return;
}
auto format = RenderFormat::R32_FLOAT;
switch (usage)
{
case D3DDECLUSAGE_NORMAL:
case D3DDECLUSAGE_TANGENT:
case D3DDECLUSAGE_BINORMAL:
case D3DDECLUSAGE_BLENDINDICES:
format = RenderFormat::R32_UINT;
break;
}
inputElements.emplace_back(ConvertDeclUsage(usage), usageIndex, location, format, 15, 0);
};
addInputElement(D3DDECLUSAGE_POSITION, 0);
addInputElement(D3DDECLUSAGE_NORMAL, 0);
addInputElement(D3DDECLUSAGE_TANGENT, 0);
addInputElement(D3DDECLUSAGE_BINORMAL, 0);
addInputElement(D3DDECLUSAGE_TEXCOORD, 0);
addInputElement(D3DDECLUSAGE_TEXCOORD, 1);
addInputElement(D3DDECLUSAGE_TEXCOORD, 2);
addInputElement(D3DDECLUSAGE_TEXCOORD, 3);
addInputElement(D3DDECLUSAGE_COLOR, 0);
addInputElement(D3DDECLUSAGE_BLENDWEIGHT, 0);
addInputElement(D3DDECLUSAGE_BLENDINDICES, 0);
vertexDeclaration->inputElements = std::make_unique<RenderInputElement[]>(inputElements.size());
std::copy(inputElements.begin(), inputElements.end(), vertexDeclaration->inputElements.get());
vertexDeclaration->vertexElements = std::make_unique<GuestVertexElement[]>(vertexElementCount + 1);
std::copy(vertexElements, vertexElements + vertexElementCount + 1, vertexDeclaration->vertexElements.get());
vertexDeclaration->inputElementCount = uint32_t(inputElements.size());
vertexDeclaration->vertexElementCount = vertexElementCount + 1;
}
vertexDeclaration->AddRef();
return vertexDeclaration;
}
static void SetVertexDeclaration(GuestDevice* device, GuestVertexDeclaration* vertexDeclaration)
{
if (vertexDeclaration != nullptr)
{
SetDirtyValue(g_dirtyStates.sharedConstants, g_sharedConstants.swappedTexcoords, vertexDeclaration->swappedTexcoords);
SetDirtyValue(g_dirtyStates.sharedConstants, g_sharedConstants.inputLayoutFlags, vertexDeclaration->inputLayoutFlags);
}
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.vertexDeclaration, vertexDeclaration);
device->vertexDeclaration = g_memory.MapVirtual(vertexDeclaration);
}
static GuestShader* CreateShader(const be<uint32_t>* function, ResourceType resourceType)
{
XXH64_hash_t hash = XXH3_64bits(function, function[1] + function[2]);
auto shaderCache = reinterpret_cast<ShaderCacheHeader*>(g_shaderCache.get());
auto begin = reinterpret_cast<ShaderCacheEntry*>(shaderCache + 1);
auto end = begin + shaderCache->shaderCount;
auto findResult = std::lower_bound(begin, end, hash, [](ShaderCacheEntry& lhs, XXH64_hash_t rhs)
{
return lhs.hash < rhs;
});
GuestShader* shader = nullptr;
if (findResult != end && findResult->hash == hash)
{
if (findResult->shader == nullptr)
{
shader = g_userHeap.AllocPhysical<GuestShader>(resourceType);
if (g_vulkan)
shader->shader = g_device->createShader(g_shaderCache.get() + findResult->spirvOffset, findResult->spirvSize, "main", RenderShaderFormat::SPIRV);
else
shader->shader = g_device->createShader(g_shaderCache.get() + findResult->dxilOffset, findResult->dxilSize, "main", RenderShaderFormat::DXIL);
findResult->shader = shader;
}
else
{
shader = findResult->shader;
}
}
if (shader == nullptr)
shader = g_userHeap.AllocPhysical<GuestShader>(resourceType);
else
shader->AddRef();
return shader;
}
static GuestShader* CreateVertexShader(const be<uint32_t>* function)
{
return CreateShader(function, ResourceType::VertexShader);
}
static void SetVertexShader(GuestDevice* device, GuestShader* shader)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.vertexShader, shader);
}
static void SetStreamSource(GuestDevice* device, uint32_t index, GuestBuffer* buffer, uint32_t offset, uint32_t stride)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.vertexStrides[index], uint8_t(buffer != nullptr ? stride : 0));
bool dirty = false;
SetDirtyValue(dirty, g_vertexBufferViews[index].buffer, buffer != nullptr ? buffer->buffer->at(offset) : RenderBufferReference{});
SetDirtyValue(dirty, g_vertexBufferViews[index].size, buffer != nullptr ? (buffer->dataSize - offset) : 0u);
SetDirtyValue(dirty, g_inputSlots[index].stride, buffer != nullptr ? stride : 0u);
if (dirty)
{
g_dirtyStates.vertexStreamFirst = std::min<uint8_t>(g_dirtyStates.vertexStreamFirst, index);
g_dirtyStates.vertexStreamLast = std::max<uint8_t>(g_dirtyStates.vertexStreamLast, index);
}
}
static void SetIndices(GuestDevice* device, GuestBuffer* buffer)
{
SetDirtyValue(g_dirtyStates.indices, g_indexBufferView.buffer, buffer != nullptr ? buffer->buffer->at(0) : RenderBufferReference{});
SetDirtyValue(g_dirtyStates.indices, g_indexBufferView.format, buffer != nullptr ? buffer->format : RenderFormat::R16_UINT);
SetDirtyValue(g_dirtyStates.indices, g_indexBufferView.size, buffer != nullptr ? buffer->dataSize : 0u);
}
static GuestShader* CreatePixelShader(const be<uint32_t>* function)
{
return CreateShader(function, ResourceType::PixelShader);
}
static void SetPixelShader(GuestDevice* device, GuestShader* shader)
{
SetDirtyValue(g_dirtyStates.pipelineState, g_pipelineState.pixelShader, shader);
}
static void D3DXFillVolumeTexture(GuestTexture* texture, uint32_t function, void* data)
{
uint32_t rowPitch0 = (texture->width * 4 + PITCH_ALIGNMENT - 1) & ~(PITCH_ALIGNMENT - 1);
uint32_t slicePitch0 = (rowPitch0 * texture->height * texture->depth + PLACEMENT_ALIGNMENT - 1) & ~(PLACEMENT_ALIGNMENT - 1);
uint32_t rowPitch1 = ((texture->width / 2) * 4 + PITCH_ALIGNMENT - 1) & ~(PITCH_ALIGNMENT - 1);
uint32_t slicePitch1 = (rowPitch1 * (texture->height / 2) * (texture->depth / 2) + PLACEMENT_ALIGNMENT - 1) & ~(PLACEMENT_ALIGNMENT - 1);
auto uploadBuffer = g_device->createBuffer(RenderBufferDesc::UploadBuffer(slicePitch0 + slicePitch1));
uint8_t* mappedData = reinterpret_cast<uint8_t*>(uploadBuffer->map());
thread_local std::vector<float> mipData;
mipData.resize((texture->width / 2) * (texture->height / 2) * (texture->depth / 2) * 4);
memset(mipData.data(), 0, mipData.size() * sizeof(float));
for (size_t z = 0; z < texture->depth; z++)
{
for (size_t y = 0; y < texture->height; y++)
{
for (size_t x = 0; x < texture->width; x++)
{
auto dest = mappedData + z * rowPitch0 * texture->height + y * rowPitch0 + x * sizeof(uint32_t);
size_t index = z * texture->width * texture->height + y * texture->width + x;
size_t mipIndex = ((z / 2) * (texture->width / 2) * (texture->height / 2) + (y / 2) * (texture->width / 2) + x / 2) * 4;
if (function == 0x82BC7820)
{
auto src = reinterpret_cast<be<float>*>(data) + index * 4;
float r = static_cast<uint8_t>(src[0] * 255.0f);
float g = static_cast<uint8_t>(src[1] * 255.0f);
float b = static_cast<uint8_t>(src[2] * 255.0f);
float a = static_cast<uint8_t>(src[3] * 255.0f);
dest[0] = r;
dest[1] = g;
dest[2] = b;
dest[3] = a;
mipData[mipIndex + 0] += r;
mipData[mipIndex + 1] += g;
mipData[mipIndex + 2] += b;
mipData[mipIndex + 3] += a;
}
else if (function == 0x82BC78A8)
{
auto src = reinterpret_cast<uint8_t*>(data) + index * 4;
dest[0] = src[3];
dest[1] = src[2];
dest[2] = src[1];
dest[3] = src[0];
mipData[mipIndex + 0] += src[3];
mipData[mipIndex + 1] += src[2];
mipData[mipIndex + 2] += src[1];
mipData[mipIndex + 3] += src[0];
}
}
}
}
for (size_t z = 0; z < texture->depth / 2; z++)
{
for (size_t y = 0; y < texture->height / 2; y++)
{
for (size_t x = 0; x < texture->width / 2; x++)
{
auto dest = mappedData + slicePitch0 + z * rowPitch1 * (texture->height / 2) + y * rowPitch1 + x * sizeof(uint32_t);
size_t index = (z * (texture->width / 2) * (texture->height / 2) + y * (texture->width / 2) + x) * 4;
dest[0] = static_cast<uint8_t>(mipData[index + 0] / 8.0f);
dest[1] = static_cast<uint8_t>(mipData[index + 1] / 8.0f);
dest[2] = static_cast<uint8_t>(mipData[index + 2] / 8.0f);
dest[3] = static_cast<uint8_t>(mipData[index + 3] / 8.0f);
}
}
}
ExecuteCopyCommandList([&]
{
g_copyCommandList->copyTextureRegion(
RenderTextureCopyLocation::Subresource(texture->texture.get(), 0),
RenderTextureCopyLocation::PlacedFootprint(uploadBuffer.get(), texture->format, texture->width, texture->height, texture->depth, rowPitch0 / RenderFormatSize(texture->format), 0));
g_copyCommandList->copyTextureRegion(
RenderTextureCopyLocation::Subresource(texture->texture.get(), 1),
RenderTextureCopyLocation::PlacedFootprint(uploadBuffer.get(), texture->format, texture->width / 2, texture->height / 2, texture->depth / 2, rowPitch1 / RenderFormatSize(texture->format), slicePitch0));
});
}
struct GuestPictureData
{
be<uint32_t> vtable;
uint8_t flags;
be<uint32_t> name;
be<uint32_t> texture;
be<uint32_t> type;
};
static RenderTextureDimension ConvertTextureDimension(ddspp::TextureType type)
{
switch (type)
{
case ddspp::Texture1D:
return RenderTextureDimension::TEXTURE_1D;
case ddspp::Texture2D:
case ddspp::Cubemap:
return RenderTextureDimension::TEXTURE_2D;
case ddspp::Texture3D:
return RenderTextureDimension::TEXTURE_3D;
default:
assert(false && "Unknown texture type from DDS.");
return RenderTextureDimension::UNKNOWN;
}
}
static RenderTextureViewDimension ConvertTextureViewDimension(ddspp::TextureType type)
{
switch (type)
{
case ddspp::Texture1D:
return RenderTextureViewDimension::TEXTURE_1D;
case ddspp::Texture2D:
return RenderTextureViewDimension::TEXTURE_2D;
case ddspp::Texture3D:
return RenderTextureViewDimension::TEXTURE_3D;
case ddspp::Cubemap:
return RenderTextureViewDimension::TEXTURE_CUBE;
default:
assert(false && "Unknown texture type from DDS.");
return RenderTextureViewDimension::UNKNOWN;
}
}
static RenderFormat ConvertDXGIFormat(ddspp::DXGIFormat format)
{
switch (format)
{
case ddspp::R32G32B32A32_TYPELESS:
return RenderFormat::R32G32B32A32_TYPELESS;
case ddspp::R32G32B32A32_FLOAT:
return RenderFormat::R32G32B32A32_FLOAT;
case ddspp::R32G32B32A32_UINT:
return RenderFormat::R32G32B32A32_UINT;
case ddspp::R32G32B32A32_SINT:
return RenderFormat::R32G32B32A32_SINT;
case ddspp::R32G32B32_TYPELESS:
return RenderFormat::R32G32B32_TYPELESS;
case ddspp::R32G32B32_FLOAT:
return RenderFormat::R32G32B32_FLOAT;
case ddspp::R32G32B32_UINT:
return RenderFormat::R32G32B32_UINT;
case ddspp::R32G32B32_SINT:
return RenderFormat::R32G32B32_SINT;
case ddspp::R16G16B16A16_TYPELESS:
return RenderFormat::R16G16B16A16_TYPELESS;
case ddspp::R16G16B16A16_FLOAT:
return RenderFormat::R16G16B16A16_FLOAT;
case ddspp::R16G16B16A16_UNORM:
return RenderFormat::R16G16B16A16_UNORM;
case ddspp::R16G16B16A16_UINT:
return RenderFormat::R16G16B16A16_UINT;
case ddspp::R16G16B16A16_SNORM:
return RenderFormat::R16G16B16A16_SNORM;
case ddspp::R16G16B16A16_SINT:
return RenderFormat::R16G16B16A16_SINT;
case ddspp::R32G32_TYPELESS:
return RenderFormat::R32G32_TYPELESS;
case ddspp::R32G32_FLOAT:
return RenderFormat::R32G32_FLOAT;
case ddspp::R32G32_UINT:
return RenderFormat::R32G32_UINT;
case ddspp::R32G32_SINT:
return RenderFormat::R32G32_SINT;
case ddspp::R8G8B8A8_TYPELESS:
return RenderFormat::R8G8B8A8_TYPELESS;
case ddspp::R8G8B8A8_UNORM:
return RenderFormat::R8G8B8A8_UNORM;
case ddspp::R8G8B8A8_UINT:
return RenderFormat::R8G8B8A8_UINT;
case ddspp::R8G8B8A8_SNORM:
return RenderFormat::R8G8B8A8_SNORM;
case ddspp::R8G8B8A8_SINT:
return RenderFormat::R8G8B8A8_SINT;
case ddspp::B8G8R8A8_UNORM:
return RenderFormat::B8G8R8A8_UNORM;
case ddspp::R16G16_TYPELESS:
return RenderFormat::R16G16_TYPELESS;
case ddspp::R16G16_FLOAT:
return RenderFormat::R16G16_FLOAT;
case ddspp::R16G16_UNORM:
return RenderFormat::R16G16_UNORM;
case ddspp::R16G16_UINT:
return RenderFormat::R16G16_UINT;
case ddspp::R16G16_SNORM:
return RenderFormat::R16G16_SNORM;
case ddspp::R16G16_SINT:
return RenderFormat::R16G16_SINT;
case ddspp::R32_TYPELESS:
return RenderFormat::R32_TYPELESS;
case ddspp::D32_FLOAT:
return RenderFormat::D32_FLOAT;
case ddspp::R32_FLOAT:
return RenderFormat::R32_FLOAT;
case ddspp::R32_UINT:
return RenderFormat::R32_UINT;
case ddspp::R32_SINT:
return RenderFormat::R32_SINT;
case ddspp::R8G8_TYPELESS:
return RenderFormat::R8G8_TYPELESS;
case ddspp::R8G8_UNORM:
return RenderFormat::R8G8_UNORM;
case ddspp::R8G8_UINT:
return RenderFormat::R8G8_UINT;
case ddspp::R8G8_SNORM:
return RenderFormat::R8G8_SNORM;
case ddspp::R8G8_SINT:
return RenderFormat::R8G8_SINT;
case ddspp::R16_TYPELESS:
return RenderFormat::R16_TYPELESS;
case ddspp::R16_FLOAT:
return RenderFormat::R16_FLOAT;
case ddspp::D16_UNORM:
return RenderFormat::D16_UNORM;
case ddspp::R16_UNORM:
return RenderFormat::R16_UNORM;
case ddspp::R16_UINT:
return RenderFormat::R16_UINT;
case ddspp::R16_SNORM:
return RenderFormat::R16_SNORM;
case ddspp::R16_SINT:
return RenderFormat::R16_SINT;
case ddspp::R8_TYPELESS:
return RenderFormat::R8_TYPELESS;
case ddspp::R8_UNORM:
return RenderFormat::R8_UNORM;
case ddspp::R8_UINT:
return RenderFormat::R8_UINT;
case ddspp::R8_SNORM:
return RenderFormat::R8_SNORM;
case ddspp::R8_SINT:
return RenderFormat::R8_SINT;
case ddspp::BC1_TYPELESS:
return RenderFormat::BC1_TYPELESS;
case ddspp::BC1_UNORM:
return RenderFormat::BC1_UNORM;
case ddspp::BC1_UNORM_SRGB:
return RenderFormat::BC1_UNORM_SRGB;
case ddspp::BC2_TYPELESS:
return RenderFormat::BC2_TYPELESS;
case ddspp::BC2_UNORM:
return RenderFormat::BC2_UNORM;
case ddspp::BC2_UNORM_SRGB:
return RenderFormat::BC2_UNORM_SRGB;
case ddspp::BC3_TYPELESS:
return RenderFormat::BC3_TYPELESS;
case ddspp::BC3_UNORM:
return RenderFormat::BC3_UNORM;
case ddspp::BC3_UNORM_SRGB:
return RenderFormat::BC3_UNORM_SRGB;
case ddspp::BC4_TYPELESS:
return RenderFormat::BC4_TYPELESS;
case ddspp::BC4_UNORM:
return RenderFormat::BC4_UNORM;
case ddspp::BC4_SNORM:
return RenderFormat::BC4_SNORM;
case ddspp::BC5_TYPELESS:
return RenderFormat::BC5_TYPELESS;
case ddspp::BC5_UNORM:
return RenderFormat::BC5_UNORM;
case ddspp::BC5_SNORM:
return RenderFormat::BC5_SNORM;
case ddspp::BC6H_TYPELESS:
return RenderFormat::BC6H_TYPELESS;
case ddspp::BC6H_UF16:
return RenderFormat::BC6H_UF16;
case ddspp::BC6H_SF16:
return RenderFormat::BC6H_SF16;
case ddspp::BC7_TYPELESS:
return RenderFormat::BC7_TYPELESS;
case ddspp::BC7_UNORM:
return RenderFormat::BC7_UNORM;
case ddspp::BC7_UNORM_SRGB:
return RenderFormat::BC7_UNORM_SRGB;
default:
assert(false && "Unsupported format from DDS.");
return RenderFormat::UNKNOWN;
}
}
static void MakePictureData(GuestPictureData* pictureData, uint8_t* data, uint32_t dataSize)
{
if ((pictureData->flags & 0x1) == 0)
{
ddspp::Descriptor ddsDesc;
if (ddspp::decode_header(data, ddsDesc) != ddspp::Error)
{
const auto texture = g_userHeap.AllocPhysical<GuestTexture>(ResourceType::Texture);
RenderTextureDesc desc;
desc.dimension = ConvertTextureDimension(ddsDesc.type);
desc.width = ddsDesc.width;
desc.height = ddsDesc.height;
desc.depth = ddsDesc.depth;
desc.mipLevels = ddsDesc.numMips;
desc.arraySize = ddsDesc.type == ddspp::TextureType::Cubemap ? ddsDesc.arraySize * 6 : ddsDesc.arraySize;
desc.format = ConvertDXGIFormat(ddsDesc.format);
desc.flags = ddsDesc.type == ddspp::TextureType::Cubemap ? RenderTextureFlag::CUBE : RenderTextureFlag::NONE;
texture->texture = g_device->createTexture(desc);
#ifdef _DEBUG
texture->texture->setName(reinterpret_cast<char*>(g_memory.Translate(pictureData->name + 2)));
#endif
RenderTextureViewDesc viewDesc;
viewDesc.format = desc.format;
viewDesc.dimension = ConvertTextureViewDimension(ddsDesc.type);
viewDesc.mipLevels = ddsDesc.numMips;
texture->textureView = texture->texture->createTextureView(viewDesc);
texture->descriptorIndex = g_textureDescriptorAllocator.allocate();
g_textureDescriptorSet->setTexture(texture->descriptorIndex, texture->texture.get(), RenderTextureLayout::SHADER_READ, texture->textureView.get());
struct Slice
{
uint32_t width;
uint32_t height;
uint32_t depth;
uint32_t srcOffset;
uint32_t dstOffset;
uint32_t srcRowPitch;
uint32_t dstRowPitch;
uint32_t rowCount;
};
std::vector<Slice> slices;
uint32_t curSrcOffset = 0;
uint32_t curDstOffset = 0;
for (uint32_t arraySlice = 0; arraySlice < desc.arraySize; arraySlice++)
{
for (uint32_t mipSlice = 0; mipSlice < ddsDesc.numMips; mipSlice++)
{
auto& slice = slices.emplace_back();
slice.width = std::max(1u, ddsDesc.width >> mipSlice);
slice.height = std::max(1u, ddsDesc.height >> mipSlice);
slice.depth = std::max(1u, ddsDesc.depth >> mipSlice);
slice.srcOffset = curSrcOffset;
slice.dstOffset = curDstOffset;
uint32_t rowPitch = ((slice.width + ddsDesc.blockWidth - 1) / ddsDesc.blockWidth) * ddsDesc.bitsPerPixelOrBlock;
slice.srcRowPitch = (rowPitch + 7) / 8;
slice.dstRowPitch = (slice.srcRowPitch + PITCH_ALIGNMENT - 1) & ~(PITCH_ALIGNMENT - 1);
slice.rowCount = (slice.height + ddsDesc.blockHeight - 1) / ddsDesc.blockHeight;
curSrcOffset += slice.srcRowPitch * slice.rowCount * slice.depth;
curDstOffset += (slice.dstRowPitch * slice.rowCount * slice.depth + PLACEMENT_ALIGNMENT - 1) & ~(PLACEMENT_ALIGNMENT - 1);
}
}
auto uploadBuffer = g_device->createBuffer(RenderBufferDesc::UploadBuffer(curDstOffset));
uint8_t* mappedMemory = reinterpret_cast<uint8_t*>(uploadBuffer->map());
for (auto& slice : slices)
{
uint8_t* srcData = data + ddsDesc.headerSize + slice.srcOffset;
uint8_t* dstData = mappedMemory + slice.dstOffset;
if (slice.srcRowPitch == slice.dstRowPitch)
{
memcpy(dstData, srcData, slice.srcRowPitch * slice.rowCount * slice.depth);
}
else
{
for (size_t i = 0; i < slice.rowCount * slice.depth; i++)
{
memcpy(dstData, srcData, slice.srcRowPitch);
srcData += slice.srcRowPitch;
dstData += slice.dstRowPitch;
}
}
}
uploadBuffer->unmap();
ExecuteCopyCommandList([&]
{
g_copyCommandList->barriers(RenderBarrierStage::COPY, RenderTextureBarrier(texture->texture.get(), RenderTextureLayout::COPY_DEST));
for (size_t i = 0; i < slices.size(); i++)
{
auto& slice = slices[i];
g_copyCommandList->copyTextureRegion(
RenderTextureCopyLocation::Subresource(texture->texture.get(), i),
RenderTextureCopyLocation::PlacedFootprint(uploadBuffer.get(), desc.format, slice.width, slice.height, slice.depth, (slice.dstRowPitch * 8) / ddsDesc.bitsPerPixelOrBlock * ddsDesc.blockWidth, slice.dstOffset));
}
});
pictureData->texture = g_memory.MapVirtual(texture);
pictureData->type = 0;
}
}
}
void HalfPixelOffsetMidAsmHook(PPCRegister& f9, PPCRegister& f0)
{
f9.f64 = 0.0;
f0.f64 = 0.0;
}
void IndexBufferLengthMidAsmHook(PPCRegister& r3)
{
r3.u64 *= 2;
}
void SetShadowResolutionMidAsmHook(PPCRegister& r11)
{
r11.u64 = 4096;
}
static void SetResolution(be<uint32_t>* device)
{
uint32_t width = g_swapChain->getWidth();
uint32_t height = g_swapChain->getHeight();
device[46] = width == 0 ? 880 : width;
device[47] = height == 0 ? 720 : height;
}
static uint32_t StubFunction()
{
return 0;
}
GUEST_FUNCTION_HOOK(sub_82BD99B0, CreateDevice);
GUEST_FUNCTION_HOOK(sub_82BE6230, DestructResource);
GUEST_FUNCTION_HOOK(sub_82BE9300, LockTextureRect);
GUEST_FUNCTION_HOOK(sub_82BE7780, UnlockTextureRect);
GUEST_FUNCTION_HOOK(sub_82BE6B98, LockVertexBuffer);
GUEST_FUNCTION_HOOK(sub_82BE6BE8, UnlockVertexBuffer);
GUEST_FUNCTION_HOOK(sub_82BE61D0, GetVertexBufferDesc);
GUEST_FUNCTION_HOOK(sub_82BE6CA8, LockIndexBuffer);
GUEST_FUNCTION_HOOK(sub_82BE6CF0, UnlockIndexBuffer);
GUEST_FUNCTION_HOOK(sub_82BE6200, GetIndexBufferDesc);
GUEST_FUNCTION_HOOK(sub_82BE96F0, GetSurfaceDesc);
GUEST_FUNCTION_HOOK(sub_82BE04B0, GetVertexDeclaration);
GUEST_FUNCTION_HOOK(sub_82BE0530, HashVertexDeclaration);
GUEST_FUNCTION_HOOK(sub_82BDA8C0, Present);
GUEST_FUNCTION_HOOK(sub_82BDD330, GetBackBuffer);
GUEST_FUNCTION_HOOK(sub_82BE9498, CreateTexture);
GUEST_FUNCTION_HOOK(sub_82BE6AD0, CreateVertexBuffer);
GUEST_FUNCTION_HOOK(sub_82BE6BF8, CreateIndexBuffer);
GUEST_FUNCTION_HOOK(sub_82BE95B8, CreateSurface);
GUEST_FUNCTION_HOOK(sub_82BF6400, StretchRect);
GUEST_FUNCTION_HOOK(sub_82BDD9F0, SetRenderTarget);
GUEST_FUNCTION_HOOK(sub_82BDD2F0, GetDepthStencilSurface);
GUEST_FUNCTION_HOOK(sub_82BDDD38, SetDepthStencilSurface);
GUEST_FUNCTION_HOOK(sub_82BFE4C8, Clear);
GUEST_FUNCTION_HOOK(sub_82BDD8C0, SetViewport);
GUEST_FUNCTION_HOOK(sub_82BDD0A8, GetViewport);
GUEST_FUNCTION_HOOK(sub_82BE9818, SetTexture);
GUEST_FUNCTION_HOOK(sub_82BDCFB0, SetScissorRect);
GUEST_FUNCTION_HOOK(sub_82BE5900, DrawPrimitive);
GUEST_FUNCTION_HOOK(sub_82BE5CF0, DrawIndexedPrimitive);
GUEST_FUNCTION_HOOK(sub_82BE52F8, DrawPrimitiveUP);
GUEST_FUNCTION_HOOK(sub_82BE0428, CreateVertexDeclaration);
GUEST_FUNCTION_HOOK(sub_82BE02E0, SetVertexDeclaration);
GUEST_FUNCTION_HOOK(sub_82BE1A80, CreateVertexShader);
GUEST_FUNCTION_HOOK(sub_82BE0110, SetVertexShader);
GUEST_FUNCTION_HOOK(sub_82BDD0F8, SetStreamSource);
GUEST_FUNCTION_HOOK(sub_82BDD218, SetIndices);
GUEST_FUNCTION_HOOK(sub_82BE1990, CreatePixelShader);
GUEST_FUNCTION_HOOK(sub_82BDFE58, SetPixelShader);
GUEST_FUNCTION_HOOK(sub_82C00910, D3DXFillVolumeTexture);
GUEST_FUNCTION_HOOK(sub_82E43FC8, MakePictureData);
GUEST_FUNCTION_HOOK(sub_82E9EE38, SetResolution);
GUEST_FUNCTION_HOOK(sub_82BE77B0, StubFunction);
GUEST_FUNCTION_STUB(sub_822C15D8);
GUEST_FUNCTION_STUB(sub_822C1810);
GUEST_FUNCTION_STUB(sub_82BD97A8);
GUEST_FUNCTION_STUB(sub_82BD97E8);
GUEST_FUNCTION_STUB(sub_82BDD370); // SetGammaRamp
GUEST_FUNCTION_STUB(sub_82BE05B8);
GUEST_FUNCTION_STUB(sub_82BE9C98);
GUEST_FUNCTION_STUB(sub_82BEA308);
GUEST_FUNCTION_STUB(sub_82CD5D68);
GUEST_FUNCTION_STUB(sub_82BE9B28);
GUEST_FUNCTION_STUB(sub_82BEA018);
GUEST_FUNCTION_STUB(sub_82BEA7C0);
GUEST_FUNCTION_STUB(sub_82BFFF88); // D3DXFilterTexture
GUEST_FUNCTION_STUB(sub_82E9EF90); // D3DXFillTexture