Zelda64Recomp/src/ui/ui_renderer.cpp
2024-03-03 21:17:59 -05:00

1212 lines
50 KiB
C++

#ifdef _WIN32
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <fstream>
#include <filesystem>
#include "recomp_ui.h"
#include "recomp_input.h"
#include "recomp_game.h"
#include "concurrentqueue.h"
#include "rt64_layer.h"
#include "rt64_render_hooks.h"
#include "rt64_render_interface_builders.h"
#include "RmlUi/Core.h"
#include "RmlUi/Debugger.h"
#include "RmlUi/../../Source/Core/Elements/ElementLabel.h"
#include "RmlUi_Platform_SDL.h"
#include "InterfaceVS.hlsl.spirv.h"
#include "InterfacePS.hlsl.spirv.h"
#ifdef _WIN32
# include "InterfaceVS.hlsl.dxil.h"
# include "InterfacePS.hlsl.dxil.h"
#endif
#include "FontEngineScaled/FontEngineInterfaceScaled.h"
#include "FontEngineScaled/FontTypes.h"
#include "ScaledSVG/ElementScaledSVG.h"
#ifdef _WIN32
# define GET_SHADER_BLOB(name, format) \
((format) == RT64::RenderShaderFormat::SPIRV ? name##BlobSPIRV : \
(format) == RT64::RenderShaderFormat::DXIL ? name##BlobDXIL : nullptr)
# define GET_SHADER_SIZE(name, format) \
((format) == RT64::RenderShaderFormat::SPIRV ? std::size(name##BlobSPIRV) : \
(format) == RT64::RenderShaderFormat::DXIL ? std::size(name##BlobDXIL) : 0)
#else
# define GET_SHADER_BLOB(name, format) \
((format) == RT64::RenderShaderFormat::SPIRV ? name##BlobSPIRV : nullptr)
# define GET_SHADER_SIZE(name, format) \
((format) == RT64::RenderShaderFormat::SPIRV ? std::size(name##BlobSPIRV) : 0)
#endif
struct UIRenderContext {
RT64::RenderInterface* interface;
RT64::RenderDevice* device;
Rml::ElementDocument* document;
};
// TODO deduplicate from rt64_common.h
void CalculateTextureRowWidthPadding(uint32_t rowPitch, uint32_t &rowWidth, uint32_t &rowPadding) {
const int RowMultiple = 256;
rowWidth = rowPitch;
rowPadding = (rowWidth % RowMultiple) ? RowMultiple - (rowWidth % RowMultiple) : 0;
rowWidth += rowPadding;
}
struct RmlPushConstants {
Rml::Matrix4f transform;
Rml::Vector2f translation;
};
struct TextureHandle {
std::unique_ptr<RT64::RenderTexture> texture;
std::unique_ptr<RT64::RenderDescriptorSet> set;
};
std::vector<char> read_file(const std::filesystem::path& filepath) {
std::vector<char> ret{};
std::ifstream input_file{ filepath, std::ios::binary };
if (!input_file) {
return ret;
}
input_file.seekg(0, std::ios::end);
std::streampos filesize = input_file.tellg();
input_file.seekg(0, std::ios::beg);
ret.resize(filesize);
input_file.read(ret.data(), filesize);
return ret;
}
template <typename T>
T from_bytes_le(const char* input) {
return *reinterpret_cast<const T*>(input);
}
void load_document();
class RmlRenderInterface_RT64 : public Rml::RenderInterface {
static constexpr uint32_t per_frame_descriptor_set = 0;
static constexpr uint32_t per_draw_descriptor_set = 1;
static constexpr uint32_t initial_upload_buffer_size = 1024 * 1024;
static constexpr uint32_t initial_vertex_buffer_size = 512 * sizeof(Rml::Vertex);
static constexpr uint32_t initial_index_buffer_size = 1024 * sizeof(int);
static constexpr RT64::RenderFormat RmlTextureFormat = RT64::RenderFormat::R8G8B8A8_UNORM;
static constexpr RT64::RenderFormat RmlTextureFormatBgra = RT64::RenderFormat::B8G8R8A8_UNORM;
static constexpr RT64::RenderFormat SwapChainFormat = RT64::RenderFormat::B8G8R8A8_UNORM;
static constexpr uint32_t RmlTextureFormatBytesPerPixel = RenderFormatSize(RmlTextureFormat);
static_assert(RenderFormatSize(RmlTextureFormatBgra) == RmlTextureFormatBytesPerPixel);
struct UIRenderContext* render_context_;
int scissor_x_ = 0;
int scissor_y_ = 0;
int scissor_width_ = 0;
int scissor_height_ = 0;
int window_width_ = 0;
int window_height_ = 0;
RT64::RenderMultisampling multisampling_ = RT64::RenderMultisampling();
Rml::Matrix4f projection_mtx_ = Rml::Matrix4f::Identity();
Rml::Matrix4f transform_ = Rml::Matrix4f::Identity();
Rml::Matrix4f mvp_ = Rml::Matrix4f::Identity();
std::unordered_map<Rml::TextureHandle, TextureHandle> textures_{};
Rml::TextureHandle texture_count_ = 1; // Start at 1 to reserve texture 0 as the 1x1 pixel white texture
std::unique_ptr<RT64::RenderBuffer> upload_buffer_{};
std::unique_ptr<RT64::RenderBuffer> vertex_buffer_{};
std::unique_ptr<RT64::RenderBuffer> index_buffer_{};
std::unique_ptr<RT64::RenderSampler> nearestSampler_{};
std::unique_ptr<RT64::RenderSampler> linearSampler_{};
std::unique_ptr<RT64::RenderShader> vertex_shader_{};
std::unique_ptr<RT64::RenderShader> pixel_shader_{};
std::unique_ptr<RT64::RenderDescriptorSet> sampler_set_{};
std::unique_ptr<RT64::RenderDescriptorSetBuilder> texture_set_builder_{};
std::unique_ptr<RT64::RenderPipelineLayout> layout_{};
std::unique_ptr<RT64::RenderPipeline> pipeline_{};
std::unique_ptr<RT64::RenderPipeline> pipeline_ms_{};
std::unique_ptr<RT64::RenderTexture> screen_texture_ms_{};
std::unique_ptr<RT64::RenderTexture> screen_texture_{};
std::unique_ptr<RT64::RenderFramebuffer> screen_framebuffer_{};
std::unique_ptr<RT64::RenderDescriptorSet> screen_descriptor_set_{};
std::unique_ptr<RT64::RenderBuffer> screen_vertex_buffer_{};
uint64_t screen_vertex_buffer_size_ = 0;
uint32_t upload_buffer_size_ = 0;
uint32_t upload_buffer_bytes_used_ = 0;
uint8_t* upload_buffer_mapped_data_ = nullptr;
uint32_t vertex_buffer_size_ = 0;
uint32_t index_buffer_size_ = 0;
uint32_t gTexture_descriptor_index;
RT64::RenderInputSlot vertex_slot_{ 0, sizeof(Rml::Vertex) };
RT64::RenderCommandList* list_ = nullptr;
bool scissor_enabled_ = false;
std::vector<std::unique_ptr<RT64::RenderBuffer>> stale_buffers_{};
public:
RmlRenderInterface_RT64(struct UIRenderContext* render_context) {
render_context_ = render_context;
// Enable 4X MSAA if supported by the device.
const RT64::RenderSampleCounts desired_sample_count = RT64::RenderSampleCount::COUNT_8;
if (render_context->device->getSampleCountsSupported(SwapChainFormat) & desired_sample_count) {
multisampling_.sampleCount = desired_sample_count;
}
// Create the texture upload buffer, vertex buffer and index buffer
resize_upload_buffer(initial_upload_buffer_size, false);
resize_vertex_buffer(initial_vertex_buffer_size);
resize_index_buffer(initial_index_buffer_size);
// Describe the vertex format
std::vector<RT64::RenderInputElement> vertex_elements{};
vertex_elements.emplace_back(RT64::RenderInputElement{ "POSITION", 0, 0, RT64::RenderFormat::R32G32_FLOAT, 0, offsetof(Rml::Vertex, position) });
vertex_elements.emplace_back(RT64::RenderInputElement{ "COLOR", 0, 1, RT64::RenderFormat::R8G8B8A8_UNORM, 0, offsetof(Rml::Vertex, colour) });
vertex_elements.emplace_back(RT64::RenderInputElement{ "TEXCOORD", 0, 2, RT64::RenderFormat::R32G32_FLOAT, 0, offsetof(Rml::Vertex, tex_coord) });
// Create a nearest sampler and a linear sampler
RT64::RenderSamplerDesc samplerDesc;
samplerDesc.minFilter = RT64::RenderFilter::NEAREST;
samplerDesc.magFilter = RT64::RenderFilter::NEAREST;
samplerDesc.addressU = RT64::RenderTextureAddressMode::CLAMP;
samplerDesc.addressV = RT64::RenderTextureAddressMode::CLAMP;
samplerDesc.addressW = RT64::RenderTextureAddressMode::CLAMP;
nearestSampler_ = render_context->device->createSampler(samplerDesc);
samplerDesc.minFilter = RT64::RenderFilter::LINEAR;
samplerDesc.magFilter = RT64::RenderFilter::LINEAR;
linearSampler_ = render_context->device->createSampler(samplerDesc);
// Create the shaders
RT64::RenderShaderFormat shaderFormat = render_context->interface->getCapabilities().shaderFormat;
vertex_shader_ = render_context->device->createShader(GET_SHADER_BLOB(InterfaceVS, shaderFormat), GET_SHADER_SIZE(InterfaceVS, shaderFormat), "VSMain", shaderFormat);
pixel_shader_ = render_context->device->createShader(GET_SHADER_BLOB(InterfacePS, shaderFormat), GET_SHADER_SIZE(InterfacePS, shaderFormat), "PSMain", shaderFormat);
// Create the descriptor set that contains the sampler
RT64::RenderDescriptorSetBuilder sampler_set_builder{};
sampler_set_builder.begin();
sampler_set_builder.addImmutableSampler(1, linearSampler_.get());
sampler_set_builder.addConstantBuffer(3, 1); // Workaround D3D12 crash due to an empty RT64 descriptor set
sampler_set_builder.end();
sampler_set_ = sampler_set_builder.create(render_context->device);
// Create a builder for the descriptor sets that will contain textures
texture_set_builder_ = std::make_unique<RT64::RenderDescriptorSetBuilder>();
texture_set_builder_->begin();
gTexture_descriptor_index = texture_set_builder_->addTexture(2);
texture_set_builder_->end();
// Create the pipeline layout
RT64::RenderPipelineLayoutBuilder layout_builder{};
layout_builder.begin(false, true);
layout_builder.addPushConstant(0, 0, sizeof(RmlPushConstants), RT64::RenderShaderStageFlag::VERTEX);
// Add the descriptor set for descriptors changed once per frame.
layout_builder.addDescriptorSet(sampler_set_builder);
// Add the descriptor set for descriptors changed once per draw.
layout_builder.addDescriptorSet(*texture_set_builder_);
layout_builder.end();
layout_ = layout_builder.create(render_context->device);
// Create the pipeline description
RT64::RenderGraphicsPipelineDesc pipeline_desc{};
pipeline_desc.renderTargetBlend[0] = RT64::RenderBlendDesc::AlphaBlend();
pipeline_desc.renderTargetFormat[0] = SwapChainFormat; // TODO: Use whatever format the swap chain was created with.
pipeline_desc.renderTargetCount = 1;
pipeline_desc.cullMode = RT64::RenderCullMode::NONE;
pipeline_desc.inputSlots = &vertex_slot_;
pipeline_desc.inputSlotsCount = 1;
pipeline_desc.inputElements = vertex_elements.data();
pipeline_desc.inputElementsCount = uint32_t(vertex_elements.size());
pipeline_desc.pipelineLayout = layout_.get();
pipeline_desc.primitiveTopology = RT64::RenderPrimitiveTopology::TRIANGLE_LIST;
pipeline_desc.vertexShader = vertex_shader_.get();
pipeline_desc.pixelShader = pixel_shader_.get();
pipeline_ = render_context->device->createGraphicsPipeline(pipeline_desc);
if (multisampling_.sampleCount > 1) {
pipeline_desc.multisampling = multisampling_;
pipeline_ms_ = render_context->device->createGraphicsPipeline(pipeline_desc);
// Create the descriptor set for the screen drawer.
RT64::RenderDescriptorRange screen_descriptor_range(RT64::RenderDescriptorRangeType::TEXTURE, 2, 1);
screen_descriptor_set_ = render_context->device->createDescriptorSet(RT64::RenderDescriptorSetDesc(&screen_descriptor_range, 1));
// Create vertex buffer for the screen drawer (full-screen triangle).
screen_vertex_buffer_size_ = sizeof(Rml::Vertex) * 3;
screen_vertex_buffer_ = render_context->device->createBuffer(RT64::RenderBufferDesc::UploadBuffer(screen_vertex_buffer_size_));
Rml::Vertex *vertices = (Rml::Vertex *)(screen_vertex_buffer_->map());
const Rml::Colourb white(255, 255, 255, 255);
vertices[0] = Rml::Vertex{ Rml::Vector2f(-1.0f, 1.0f), white, Rml::Vector2f(0.0f, 0.0f) };
vertices[1] = Rml::Vertex{ Rml::Vector2f(-1.0f, -3.0f), white, Rml::Vector2f(0.0f, 2.0f) };
vertices[2] = Rml::Vertex{ Rml::Vector2f(3.0f, 1.0f), white, Rml::Vector2f(2.0f, 0.0f) };
screen_vertex_buffer_->unmap();
}
}
void resize_upload_buffer(uint32_t new_size, bool map = true) {
// Unmap the upload buffer if it's mapped
if (upload_buffer_mapped_data_ != nullptr) {
upload_buffer_->unmap();
}
// If there's already an upload buffer, move it into the stale buffers so it persists until the start of next frame.
if (upload_buffer_) {
stale_buffers_.emplace_back(std::move(upload_buffer_));
}
// Create the new upload buffer, update the size and map it.
upload_buffer_ = render_context_->device->createBuffer(RT64::RenderBufferDesc::UploadBuffer(new_size));
upload_buffer_size_ = new_size;
upload_buffer_bytes_used_ = 0;
if (map) {
upload_buffer_mapped_data_ = reinterpret_cast<uint8_t*>(upload_buffer_->map());
}
else {
upload_buffer_mapped_data_ = nullptr;
}
}
uint32_t allocate_upload_data(uint32_t num_bytes) {
// Check if there's enough remaining room in the upload buffer to allocate the requested bytes.
uint32_t total_bytes = num_bytes + upload_buffer_bytes_used_;
if (total_bytes > upload_buffer_size_) {
// There isn't, so mark the current upload buffer as stale and allocate a new one with 50% more space than the required amount.
resize_upload_buffer(total_bytes + total_bytes / 2);
}
// Record the current end of the upload buffer to return.
uint32_t offset = upload_buffer_bytes_used_;
// Bump the upload buffer's end forward by the number of bytes allocated.
upload_buffer_bytes_used_ += num_bytes;
return offset;
}
uint32_t allocate_upload_data_aligned(uint32_t num_bytes, uint32_t alignment) {
// Check if there's enough remaining room in the upload buffer to allocate the requested bytes.
uint32_t total_bytes = num_bytes + upload_buffer_bytes_used_;
// Determine the amount of padding needed to meet the target alignment.
uint32_t padding_bytes = ((upload_buffer_bytes_used_ + alignment - 1) / alignment) * alignment - upload_buffer_bytes_used_;
// If there isn't enough room to allocate the required bytes plus the padding then resize the upload buffer and allocate from the start of the new one.
if (total_bytes + padding_bytes > upload_buffer_size_) {
resize_upload_buffer(total_bytes + total_bytes / 2);
upload_buffer_bytes_used_ += num_bytes;
return 0;
}
// Otherwise allocate the padding and required bytes and offset the allocated position by the padding size.
return allocate_upload_data(padding_bytes + num_bytes) + padding_bytes;
}
void resize_vertex_buffer(uint32_t new_size) {
if (vertex_buffer_) {
stale_buffers_.emplace_back(std::move(vertex_buffer_));
}
vertex_buffer_ = render_context_->device->createBuffer(RT64::RenderBufferDesc::VertexBuffer(new_size, RT64::RenderHeapType::DEFAULT));
vertex_buffer_size_ = new_size;
}
void resize_index_buffer(uint32_t new_size) {
if (index_buffer_) {
stale_buffers_.emplace_back(std::move(index_buffer_));
}
index_buffer_ = render_context_->device->createBuffer(RT64::RenderBufferDesc::IndexBuffer(new_size, RT64::RenderHeapType::DEFAULT));
index_buffer_size_ = new_size;
}
void RenderGeometry(Rml::Vertex* vertices, int num_vertices, int* indices, int num_indices, Rml::TextureHandle texture, const Rml::Vector2f& translation) override {
uint32_t vert_size_bytes = num_vertices * sizeof(*vertices);
uint32_t index_size_bytes = num_indices * sizeof(*indices);
uint32_t total_bytes = vert_size_bytes + index_size_bytes;
uint32_t index_bytes_start = vert_size_bytes;
if (!textures_.contains(texture)) {
if (texture == 0) {
// Create a 1x1 pixel white texture as the first handle
Rml::byte white_pixel[] = { 255, 255, 255, 255 };
create_texture(0, white_pixel, Rml::Vector2i{ 1,1 });
}
else {
assert(false && "Rendered without texture!");
}
}
uint32_t upload_buffer_offset = allocate_upload_data(total_bytes);
if (vert_size_bytes > vertex_buffer_size_) {
resize_vertex_buffer(vert_size_bytes + vert_size_bytes / 2);
}
if (index_size_bytes > index_buffer_size_) {
resize_index_buffer(index_size_bytes + index_size_bytes / 2);
}
// Copy the vertex and index data into the mapped upload buffer.
memcpy(upload_buffer_mapped_data_ + upload_buffer_offset, vertices, vert_size_bytes);
memcpy(upload_buffer_mapped_data_ + upload_buffer_offset + vert_size_bytes, indices, index_size_bytes);
// Prepare the vertex and index buffers for being copied to.
RT64::RenderBufferBarrier copy_barriers[] = {
RT64::RenderBufferBarrier(vertex_buffer_.get(), RT64::RenderBufferAccess::WRITE),
RT64::RenderBufferBarrier(index_buffer_.get(), RT64::RenderBufferAccess::WRITE)
};
list_->barriers(RT64::RenderBarrierStage::COPY, copy_barriers, uint32_t(std::size(copy_barriers)));
// Copy from the upload buffer to the vertex and index buffers.
list_->copyBufferRegion(vertex_buffer_->at(0), upload_buffer_->at(upload_buffer_offset), vert_size_bytes);
list_->copyBufferRegion(index_buffer_->at(0), upload_buffer_->at(upload_buffer_offset + index_bytes_start), index_size_bytes);
// Prepare the vertex and index buffers for being used for rendering.
RT64::RenderBufferBarrier usage_barriers[] = {
RT64::RenderBufferBarrier(vertex_buffer_.get(), RT64::RenderBufferAccess::READ),
RT64::RenderBufferBarrier(index_buffer_.get(), RT64::RenderBufferAccess::READ)
};
list_->barriers(RT64::RenderBarrierStage::GRAPHICS, usage_barriers, uint32_t(std::size(usage_barriers)));
list_->setViewports(RT64::RenderViewport{ 0, 0, float(window_width_), float(window_height_) });
if (scissor_enabled_) {
list_->setScissors(RT64::RenderRect{
scissor_x_ / RecompRml::global_font_scale,
scissor_y_ / RecompRml::global_font_scale,
(scissor_width_ + scissor_x_) / RecompRml::global_font_scale,
(scissor_height_ + scissor_y_) / RecompRml::global_font_scale });
}
else {
list_->setScissors(RT64::RenderRect{ 0, 0, window_width_, window_height_ });
}
RT64::RenderIndexBufferView index_view{index_buffer_->at(0), index_size_bytes, RT64::RenderFormat::R32_UINT};
list_->setIndexBuffer(&index_view);
RT64::RenderVertexBufferView vertex_view{vertex_buffer_->at(0), vert_size_bytes};
list_->setVertexBuffers(0, &vertex_view, 1, &vertex_slot_);
list_->setGraphicsDescriptorSet(textures_.at(texture).set.get(), 1);
RmlPushConstants constants{
.transform = mvp_,
.translation = translation
};
list_->setGraphicsPushConstants(0, &constants);
list_->drawIndexedInstanced(num_indices, 1, 0, 0, 0);
}
void EnableScissorRegion(bool enable) override {
scissor_enabled_ = enable;
}
void SetScissorRegion(int x, int y, int width, int height) override {
scissor_x_ = x;
scissor_y_ = y;
scissor_width_ = width;
scissor_height_ = height;
}
bool LoadTexture(Rml::TextureHandle& texture_handle, Rml::Vector2i& texture_dimensions, const Rml::String& source) override {
std::filesystem::path image_path{ source.c_str() };
if (image_path.extension() == ".tga") {
std::vector<char> file_data = read_file(image_path);
if (file_data.empty()) {
printf(" File not found or empty\n");
return false;
}
// Make sure ID length is zero
if (file_data[0] != 0) {
printf(" Nonzero ID length not supported\n");
return false;
}
// Make sure no color map is used
if (file_data[1] != 0) {
printf(" Color maps not supported\n");
return false;
}
// Make sure the image is uncompressed
if (file_data[2] != 2) {
printf(" Only uncompressed tga files supported\n");
return false;
}
uint16_t origin_x = from_bytes_le<uint16_t>(file_data.data() + 8);
uint16_t origin_y = from_bytes_le<uint16_t>(file_data.data() + 10);
uint16_t size_x = from_bytes_le<uint16_t>(file_data.data() + 12);
uint16_t size_y = from_bytes_le<uint16_t>(file_data.data() + 14);
// Nonzero origin not supported
if (origin_x != 0 || origin_y != 0) {
printf(" Nonzero origin not supported\n");
return false;
}
uint8_t pixel_depth = file_data[16];
if (pixel_depth != 32) {
printf(" Only 32bpp images supported\n");
return false;
}
uint8_t image_descriptor = file_data[17];
if ((image_descriptor & 0b1111) != 8) {
printf(" Only 8bpp alpha supported\n");
}
if (image_descriptor & 0b110000) {
printf(" Only bottom-to-top, left-to-right pixel order supported\n");
}
texture_dimensions.x = size_x;
texture_dimensions.y = size_y;
texture_handle = texture_count_++;
create_texture(texture_handle, reinterpret_cast<const Rml::byte*>(file_data.data() + 18), texture_dimensions, true, true);
return true;
}
return false;
}
bool GenerateTexture(Rml::TextureHandle& texture_handle, const Rml::byte* source, const Rml::Vector2i& source_dimensions) override {
if (source_dimensions.x == 0 || source_dimensions.y == 0) {
texture_handle = 0;
return true;
}
texture_handle = texture_count_++;
return create_texture(texture_handle, source, source_dimensions);
}
bool create_texture(Rml::TextureHandle texture_handle, const Rml::byte* source, const Rml::Vector2i& source_dimensions, bool flip_y = false, bool bgra = false) {
std::unique_ptr<RT64::RenderTexture> texture =
render_context_->device->createTexture(RT64::RenderTextureDesc::Texture2D(source_dimensions.x, source_dimensions.y, 1, bgra ? RmlTextureFormatBgra : RmlTextureFormat));
if (texture != nullptr) {
uint32_t image_size_bytes = source_dimensions.x * source_dimensions.y * RmlTextureFormatBytesPerPixel;
// Calculate the texture padding for alignment purposes.
uint32_t row_pitch = source_dimensions.x * RmlTextureFormatBytesPerPixel;
uint32_t row_byte_width, row_byte_padding;
CalculateTextureRowWidthPadding(row_pitch, row_byte_width, row_byte_padding);
uint32_t row_width = row_byte_width / RmlTextureFormatBytesPerPixel;
// Calculate the real number of bytes to upload including padding.
uint32_t uploaded_size_bytes = row_byte_width * source_dimensions.y;
// Allocate room in the upload buffer for the uploaded data.
uint32_t upload_buffer_offset = allocate_upload_data_aligned(uploaded_size_bytes, 512);
// Copy the source data into the upload buffer.
uint8_t* dst_data = upload_buffer_mapped_data_ + upload_buffer_offset;
if (row_byte_padding == 0) {
// Copy row-by-row if the image is flipped.
if (flip_y) {
for (uint32_t row = 0; row < source_dimensions.y; row++) {
memcpy(dst_data + row_byte_width * (source_dimensions.y - row - 1), source + row_byte_width * row, row_byte_width);
}
}
// Directly copy if no padding is needed and the image isn't flipped.
else {
memcpy(dst_data, source, image_size_bytes);
}
}
// Otherwise pad each row as necessary.
else {
const Rml::byte *src_data = flip_y ? source + row_pitch * (source_dimensions.y - 1) : source;
uint32_t src_stride = flip_y ? -row_pitch : row_pitch;
size_t offset = 0;
for (uint32_t row = 0; row < source_dimensions.y; row++) { //(offset + increment) <= image_size_bytes) {
memcpy(dst_data, src_data, row_pitch);
src_data += src_stride;
offset += row_pitch;
dst_data += row_byte_width;
}
}
// Prepare the texture to be a destination for copying.
list_->barriers(RT64::RenderBarrierStage::COPY, RT64::RenderTextureBarrier(texture.get(), RT64::RenderTextureLayout::COPY_DEST));
// Copy the upload buffer into the texture.
list_->copyTextureRegion(
RT64::RenderTextureCopyLocation::Subresource(texture.get()),
RT64::RenderTextureCopyLocation::PlacedFootprint(upload_buffer_.get(), RmlTextureFormat, source_dimensions.x, source_dimensions.y, 1, row_width, upload_buffer_offset));
// Prepare the texture for being read from a pixel shader.
list_->barriers(RT64::RenderBarrierStage::GRAPHICS, RT64::RenderTextureBarrier(texture.get(), RT64::RenderTextureLayout::SHADER_READ));
// Create a descriptor set with this texture in it.
std::unique_ptr<RT64::RenderDescriptorSet> set = texture_set_builder_->create(render_context_->device);
set->setTexture(gTexture_descriptor_index, texture.get(), RT64::RenderTextureLayout::SHADER_READ);
textures_.emplace(texture_handle, TextureHandle{ std::move(texture), std::move(set) });
return true;
}
return false;
}
void ReleaseTexture(Rml::TextureHandle texture) override {
textures_.erase(texture);
}
void SetTransform(const Rml::Matrix4f* transform) override {
transform_ = transform ? *transform : Rml::Matrix4f::Identity();
recalculate_mvp();
}
void recalculate_mvp() {
mvp_ = projection_mtx_ * transform_;
}
void start(RT64::RenderCommandList* list, uint32_t image_width, uint32_t image_height) {
list_ = list;
if (multisampling_.sampleCount > 1) {
if (window_width_ != image_width || window_height_ != image_height) {
screen_framebuffer_.reset();
screen_texture_ = render_context_->device->createTexture(RT64::RenderTextureDesc::ColorTarget(image_width, image_height, SwapChainFormat));
screen_texture_ms_ = render_context_->device->createTexture(RT64::RenderTextureDesc::ColorTarget(image_width, image_height, SwapChainFormat, multisampling_));
const RT64::RenderTexture *color_attachment = screen_texture_ms_.get();
screen_framebuffer_ = render_context_->device->createFramebuffer(RT64::RenderFramebufferDesc(&color_attachment, 1));
screen_descriptor_set_->setTexture(0, screen_texture_.get(), RT64::RenderTextureLayout::SHADER_READ);
}
list_->setPipeline(pipeline_ms_.get());
}
else {
list_->setPipeline(pipeline_.get());
}
list_->setGraphicsPipelineLayout(layout_.get());
// Bind the set for descriptors that don't change across draws
list_->setGraphicsDescriptorSet(sampler_set_.get(), 0);
window_width_ = image_width;
window_height_ = image_height;
projection_mtx_ = Rml::Matrix4f::ProjectOrtho(0.0f, float(image_width * RecompRml::global_font_scale), float(image_height * RecompRml::global_font_scale), 0.0f, -10000, 10000);
recalculate_mvp();
// The following code assumes command lists aren't double buffered.
// Clear out any stale buffers from the last command list.
stale_buffers_.clear();
// Reset and map the upload buffer.
upload_buffer_bytes_used_ = 0;
upload_buffer_mapped_data_ = reinterpret_cast<uint8_t*>(upload_buffer_->map());
// Set an internal texture as the render target if MSAA is enabled.
if (multisampling_.sampleCount > 1) {
list->barriers(RT64::RenderBarrierStage::GRAPHICS, RT64::RenderTextureBarrier(screen_texture_ms_.get(), RT64::RenderTextureLayout::COLOR_WRITE));
list->setFramebuffer(screen_framebuffer_.get());
list->clearColor(0, RT64::RenderColor(0.0f, 0.0f, 0.0f, 0.0f));
}
}
void end(RT64::RenderCommandList* list, RT64::RenderFramebuffer* framebuffer) {
// Draw the texture were rendered the UI in to the swap chain framebuffer if MSAA is enabled.
if (multisampling_.sampleCount > 1) {
RT64::RenderTextureBarrier before_resolve_barriers[] = {
RT64::RenderTextureBarrier(screen_texture_ms_.get(), RT64::RenderTextureLayout::RESOLVE_SOURCE),
RT64::RenderTextureBarrier(screen_texture_.get(), RT64::RenderTextureLayout::RESOLVE_DEST)
};
list->barriers(RT64::RenderBarrierStage::COPY, before_resolve_barriers, uint32_t(std::size(before_resolve_barriers)));
list->resolveTexture(screen_texture_.get(), screen_texture_ms_.get());
list->barriers(RT64::RenderBarrierStage::GRAPHICS, RT64::RenderTextureBarrier(screen_texture_.get(), RT64::RenderTextureLayout::SHADER_READ));
list->setFramebuffer(framebuffer);
list->setPipeline(pipeline_.get());
list->setGraphicsPipelineLayout(layout_.get());
list->setGraphicsDescriptorSet(sampler_set_.get(), 0);
list->setGraphicsDescriptorSet(screen_descriptor_set_.get(), 1);
RT64::RenderVertexBufferView vertex_view(screen_vertex_buffer_.get(), screen_vertex_buffer_size_);
list->setVertexBuffers(0, &vertex_view, 1, &vertex_slot_);
RmlPushConstants constants{
.transform = Rml::Matrix4f::Identity(),
.translation = Rml::Vector2f(0.0f, 0.0f)
};
list_->setGraphicsPushConstants(0, &constants);
list->drawInstanced(3, 1, 0, 0);
}
list_ = nullptr;
// Unmap the upload buffer if it's mapped.
if (upload_buffer_mapped_data_) {
upload_buffer_->unmap();
upload_buffer_mapped_data_ = nullptr;
}
}
};
bool can_focus(Rml::Element* element) {
return element->GetOwnerDocument() != nullptr && element->GetProperty(Rml::PropertyId::TabIndex)->Get<Rml::Style::TabIndex>() != Rml::Style::TabIndex::None;
}
//! Copied from lib\RmlUi\Source\Core\Elements\ElementLabel.cpp
// Get the first descending element whose tag name matches one of tags.
static Rml::Element* TagMatchRecursive(const Rml::StringList& tags, Rml::Element* element)
{
const int num_children = element->GetNumChildren();
for (int i = 0; i < num_children; i++)
{
Rml::Element* child = element->GetChild(i);
for (const Rml::String& tag : tags)
{
if (child->GetTagName() == tag)
return child;
}
Rml::Element* matching_element = TagMatchRecursive(tags, child);
if (matching_element)
return matching_element;
}
return nullptr;
}
Rml::Element* get_target(Rml::ElementDocument* document, Rml::Element* element) {
// Labels can have targets, so check if this element is a label.
if (element->GetTagName() == "label") {
Rml::ElementLabel* labelElement = (Rml::ElementLabel*)element;
const Rml::String target_id = labelElement->GetAttribute<Rml::String>("for", "");
if (target_id.empty())
{
const Rml::StringList matching_tags = {"button", "input", "textarea", "progress", "progressbar", "select"};
return TagMatchRecursive(matching_tags, element);
}
else
{
Rml::Element* target = labelElement->GetElementById(target_id);
if (target != element)
return target;
}
return nullptr;
}
// Return the element directly if no target exists.
return element;
}
namespace recomp {
class UiEventListener : public Rml::EventListener {
event_handler_t* handler_;
Rml::String param_;
public:
UiEventListener(event_handler_t* handler, Rml::String&& param) : handler_(handler), param_(std::move(param)) {}
void ProcessEvent(Rml::Event& event) override {
handler_(param_, event);
}
};
class UiEventListenerInstancer : public Rml::EventListenerInstancer {
std::unordered_map<Rml::String, event_handler_t*> handler_map_;
std::unordered_map<Rml::String, UiEventListener> listener_map_;
public:
Rml::EventListener* InstanceEventListener(const Rml::String& value, Rml::Element* element) override {
// Check if a listener has already been made for the full event string and return it if so.
auto find_listener_it = listener_map_.find(value);
if (find_listener_it != listener_map_.end()) {
return &find_listener_it->second;
}
// No existing listener, so check if a handler has been registered for this event type and create a listener for it if so.
size_t delimiter_pos = value.find(':');
Rml::String event_type = value.substr(0, delimiter_pos);
auto find_handler_it = handler_map_.find(event_type);
if (find_handler_it != handler_map_.end()) {
// A handler was found, create a listener and return it.
Rml::String event_param = value.substr(std::min(delimiter_pos, value.size()));
return &listener_map_.emplace(value, UiEventListener{ find_handler_it->second, std::move(event_param) }).first->second;
}
return nullptr;
}
void register_event(const Rml::String& value, event_handler_t* handler) {
handler_map_.emplace(value, handler);
}
};
}
void recomp::register_event(UiEventListenerInstancer& listener, const std::string& name, event_handler_t* handler) {
listener.register_event(name, handler);
}
struct UIContext {
struct UIRenderContext render;
class {
std::unordered_map<recomp::Menu, std::unique_ptr<recomp::MenuController>> menus;
std::unordered_map<recomp::Menu, Rml::ElementDocument*> documents;
Rml::ElementDocument* current_document;
Rml::Element* prev_focused;
bool mouse_is_active = true;
bool mouse_is_active_changed = false;
public:
std::unique_ptr<SystemInterface_SDL> system_interface;
std::unique_ptr<RmlRenderInterface_RT64> render_interface;
std::unique_ptr<Rml::FontEngineInterface> font_interface;
std::unique_ptr<Rml::ElementInstancer> svg_instancer;
Rml::Context* context;
recomp::UiEventListenerInstancer event_listener_instancer;
void unload() {
render_interface.reset();
}
void swap_document(recomp::Menu menu) {
if (current_document != nullptr) {
Rml::Element* window_el = current_document->GetElementById("window");
if (window_el != nullptr) {
window_el->SetClassNames("rmlui-window rmlui-window--hidden");
}
current_document->Hide();
}
auto find_it = documents.find(menu);
if (find_it != documents.end()) {
assert(find_it->second && "Document for menu not loaded!");
current_document = find_it->second;
Rml::Element* window_el = current_document->GetElementById("window");
if (window_el != nullptr) {
window_el->SetClassNames("rmlui-window rmlui-window--hidden");
}
current_document->Show();
if (window_el != nullptr) {
window_el->SetClassNames("rmlui-window");
}
}
else {
current_document = nullptr;
}
prev_focused = nullptr;
}
void swap_config_menu(recomp::ConfigSubmenu submenu) {
if (current_document != nullptr) {
Rml::Element* config_tabset_base = current_document->GetElementById("config_tabset");
if (config_tabset_base != nullptr) {
Rml::ElementTabSet* config_tabset = rmlui_dynamic_cast<Rml::ElementTabSet*>(config_tabset_base);
if (config_tabset != nullptr) {
config_tabset->SetActiveTab(static_cast<int>(submenu));
prev_focused = nullptr;
}
}
}
}
void load_documents() {
if (!documents.empty()) {
Rml::Factory::RegisterEventListenerInstancer(nullptr);
for (auto doc : documents) {
doc.second->ReloadStyleSheet();
}
Rml::ReleaseTextures();
Rml::ReleaseMemoryPools();
if (current_document != nullptr) {
current_document->Close();
}
current_document = nullptr;
documents.clear();
Rml::Factory::RegisterEventListenerInstancer(&event_listener_instancer);
}
for (auto& [menu, controller]: menus) {
documents.emplace(menu, controller->load_document(context));
}
prev_focused = nullptr;
}
void make_event_listeners() {
for (auto& [menu, controller]: menus) {
controller->register_events(event_listener_instancer);
}
}
void make_bindings() {
for (auto& [menu, controller]: menus) {
controller->make_bindings(context);
}
}
void update_primary_input(bool mouse_moved, bool non_mouse_interacted) {
if (current_document == nullptr) {
return;
}
mouse_is_active_changed = false;
if (non_mouse_interacted) {
// controller newly interacted with
if (mouse_is_active) {
mouse_is_active = false;
mouse_is_active_changed = true;
}
}
else if (mouse_moved) {
// mouse newly interacted with
if (!mouse_is_active) {
mouse_is_active = true;
mouse_is_active_changed = true;
}
}
// TODO: Figure out why this only works if the mouse is moving
SDL_ShowCursor(mouse_is_active ? SDL_ENABLE : SDL_DISABLE);
Rml::Element* window_el = current_document->GetElementById("window");
if (window_el != nullptr) {
if (mouse_is_active) {
if (!window_el->HasAttribute("mouse-active")) {
window_el->SetAttribute("mouse-active", true);
}
}
else if (window_el->HasAttribute("mouse-active")) {
window_el->RemoveAttribute("mouse-active");
}
}
}
void update_focus(bool mouse_moved) {
if (current_document == nullptr) {
return;
}
// If there was mouse motion, get the current hovered element (or its target if it points to one) and focus that if applicable.
if (mouse_is_active) {
if (mouse_is_active_changed) {
Rml::Element* focused = current_document->GetFocusLeafNode();
if (focused) focused->Blur();
} else if (mouse_moved) {
Rml::Element* hovered = context->GetHoverElement();
if (hovered) {
Rml::Element* hover_target = get_target(current_document, hovered);
if (hover_target && can_focus(hover_target)) {
prev_focused = hover_target;
}
}
}
}
if (!mouse_is_active) {
if (!prev_focused) {
// get current focus and set to prev
prev_focused = current_document->GetFocusLeafNode();
}
if (mouse_is_active_changed && prev_focused && can_focus(prev_focused)) {
prev_focused->Focus();
}
}
}
void add_menu(recomp::Menu menu, std::unique_ptr<recomp::MenuController>&& controller) {
menus.emplace(menu, std::move(controller));
}
} rml;
};
std::unique_ptr<UIContext> ui_context;
std::mutex ui_context_mutex{};
// TODO make this not be global
extern SDL_Window* window;
void recomp::get_window_size(int& width, int& height) {
SDL_GetWindowSizeInPixels(window, &width, &height);
}
void init_hook(RT64::RenderInterface* interface, RT64::RenderDevice* device) {
ui_context = std::make_unique<UIContext>();
ui_context->rml.add_menu(recomp::Menu::Config, recomp::create_config_menu());
ui_context->rml.add_menu(recomp::Menu::Launcher, recomp::create_launcher_menu());
ui_context->render.interface = interface;
ui_context->render.device = device;
// Setup RML
ui_context->rml.system_interface = std::make_unique<SystemInterface_SDL>();
ui_context->rml.system_interface->SetWindow(window);
ui_context->rml.render_interface = std::make_unique<RmlRenderInterface_RT64>(&ui_context->render);
ui_context->rml.make_event_listeners();
Rml::SetSystemInterface(ui_context->rml.system_interface.get());
Rml::SetRenderInterface(ui_context->rml.render_interface.get());
Rml::Factory::RegisterEventListenerInstancer(&ui_context->rml.event_listener_instancer);
ui_context->rml.font_interface = std::make_unique<RecompRml::FontEngineInterfaceScaled>();
Rml::SetFontEngineInterface(ui_context->rml.font_interface.get());
Rml::Initialise();
ui_context->rml.svg_instancer = std::make_unique<Rml::ElementInstancerGeneric<RecompRml::ElementScaledSVG>>();
Rml::Factory::RegisterElementInstancer("svg", ui_context->rml.svg_instancer.get());
// Apply the hack to replace RmlUi's default color parser with one that conforms to HTML5 alpha parsing for SASS compatibility
recomp::apply_color_hack();
int width, height;
SDL_GetWindowSizeInPixels(window, &width, &height);
ui_context->rml.context = Rml::CreateContext("main", Rml::Vector2i(width * RecompRml::global_font_scale, height * RecompRml::global_font_scale));
ui_context->rml.make_bindings();
Rml::Debugger::Initialise(ui_context->rml.context);
{
const Rml::String directory = "assets/";
struct FontFace {
const char* filename;
bool fallback_face;
};
FontFace font_faces[] = {
{"LatoLatin-Regular.ttf", false},
{"ChiaroNormal.otf", false},
{"ChiaroBold.otf", false},
{"LatoLatin-Italic.ttf", false},
{"LatoLatin-Bold.ttf", false},
{"LatoLatin-BoldItalic.ttf", false},
{"NotoEmoji-Regular.ttf", true},
{"promptfont/promptfont.ttf", false},
};
for (const FontFace& face : font_faces) {
Rml::LoadFontFace(directory + face.filename, face.fallback_face);
}
}
ui_context->rml.load_documents();
}
moodycamel::ConcurrentQueue<SDL_Event> ui_event_queue{};
void recomp::queue_event(const SDL_Event& event) {
ui_event_queue.enqueue(event);
}
bool recomp::try_deque_event(SDL_Event& out) {
return ui_event_queue.try_dequeue(out);
}
std::atomic<recomp::Menu> open_menu = recomp::Menu::Launcher;
std::atomic<recomp::ConfigSubmenu> open_config_submenu = recomp::ConfigSubmenu::Count;
void draw_hook(RT64::RenderCommandList* command_list, RT64::RenderFramebuffer* swap_chain_framebuffer) {
std::lock_guard lock {ui_context_mutex};
// Return early if the ui context has been destroyed already.
if (!ui_context) {
return;
}
int num_keys;
const Uint8* key_state = SDL_GetKeyboardState(&num_keys);
static bool was_reload_held = false;
bool is_reload_held = key_state[SDL_SCANCODE_F11] != 0;
bool reload_sheets = is_reload_held && !was_reload_held;
was_reload_held = is_reload_held;
static recomp::Menu prev_menu = recomp::Menu::None;
recomp::Menu cur_menu = open_menu.load();
if (reload_sheets) {
ui_context->rml.load_documents();
prev_menu = recomp::Menu::None;
}
if (cur_menu != prev_menu) {
ui_context->rml.swap_document(cur_menu);
}
recomp::ConfigSubmenu config_submenu = open_config_submenu.load();
if (config_submenu != recomp::ConfigSubmenu::Count) {
ui_context->rml.swap_config_menu(config_submenu);
open_config_submenu.store(recomp::ConfigSubmenu::Count);
}
prev_menu = cur_menu;
SDL_Event cur_event{};
bool mouse_moved = false;
bool non_mouse_interacted = false;
while (recomp::try_deque_event(cur_event)) {
// Scale coordinates for mouse and window events based on the UI scale
switch (cur_event.type) {
case SDL_EventType::SDL_MOUSEMOTION:
cur_event.motion.x *= RecompRml::global_font_scale;
cur_event.motion.y *= RecompRml::global_font_scale;
cur_event.motion.xrel *= RecompRml::global_font_scale;
cur_event.motion.yrel *= RecompRml::global_font_scale;
break;
case SDL_EventType::SDL_MOUSEBUTTONDOWN:
case SDL_EventType::SDL_MOUSEBUTTONUP:
cur_event.button.x *= RecompRml::global_font_scale;
cur_event.button.y *= RecompRml::global_font_scale;
break;
case SDL_EventType::SDL_MOUSEWHEEL:
cur_event.wheel.x *= RecompRml::global_font_scale;
cur_event.wheel.y *= RecompRml::global_font_scale;
break;
case SDL_EventType::SDL_WINDOWEVENT:
if (cur_event.window.event == SDL_WINDOWEVENT_SIZE_CHANGED) {
cur_event.window.data1 *= RecompRml::global_font_scale;
cur_event.window.data2 *= RecompRml::global_font_scale;
}
break;
}
// Send events to RmlUi if a menu is open.
if (cur_menu != recomp::Menu::None) {
// Implement some additional behavior for specific events on top of what RmlUi normally does with them.
switch (cur_event.type) {
case SDL_EventType::SDL_MOUSEMOTION:
mouse_moved = true;
break;
case SDL_EventType::SDL_CONTROLLERBUTTONDOWN:
case SDL_EventType::SDL_KEYDOWN:
non_mouse_interacted = true;
break;
case SDL_EventType::SDL_CONTROLLERAXISMOTION:
SDL_ControllerAxisEvent* axis_event = &cur_event.caxis;
float axis_value = axis_event->value * (1 / 32768.0f);
if (fabsf(axis_value) > 0.2f) {
non_mouse_interacted = true;
}
break;
}
RmlSDL::InputEventHandler(ui_context->rml.context, cur_event);
}
// If no menu is open and the game has been started and either the escape key or select button are pressed, open the config menu.
if (cur_menu == recomp::Menu::None && ultramodern::is_game_started()) {
bool open_config = false;
switch (cur_event.type) {
case SDL_EventType::SDL_KEYDOWN:
if (cur_event.key.keysym.scancode == SDL_Scancode::SDL_SCANCODE_ESCAPE) {
open_config = true;
}
break;
case SDL_EventType::SDL_CONTROLLERBUTTONDOWN:
if (cur_event.cbutton.button == SDL_GameControllerButton::SDL_CONTROLLER_BUTTON_BACK) {
open_config = true;
}
break;
}
if (open_config) {
cur_menu = recomp::Menu::Config;
open_menu.store(recomp::Menu::Config);
ui_context->rml.swap_document(cur_menu);
}
}
}
recomp::InputField scanned_field = recomp::get_scanned_input();
if (scanned_field != recomp::InputField{}) {
recomp::finish_scanning_input(scanned_field);
}
ui_context->rml.update_primary_input(mouse_moved, non_mouse_interacted);
ui_context->rml.update_focus(mouse_moved);
if (cur_menu != recomp::Menu::None) {
int width = swap_chain_framebuffer->getWidth();
int height = swap_chain_framebuffer->getHeight();
// Scale the UI based on the window size with 1080 vertical resolution as the reference point.
ui_context->rml.context->SetDensityIndependentPixelRatio((height * RecompRml::global_font_scale) / 1080.0f);
ui_context->rml.render_interface->start(command_list, width, height);
static int prev_width = 0;
static int prev_height = 0;
if (prev_width != width || prev_height != height) {
ui_context->rml.context->SetDimensions({ (int)(width * RecompRml::global_font_scale), (int)(height * RecompRml::global_font_scale) });
}
prev_width = width;
prev_height = height;
ui_context->rml.context->Update();
ui_context->rml.context->Render();
ui_context->rml.render_interface->end(command_list, swap_chain_framebuffer);
}
}
void deinit_hook() {
}
void set_rt64_hooks() {
RT64::SetRenderHooks(init_hook, draw_hook, deinit_hook);
}
void recomp::set_current_menu(Menu menu) {
open_menu.store(menu);
if (menu == recomp::Menu::None) {
ui_context->rml.system_interface->SetMouseCursor("arrow");
}
}
void recomp::set_config_submenu(recomp::ConfigSubmenu submenu) {
open_config_submenu.store(submenu);
}
void recomp::destroy_ui() {
std::lock_guard lock {ui_context_mutex};
ui_context->rml.font_interface.reset();
Rml::Shutdown();
ui_context->rml.unload();
ui_context.reset();
}
recomp::Menu recomp::get_current_menu() {
return open_menu.load();
}
void recomp::message_box(const char* msg) {
SDL_ShowSimpleMessageBox(SDL_MESSAGEBOX_ERROR, "Error", msg, nullptr);
}